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According to our approximation, at small values of the system parameters, the 𝑦 component of

magnetization can be determined by the general Duffing equation (Equation S1):
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3
𝑦 = 𝜔2

𝐹𝐺𝑟 sin(𝜔𝐽 𝑡). (S1)

In Equation S1, 𝛼 is a phenomenological damping constant, 𝜔𝐹 is the frequency of the ferromagnetic

resonance, 𝜔𝐽 is the Josephson frequency, 𝐺 is the ratio between Josephson energy and magnetic

energy, and the parameter 𝑟 determines the strength of the spin–orbit interaction.

In order to find frequency response function for Equation S1, we have performed the following

procedure: We assume that the approximation solution of Equation S1 has the form

𝑚𝑦 = 𝑎 sin𝜔𝐽 𝑡 + 𝑏 cos𝜔𝐽 𝑡, (S2)

where 𝑎 and 𝑏 are functions of 𝜔𝐽 .

The first- and second-order derivatives of 𝑚𝑦 are determined by

𝑑𝑚𝑦

𝑑𝑡
= 𝑎𝜔𝐽 cos𝜔𝐽 𝑡 − 𝑏𝜔𝐽 sin𝜔𝐽 𝑡 (S3)

𝑑2𝑚𝑦

𝑑𝑡2
= −𝑎𝜔2

𝐽 sin𝜔𝐽 𝑡 − 𝑏𝜔2
𝐽 cos𝜔𝐽 𝑡.

Using trigonometric identities, the cube of 𝑚𝑦 can be written as

𝑚3
𝑦 =

3
4
(𝑎2 + 𝑏2) [𝑎 sin𝜔𝐽 𝑡 + 𝑏 cos𝜔𝐽 𝑡] . (S4)
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Substituting Equation S3 and Equation S4 into Equation S1 and equating the coefficients at sin𝜔𝐽 𝑡

and cos𝜔𝐽 𝑡, we find

[𝜔2
𝐹 − 𝜔2

𝐽 −
3
4
𝜔2
𝐹 (𝑚𝑚𝑎𝑥

𝑦 )2]𝑎 − 2𝛼𝜔𝐹𝜔𝐽𝑏 = 𝜔2
𝐹𝐺𝑟

, 2𝛼𝜔𝐹𝜔𝐽𝑎 + [𝜔2
𝐹 − 𝜔2

𝐽 −
3
4
𝜔2
𝐹 (𝑚𝑚𝑎𝑥

𝑦 )2]𝑏 = 0, (S5)

where (𝑚𝑚𝑎𝑥
𝑦 )2 = 𝑎2 + 𝑏2. Squaring both side of the system in Equation S5 and summing them, we

get the frequency response function,
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(
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)2 . (S6)

Introducing 𝜔 = 𝜔𝐽/𝜔𝐹 , we can rewrite it in a simple form:

(𝑚𝑚𝑎𝑥
𝑦 )2 =

(
𝐺𝑟

)2[
𝜔2 − 1 + 3

4 (𝑚𝑚𝑎𝑥
𝑦 )2

]2 +
(
2𝛼𝜔

)2 . (S7)

In Figure S1, the frequency dependence of the amplitude corresponding to the expression in Equation

S7 for values of 𝛼 = 0.015, 0.02, 0.03, 0.04 are demonstrated.
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Figure S1: Frequency response in Equation S7, that is, 𝑚𝑚𝑎𝑥
𝑦 versus 𝜔 for 𝐺 = 0.05, 𝑟 = 0.05, and

𝜔𝐹 = 0.5. Here, the numbers indicate the value of 𝛼.

