## Supporting Information

for

# Nonlinear features of the superconductor-ferromagnet-superconductor $\varphi_{0}$ Josephson junction in the ferromagnetic resonance region 

Aliasghar Janalizadeh, Ilhom R. Rahmonov, Sara A. Abdelmoneim, Yury M. Shukrinov and Mohammad R. Kolahchi

Beilstein J. Nanotechnol. 2022, 13, 1155-1166. doi:10.3762/bjnano.13.97

According to our approximation, at small values of the system parameters, the $y$ component of magnetization can be determined by the general Duffing equation (Equation S1):

$$
\begin{equation*}
\frac{d^{2} m_{y}}{d t^{2}}+2 \alpha \omega_{F} \frac{d m_{y}}{d t}+\omega_{F}^{2} m_{y}-\omega_{F}^{2} m_{y}^{3}=\omega_{F}^{2} G r \sin \left(\omega_{J} t\right) \tag{S1}
\end{equation*}
$$

In Equation $\mathrm{S} 1, \alpha$ is a phenomenological damping constant, $\omega_{F}$ is the frequency of the ferromagnetic resonance, $\omega_{J}$ is the Josephson frequency, $G$ is the ratio between Josephson energy and magnetic energy, and the parameter $r$ determines the strength of the spin-orbit interaction.

In order to find frequency response function for Equation S 1 , we have performed the following procedure: We assume that the approximation solution of Equation S1 has the form

$$
\begin{equation*}
m_{y}=a \sin \omega_{J} t+b \cos \omega_{J} t \tag{S2}
\end{equation*}
$$

where $a$ and $b$ are functions of $\omega_{J}$.
The first- and second-order derivatives of $m_{y}$ are determined by

$$
\begin{align*}
\frac{d m_{y}}{d t} & =a \omega_{J} \cos \omega_{J} t-b \omega_{J} \sin \omega_{J} t  \tag{S3}\\
\frac{d^{2} m_{y}}{d t^{2}} & =-a \omega_{J}^{2} \sin \omega_{J} t-b \omega_{J}^{2} \cos \omega_{J} t
\end{align*}
$$

Using trigonometric identities, the cube of $m_{y}$ can be written as

$$
\begin{equation*}
m_{y}^{3}=\frac{3}{4}\left(a^{2}+b^{2}\right)\left[a \sin \omega_{J} t+b \cos \omega_{J} t\right] . \tag{S4}
\end{equation*}
$$

Substituting Equation S3 and Equation S4 into Equation S1 and equating the coefficients at $\sin \omega_{J} t$ and $\cos \omega_{J} t$, we find

$$
\begin{align*}
& {\left[\omega_{F}^{2}-\omega_{J}^{2}-\frac{3}{4} \omega_{F}^{2}\left(m_{y}^{\max }\right)^{2}\right] a-2 \alpha \omega_{F} \omega_{J} b=\omega_{F}^{2} G r} \\
& \quad, 2 \alpha \omega_{F} \omega_{J} a+\left[\omega_{F}^{2}-\omega_{J}^{2}-\frac{3}{4} \omega_{F}^{2}\left(m_{y}^{\max }\right)^{2}\right] b=0 \tag{S5}
\end{align*}
$$

where $\left(m_{y}^{\max }\right)^{2}=a^{2}+b^{2}$. Squaring both side of the system in Equation S5 and summing them, we get the frequency response function,

$$
\begin{equation*}
\left(m_{y}^{\max }\right)^{2}=\frac{\left(\omega_{F}^{2} G r\right)^{2}}{\left[\omega_{J}^{2}-\omega_{F}^{2}+\frac{3}{4} \omega_{F}^{2}\left(m_{y}^{\max }\right)^{2}\right]^{2}+\left(2 \alpha \omega_{F} \omega_{J}\right)^{2}} . \tag{S6}
\end{equation*}
$$

Introducing $\omega=\omega_{J} / \omega_{F}$, we can rewrite it in a simple form:

$$
\begin{equation*}
\left(m_{y}^{\max }\right)^{2}=\frac{(G r)^{2}}{\left[\omega^{2}-1+\frac{3}{4}\left(m_{y}^{\max }\right)^{2}\right]^{2}+(2 \alpha \omega)^{2}} . \tag{S7}
\end{equation*}
$$

In Figure S 1 , the frequency dependence of the amplitude corresponding to the expression in Equation S7 for values of $\alpha=0.015,0.02,0.03,0.04$ are demonstrated.


Figure S1: Frequency response in Equation S7, that is, $m_{y}^{\max }$ versus $\omega$ for $G=0.05, r=0.05$, and $\omega_{F}=0.5$. Here, the numbers indicate the value of $\alpha$.

