

Supporting Information

for

Nonlinear features of the superconductor–ferromagnet–superconductor ϕ_0 Josephson junction in the ferromagnetic resonance region

Aliasghar Janalizadeh, Ilhom R. Rahmonov, Sara A. Abdelmoneim, Yury M. Shukrinov and Mohammad R. Kolahchi

Beilstein J. Nanotechnol. 2022, 13, 1155-1166. doi:10.3762/bjnano.13.97

Details of calculations for Equation 22 and Equation 24

According to our approximation, at small values of the system parameters, the *y* component of magnetization can be determined by the general Duffing equation (Equation S1):

$$\frac{d^2m_y}{dt^2} + 2\alpha\omega_F \frac{dm_y}{dt} + \omega_F^2 m_y - \omega_F^2 m_y^3 = \omega_F^2 Gr \sin(\omega_J t). \tag{S1}$$

In Equation S1, α is a phenomenological damping constant, ω_F is the frequency of the ferromagnetic resonance, ω_J is the Josephson frequency, G is the ratio between Josephson energy and magnetic energy, and the parameter r determines the strength of the spin–orbit interaction.

In order to find frequency response function for Equation S1, we have performed the following procedure: We assume that the approximation solution of Equation S1 has the form

$$m_{v} = a \sin \omega_{J} t + b \cos \omega_{J} t, \tag{S2}$$

where a and b are functions of ω_J .

The first- and second-order derivatives of m_y are determined by

$$\frac{dm_y}{dt} = a\omega_J \cos \omega_J t - b\omega_J \sin \omega_J t$$

$$\frac{d^2 m_y}{dt^2} = -a\omega_J^2 \sin \omega_J t - b\omega_J^2 \cos \omega_J t.$$
(S3)

Using trigonometric identities, the cube of m_y can be written as

$$m_y^3 = \frac{3}{4}(a^2 + b^2)[a\sin\omega_J t + b\cos\omega_J t].$$
 (S4)

Substituting Equation S3 and Equation S4 into Equation S1 and equating the coefficients at $\sin \omega_J t$ and $\cos \omega_J t$, we find

$$[\omega_F^2 - \omega_J^2 - \frac{3}{4}\omega_F^2 (m_y^{max})^2] a - 2\alpha\omega_F \omega_J b = \omega_F^2 Gr$$

$$, 2\alpha\omega_F \omega_J a + [\omega_F^2 - \omega_J^2 - \frac{3}{4}\omega_F^2 (m_y^{max})^2] b = 0,$$
(S5)

where $(m_y^{max})^2 = a^2 + b^2$. Squaring both side of the system in Equation S5 and summing them, we get the frequency response function,

$$(m_y^{max})^2 = \frac{(\omega_F^2 G r)^2}{\left[\omega_I^2 - \omega_F^2 + \frac{3}{4}\omega_F^2 (m_y^{max})^2\right]^2 + (2\alpha\omega_F\omega_J)^2}.$$
 (S6)

Introducing $\omega = \omega_J/\omega_F$, we can rewrite it in a simple form:

$$(m_y^{max})^2 = \frac{(Gr)^2}{\left[\omega^2 - 1 + \frac{3}{4}(m_y^{max})^2\right]^2 + (2\alpha\omega)^2}.$$
 (S7)

In Figure S1, the frequency dependence of the amplitude corresponding to the expression in Equation S7 for values of $\alpha = 0.015, 0.02, 0.03, 0.04$ are demonstrated.

Figure S1: Frequency response in Equation S7, that is, m_y^{max} versus ω for G = 0.05, r = 0.05, and $\omega_F = 0.5$. Here, the numbers indicate the value of α .

To find the analytical anomalous damping dependence, we need to differentiate both side of Equation S7 with respect to ω and equate $d(m_y^{max})/d\omega$ to zero. We find

$$(m_{y,peak}^{max})^2 = \frac{4}{3}(1 - \omega_{peak}^2 - 2\alpha^2).$$
 (S8)

Here $m_{y,peak}^{max}$ is the resonance peak and ω_{peak} is its position as shown in Figure S1. Finally, substituting Equation S8 into Equation S7, we obtain

$$\frac{4}{3}(1 - \omega_{peak}^2 - 2\alpha^2) = \frac{(Gr)^2}{(-2\alpha^2)^2 + (2\alpha\omega_{peak})^2}.$$
 (S9)

After simplification of this expression, it can be written as

$$\frac{16}{3}\alpha^{2}(\alpha^{2} + \omega_{peak}^{2} - 3\alpha^{2}\omega_{peak}^{2} - \omega_{peak}^{4} - 2\alpha^{4}) = (Gr)^{2}.$$
 (S10)

The solution of Equation S10 with respect to ω has the form

$$\omega_{peak} = \sqrt{\frac{1 - 3\alpha^2}{2} + \frac{1}{2}\sqrt{(1 - \alpha^2)^2 - 12(\frac{Gr}{4\alpha})^2}}.$$
 (S11)

Thus, it is an analytical expression for ADD and its plot is shown in Figure S2 for G = 0.05 and r = 0.05.

Figure S2: The resonance peak position depending on α for G = 0.05 and r = 0.05 and $\omega_F = 0.5$.

We can also find the expression for the critical value of α . To get it, we perform the following

procedure: After taking the derivative of Equation S10 with respect to α , we equate $\partial \omega_{peak}/\partial \alpha$ to zero and obtain the expression for α_{crit} :

$$6\alpha_{crit}^4 - 2\alpha_{crit}^2 (1 - 3\omega_{peak}^2) - \omega_{peak}^2 + \omega_{peak}^4 = 0.$$
 (S12)

Substituting ω_{peak} in Equation S12 from Equation S11, we get

$$9\left(\frac{Gr}{4\alpha_{crit}}\right)^{4} + 3\alpha_{crit}^{2}(10\alpha_{crit}^{2} - 1)\left(\frac{Gr}{4\alpha_{crit}}\right)^{2} - 2\alpha_{crit}^{4}(\alpha_{crit}^{2} - 1)^{2} = 0.$$
 (S13)

Taking into account $10\alpha_{crit}^2 << 1$ and $\alpha_{crit}^2 << 1$, Equation S13 can be rewritten as

$$9\left(\frac{Gr}{4\alpha_{crit}}\right)^4 - 3\alpha_{crit}^2 \left(\frac{Gr}{4\alpha_{crit}}\right)^2 - 2\alpha_{crit}^4 = 0.$$
 (S14)

The solution of Equation S14 has the form

$$\left(\frac{Gr}{4\alpha_{crit}}\right)^2 = \frac{3\alpha_{crit}^2 \pm \sqrt{9\alpha_{crit}^4 + 72\alpha_{crit}^4}}{18}$$
 (S15)

or

$$\left(\frac{Gr}{4\alpha_{crit}}\right)^2 = \frac{\alpha_{crit}^2 \pm 3\alpha_{crit}^2}{6}.$$
 (S16)

From here we can find

$$\alpha_{crit} = \frac{1}{2} \sqrt{\sqrt{\frac{3}{2}} Gr}.$$
 (S17)