To find the analytical anomalous damping dependence, we need to differentiate both side of Equation

S7 with respect to 𝜔 and equate 𝑑 (𝑚𝑚𝑎𝑥
𝑦 )/𝑑𝜔 to zero. We find

(𝑚𝑚𝑎𝑥
𝑦,𝑝𝑒𝑎𝑘 )

2 =
4
3
(1 − 𝜔2

𝑝𝑒𝑎𝑘 − 2𝛼2). (S8)

Here 𝑚𝑚𝑎𝑥
𝑦,𝑝𝑒𝑎𝑘

is the resonance peak and 𝜔𝑝𝑒𝑎𝑘 is its position as shown in Figure S1. Finally,

substituting Equation S8 into Equation S7, we obtain

4
3
(1 − 𝜔2

𝑝𝑒𝑎𝑘 − 2𝛼2) = (𝐺𝑟)2

(−2𝛼2)2 + (2𝛼𝜔𝑝𝑒𝑎𝑘 )2 . (S9)

After simplification of this expression, it can be written as
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16
3
𝛼2(𝛼2 + 𝜔2

𝑝𝑒𝑎𝑘 − 3𝛼2𝜔2
𝑝𝑒𝑎𝑘 − 𝜔4

𝑝𝑒𝑎𝑘 − 2𝛼4) = (𝐺𝑟)2. (S10)

The solution of Equation S10 with respect to 𝜔 has the form

𝜔𝑝𝑒𝑎𝑘 =

√︄
1 − 3𝛼2

2
+ 1

2

√︂
(1 − 𝛼2)2 − 12(𝐺𝑟

4𝛼
)2. (S11)

Thus, it is an analytical expression for ADD and its plot is shown in Figure S2 for 𝐺 = 0.05 and

𝑟 = 0.05.

Figure S2: The resonance peak position depending on 𝛼 for 𝐺 = 0.05 and 𝑟 = 0.05 and 𝜔𝐹 = 0.5.

We can also find the expression for the critical value of 𝛼. To get it, we perform the following
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procedure: After taking the derivative of Equation S10 with respect to 𝛼, we equate 𝜕𝜔𝑝𝑒𝑎𝑘/𝜕𝛼 to

zero and obtain the expression for 𝛼𝑐𝑟𝑖𝑡 :

6𝛼4
𝑐𝑟𝑖𝑡 − 2𝛼2

𝑐𝑟𝑖𝑡 (1 − 3𝜔2
𝑝𝑒𝑎𝑘 ) − 𝜔2

𝑝𝑒𝑎𝑘 + 𝜔4
𝑝𝑒𝑎𝑘 = 0. (S12)

Substituting 𝜔𝑝𝑒𝑎𝑘 in Equation S12 from Equation S11, we get

9
(

𝐺𝑟

4𝛼𝑐𝑟𝑖𝑡

)4
+ 3𝛼2

𝑐𝑟𝑖𝑡 (10𝛼2
𝑐𝑟𝑖𝑡 − 1)

(
𝐺𝑟

4𝛼𝑐𝑟𝑖𝑡

)2
− 2𝛼4

𝑐𝑟𝑖𝑡 (𝛼2
𝑐𝑟𝑖𝑡 − 1)2 = 0. (S13)

Taking into account 10𝛼2
𝑐𝑟𝑖𝑡

<< 1 and 𝛼2
𝑐𝑟𝑖𝑡

<< 1, Equation S13 can be rewritten as

9
(

𝐺𝑟

4𝛼𝑐𝑟𝑖𝑡

)4
− 3𝛼2

𝑐𝑟𝑖𝑡

(
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The solution of Equation S14 has the form

(
𝐺𝑟

4𝛼𝑐𝑟𝑖𝑡

)2
=

3𝛼2
𝑐𝑟𝑖𝑡

±
√︃

9𝛼4
𝑐𝑟𝑖𝑡

+ 72𝛼4
𝑐𝑟𝑖𝑡

18
(S15)

or

(
𝐺𝑟

4𝛼𝑐𝑟𝑖𝑡

)2
=
𝛼2
𝑐𝑟𝑖𝑡

± 3𝛼2
𝑐𝑟𝑖𝑡

6
. (S16)

From here we can find
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𝛼𝑐𝑟𝑖𝑡 =
1
2

√︄√︂
3
2
𝐺𝑟. (S17)
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