To find the analytical anomalous damping dependence, we need to differentiate both side of Equation S 7 with respect to $\omega$ and equate $d\left(m_{y}^{\max }\right) / d \omega$ to zero. We find

$$
\begin{equation*}
\left(m_{y, p e a k}^{\max }\right)^{2}=\frac{4}{3}\left(1-\omega_{p e a k}^{2}-2 \alpha^{2}\right) . \tag{S8}
\end{equation*}
$$

Here $m_{y, p e a k}^{\max }$ is the resonance peak and $\omega_{\text {peak }}$ is its position as shown in Figure S1. Finally, substituting Equation S8 into Equation S7, we obtain

$$
\begin{equation*}
\frac{4}{3}\left(1-\omega_{\text {peak }}^{2}-2 \alpha^{2}\right)=\frac{(G r)^{2}}{\left(-2 \alpha^{2}\right)^{2}+\left(2 \alpha \omega_{\text {peak }}\right)^{2}} . \tag{S9}
\end{equation*}
$$

After simplification of this expression, it can be written as

$$
\begin{equation*}
\frac{16}{3} \alpha^{2}\left(\alpha^{2}+\omega_{p e a k}^{2}-3 \alpha^{2} \omega_{p e a k}^{2}-\omega_{p e a k}^{4}-2 \alpha^{4}\right)=(G r)^{2} \tag{S10}
\end{equation*}
$$

The solution of Equation S10 with respect to $\omega$ has the form

$$
\begin{equation*}
\omega_{\text {peak }}=\sqrt{\frac{1-3 \alpha^{2}}{2}+\frac{1}{2} \sqrt{\left(1-\alpha^{2}\right)^{2}-12\left(\frac{G r}{4 \alpha}\right)^{2}}} . \tag{S11}
\end{equation*}
$$

Thus, it is an analytical expression for ADD and its plot is shown in Figure S2 for $G=0.05$ and $r=0.05$.


Figure S2: The resonance peak position depending on $\alpha$ for $G=0.05$ and $r=0.05$ and $\omega_{F}=0.5$.

We can also find the expression for the critical value of $\alpha$. To get it, we perform the following
procedure: After taking the derivative of Equation S10 with respect to $\alpha$, we equate $\partial \omega_{\text {peak }} / \partial \alpha$ to zero and obtain the expression for $\alpha_{\text {crit }}$ :

$$
\begin{equation*}
6 \alpha_{c r i t}^{4}-2 \alpha_{\text {crit }}^{2}\left(1-3 \omega_{\text {peak }}^{2}\right)-\omega_{\text {peak }}^{2}+\omega_{\text {peak }}^{4}=0 . \tag{S12}
\end{equation*}
$$

Substituting $\omega_{\text {peak }}$ in Equation S12 from Equation S11, we get

$$
\begin{equation*}
9\left(\frac{G r}{4 \alpha_{c r i t}}\right)^{4}+3 \alpha_{c r i t}^{2}\left(10 \alpha_{c r i t}^{2}-1\right)\left(\frac{G r}{4 \alpha_{c r i t}}\right)^{2}-2 \alpha_{c r i t}^{4}\left(\alpha_{c r i t}^{2}-1\right)^{2}=0 . \tag{S13}
\end{equation*}
$$

Taking into account $10 \alpha_{c r i t}^{2} \ll 1$ and $\alpha_{c r i t}^{2} \ll 1$, Equation S13 can be rewritten as

$$
\begin{equation*}
9\left(\frac{G r}{4 \alpha_{c r i t}}\right)^{4}-3 \alpha_{c r i t}^{2}\left(\frac{G r}{4 \alpha_{c r i t}}\right)^{2}-2 \alpha_{\text {crit }}^{4}=0 . \tag{S14}
\end{equation*}
$$

The solution of Equation S14 has the form

$$
\begin{equation*}
\left(\frac{G r}{4 \alpha_{c r i t}}\right)^{2}=\frac{3 \alpha_{c r i t}^{2} \pm \sqrt{9 \alpha_{c r i t}^{4}+72 \alpha_{c r i t}^{4}}}{18} \tag{S15}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\frac{G r}{4 \alpha_{c r i t}}\right)^{2}=\frac{\alpha_{c r i t}^{2} \pm 3 \alpha_{c r i t}^{2}}{6} \tag{S16}
\end{equation*}
$$

From here we can find

$$
\begin{equation*}
\alpha_{c r i t}=\frac{1}{2} \sqrt{\sqrt{\frac{3}{2}} G r} . \tag{S17}
\end{equation*}
$$

