

Supporting Information

for

Spindle-like MIL101(Fe) decorated with $\rm Bi_2O_3$ nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

Chen-chen Hao, Fang-yan Chen, Kun Bian, Yu-bin Tang and Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038-1050. doi:10.3762/bjnano.13.91

Additional figures and tables

Table S1: BET surface area, pore volume, and pore size of Bi₂O₃, MIL101(Fe), and and BOM-20.

Samples	$S_{\rm BET}$ (m ² /g)	$V_{\rm p}~({\rm cm}^3/{\rm g})$	Pore size (Å)
MIL101(Fe)	276.35	0.42	25.64
$\mathrm{Bi}_2\mathrm{O}_3$	6.19	0.01	62.6
BOM-20	60.23	0.12	47.8

Table S2: Comparison of photocatalytic efficiencies of other previously reported photocatalysts for degradation of CTC in recent years.

Photocatalysts	Dosage of catalyst (g/L)	CTC concentration (mg/L)	Reaction time (min)	Degradation rate (%)	Ref.
Ce-MOF/GO/Fe ₃ O ₄	0.45	20	180	80.5	[S1]
$Zn_{0.75}Mn_{0.75}Fe_{1.5}O_{4}/Zn \\ Fe_{2}O_{4}/ZnO$	0.4	10	120	61.9	[S2]
CNPs	0.1	10	120	82.2	[S3]
3Co/0.3ZnIn ₂ S ₄ /GaN	0.4	10	120	81.0	[S4]
Bi _{1.81} MnNbO _{6.72} /sulfite	0.3	20	120	76.2	[S5]
Co ₂ SnO ₄ -SnO ₂ /GC	0.4	10	80	83.0	[S6]
BP-BiVO ₄	0.15	10	120	88.0	[S7]
BOM-20	0.3	20	120	88.2%	this work

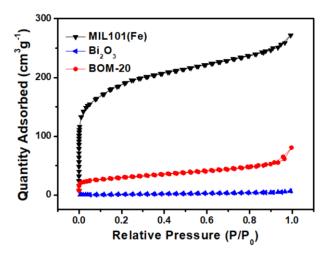


Figure S1: N₂ adsorption–desorption isotherms.

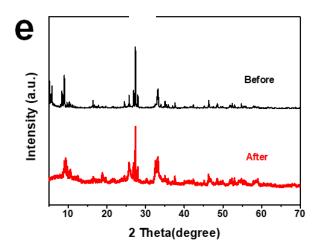


Figure S2: XRD patterns of the BOM-20 before and after the cyclic test.

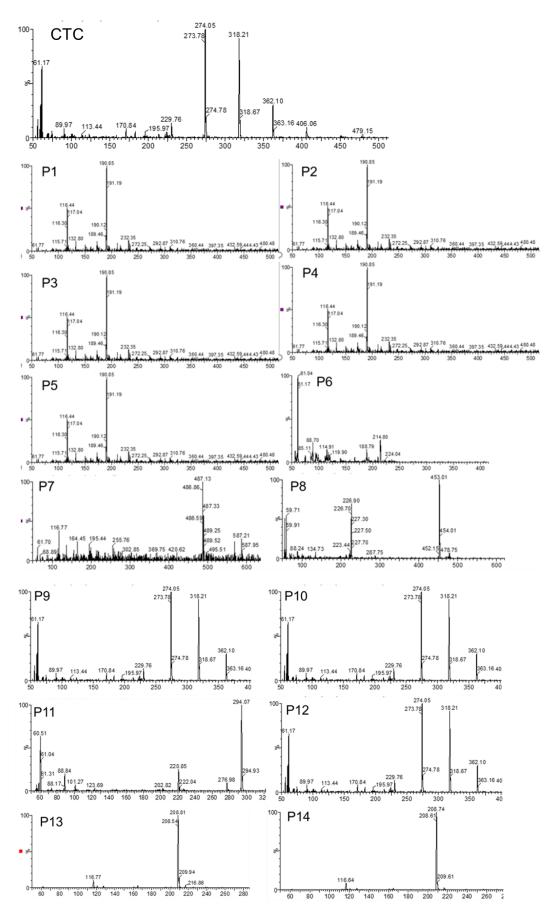


Figure S3: Liquid chromatography—mass spectroscopy results of TCT and intermediates.

References

- [S1] Y. Bai, M. Han, X. Li, S. Feng, L. Lu, S. Ma, Facile and efficient photocatalyst for degradation of chlortetracycline promoted by H₂O₂. Inorg. Chem. Front. **2022**, 9, 2952-2963.
- [S2] Fu, J., Yu, X., Li, Z. et al. Study on the degradation of chlortetracycline hydrochloride in mariculture wastewater by Zn_{0.75}Mn_{0.75}Fe_{1.5}O₄/ZnFe₂O₄/ZnO photocatalyst. Water Air Soil Pollut. **2021**, 232, 12.
- [S3] X. Liu, W. Hou, Y. Huang, H. Zhao, Z. Song, Y. Huang, Facile and green synthesis of carbon nanopinnacles for the removal of chlortetracycline: Performance, mechanism and biotoxicity. Chem. Eng. J., **2022**, 433, 133822.
- [S4] Y. He, J. Shi, Q. Yang, Y. Tong, Z. Ma, L. B. Junior, B. Yao, Co-doped 3D petal-like ZnIn₂S₄/GaN heterostructures for efficient removal of chlortetracycline residue from real pharmaceutical wastewater. Chem. Eng. J., **2022**, 446, 137355.
- [S5] J. Zhao, Q. Song, Q. He, D. D. Dionysiou, F. Wu, Y. Feng, X. Zhang. Fabrication of Bi_{1.81}MnNbO_{6.72}/sulfite system for efficient degradation of chlortetracycline. Chemosphere. **2021**, 268, 129269.
- [S6] J. Zheng, L. Zhang, Rational design and fabrication of multifunctional catalyzer Co₂SnO₄-SnO₂/GC for catalysis applications: photocatalytic degradation/catalytic reduction of organic pollutants. Appl. Catal. B: Environ., **2018**, 231, 34-42.
- [S7] M. Zhang, Q. Shi, X. Cheng, et al., Accelerated generation of hydroxyl radical through surface polarization on BiVO₄ microtubes for efficient chlortetracycline degradation. Chem. Eng. J., **2020**, 400, 125871.