

Supporting Information

for

Morphology-driven gas sensing by fabricated fractals: A review

Vishal Kamathe and Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187-1208. doi:10.3762/bjnano.12.88

Summary of the fractal structures and their applications

The Table S1 below summarizes the different fractal structures used for gas sensing applications.

Table S1: Details of fractals used for sensing various gases under specific conditions.

Shape of Fractal	Size or fractal dimension	Material	Synthesis Technique	Gas sensed	Characteristics	Type of Sensor	Reference
Fine dendrite-like nanocrystals	1.896 at 300 °C 1.884 at 350 °C 1.865 at 400 °C 1.818 at 450 °C	SnO ₂	Sol–gel method & pulsed laser deposition (PLD) technique	Carbon monoxide (CO)	Conc. Range 25-500 ppm, the sensitivity increases with increasing CO conc. and decreasing fractal dimension	Thin Film	[1]
Net-like nanocomposi te	Particle size 10-1000 nm	SiO ₂ - SnO ₂ ZnO- SiO ₂	Sol-gel method	Acetone and ethanol vapors	Conc. 1000 ppm, Sensitivity to gas- reagents is S > 20	Thin film	[2]
Fractal-like network structure		TiO ₂	Chemical vapor deposition (CVD) technique	Acetone sensing	Conc. Range 1.2 and 12.5 ppm, Response time 12 s and recovery time 174 s, High repeatability (>98%) in UV-illuminated condition	Conduc tometri c device with finger electro des	[3]
Fractal	1.8	TiO ₂	A flame spray pyrolysis set up used for the TiO ₂ fractal formation. Gold plasmonic metasurfaces were obtained through a holemask colloidal lithography technique	Ethanol, acetone, and toluene	Localized surface plasmon resonance shifts against the temperature leads to an overall exponential decay trend with decay rates depending on the analyte T ethanol = 26 ± 3 °C T acetone = 7.4 ± 0.3 °C and T toluene = 12 ± 3 °C	Film	[4]

		ZnO	Hydrothermal method	Ethanol and methanol	The flowerlike ZnO is more sensitive than	Thin Film	[5]
3D hierarchical flowerlike ZnO superstruct ures (highly dendritic and loose structure)			method	methanol	the ZnO microparticles for detecting ethanol and methanol. It showed dynamic responserecovery curve. It can be seen that the sensor response amplitude of flowerlike ZnO to all gas concentrations	Film	
					are much higher than those of ZnO microparticles.		
Nanodendri tes and nanowires	The lengths of The nano dendrites are in the range 72– 97 nm, which are the same as the diameters of the nanowires. The lengths of the nanowires are in the range of 3–9 µm.	SnO ₂	Evaporation— condensation method with VLS growth technique	Nitrogen dioxide (NO ₂)	The highest sensor sensitivities for 10, 15, 25 and 50 ppm of NO ₂ conc. are 40, 56, 83 and 121, respectively & response time at optimum temp. at 200°C, to be 39, 27, 15 and 6 s for same conc.	Thin Film	[6]
Christmas- tree-like structure	The trunks have lengths in the range 6–10 µm with dia. varying from 190 nm to 200 nm, and the branches have lengths in the range 1–3 µm with dia. varying from 150 nm to 180 nm.	Zn doped NiO	An electrolytic approach combined with subsequent high temperature oxidation	Ammonia (NH₃)	The sensor with doped NiO dendritic crystals gave 5–8 times faster responses and 30–50 times faster recovery speeds than the sensor with pristine NiO dendritic crystals	Interdig itated electro de	[7]

Dendrites	The multilevel branches are composed of well-oriented nanorods with diameters ranging from 60 to 800 nm	ZnO	Cu catalytic Vapor-Liquid- Solid -VLS- growth process	Hydrogen sulfide (H ₂ S)	Response for 500 ppm of H ₂ S is 26.4 at 30 °C temperature. The response time and recovery time are about 15–20 and 30–50 s, respectively. It also showed higher selectivity towards other gases.	Two ends of the single dendrit e were fixed by conduct ive silver paste on the oxidize d silicon substrate	[8]
Dendrites	The length of leaf-like SnO ₂ was about 11-15 μm	SnO ₂	Facile template- free hydrothermal synthesis method	Nitrogen dioxide (NO ₂)	Leaf-like SnO ₂ materials exhibits an excellent selectivity to NO ₂ against the other tested gases. The response time and recovery time to 500 ppb NO ₂ are resp. about 10 and 46 min. The sensor exhibited good stability during the test for 30 days.	Alumin a tube	[9]
Dendrite- like hierarchical structure	The SiNWs with a length of about 35 µm & WO ₃ nanowires as branches with a length of about 0.6-1 µm	Compos ite array of SiNWs and WO ₃ NWs	Metal-assisted chemical etching (MACE), through thermal annealing of predeposited W film (RF magnetron sputtering technique)	Nitrogen dioxide (NO ₂)	Fast response and recovery, especially transient response with response time less than 1s are achieved upon 0.5-5 ppm NO ₂ exposure at room temperature.	Silicon substra te	[10]

Mixed morphology of nanowires and nanodendrit es	The NWs with the dia. of 50-150 nm and the length of a few 10 µm. The nanodendrites were about 100-300 nm in diameter.	SnO ₂ and carbon powder	Carbothermal reduction of SnO ₂ in closed crucible (Horizontal alumina tubular furnace was used)	Ethanol	The sensor response was 120 for 1000 ppm of ethanol conc. at 360°C. Response time was in the range of 1-10 s. Recovery time was in the range of 10- several hundred s.	coated alumina Substra te	[11]
Hyperbranc hed Structure	500 nm –1μm	Monocli nic bismuth vanadat e	Hydrothermal Treatment	Ethanol and formaldehyde	Higher sensitive to ethanol than formaldehyde at room temperature		[12]
Pine dendritic	400 nm–2 μm	BiVO ₄ / rGO	Hydrothermal Treatment	Triethylamine	Response = 5.9, response time = 11.4 s, recovery time = 67.2 s at 180°C with excellent selectivity and long-term stability.		[13]

References

- 1. Chen, Z.; Pan, D.; Zhao, B.; Ding, G.; Jiao, Z.; Wu, M.; Shek, C.-H.; Wu, L. C. M.; Lai, J. K. L. *ACS Nano* **2010**, *4*, 1202–1208. doi:10.1021/nn901635f
- 2. Gracheva, I. E.; Moshnikov, V. A.; Karpova, S. S.; Maraeva, E. V. J. Phys.: Conf. Ser. 2011, 291, 012017. doi:10.1088/1742-6596/291/1/012017
- 3. Sabri, Y. M.; Kandjani, A. E.; Rashid, S. S. A. A. H.; Harrison, C. J.; Ippolito, S. J.; Bhargava, S. K. Sens. Actuators, B 2018, 275, 215–222. doi:10.1016/j.snb.2018.08.059
- 4. Fusco, Z.; Rahmani, M.; Bo, R.; Verre, R.; Motta, N.; Käll, M.; Neshev, D.; Tricoli, A. Adv. Mater. (Weinheim, Ger.) 2018, 30, 1800931. doi:10.1002/adma.201800931
- 5. Liu, X.; Zhang, J.; Yang, T.; Wang, L.; Kang, Y.; Wang, S.; Wu, S. Powder Technol. 2012, 217, 238–244. doi:10.1016/j.powtec.2011.10.032
- 6. Mohamed, S. H. J. Alloys Compd. 2012, 510, 119–124. doi:10.1016/j.jallcom.2011.09.006

- 7. Wang, J.; Wei, L.; Zhang, L.; Zhang, J.; Wei, H.; Jiang, C.; Zhang, Y. J. Mater. Chem. 2012, 22, 20038–20047. doi:10.1039/c2jm34192a
- 8. Zhang, N.; Yu, K.; Li, Q.; Zhu, Z. Q.; Wan, Q. J. Appl. Phys. 2008, 103, 104305. doi:10.1063/1.2924430
- 9. Zhang, Y.; Li, D.; Qin, L.; Zhao, P.; Liu, F.; Chuai, X.; Sun, P.; Liang, X.; Gao, Y.; Sun, Y.; Lu, G. Sens. Actuators, B 2018, 255, 2944–2951. doi:10.1016/j.snb.2017.09.115
- 10. Qin, Y.; Wang, Z.; Liu, D.; Wang, K. Mater. Lett. 2017, 207, 29–32. doi:10.1016/j.matlet.2017.07.042
- 11. Phadungdhitidhada, S.; Thanasanvorakun, S.; Mangkorntong, P.; Choopun, S.; Mangkorntong, N.; Wongratanaphisan, D. Curr. Appl. Phys. 2011, 11, 1368–1373. doi:10.1016/j.cap.2011.04.007
- 12. Zhao, Y.; Xie, Y.; Zhu, X.; Yan, S.; Wang, S. Chem. Eur. J. 2008, 14, 1601-1606. doi:10.1002/chem.200701053
- 13. Bai, S.; Sun, L.; Sun, J.; Han, J.; Zhang, K.; Li, Q.; Luo, R.; Li, D.; Chen, A. J. Colloid Interface Sci. 2021, 587, 183–191. doi:10.1016/j.jcis.2020.10.113