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Fourier coefficient calculations 

In the following, we will derive the Fourier coefficients used to fit the spectroscopic data 

obtained on the PTB7-PC71BM organic photovoltaic heterojunction. First, we recall what the 

Fourier coefficients are for two basic time-periodic functions, i.e., a pulse train and a sawtooth 

waveform. These functions correspond to the pump signals used for benchmarking DHe-KPFM 

under electrical pumping on HOPG. 

We consider a time-periodic function F(t), with period =1/f=2/. It can be described by a 

Fourier series: 

𝐹(𝑡) = 𝑐଴ + ෍ |𝑐௡|cos(𝑛𝜔𝑡 + Φ௡)
௡ஹଵ

  𝐸𝑞. 𝑆1 

The first term (c0) represents the time-averaged value of F(t) over one period. In the following, 

we will focus only on the harmonic terms (i.e., n1). The modulus and phase coefficients (|cn| 

and n, respectively) can be calculated using the following equations (in the following, j is the 

imaginary unit and cn are the complex Fourier coefficients, we refer the reader to basic textbooks 

for more details): 

𝑐௡ =
1

𝑇
න 𝐹(𝑡)𝑒ି௝௡ఠ௧𝑑𝑡

்

଴

 𝐸𝑞. 𝑆2𝑎 

𝑎௡ = 𝑐௡ + 𝑐ି௡     𝐸𝑞. 𝑆2𝑏 

𝑏௡ = 𝑗(𝑐௡ − 𝑐ି௡)    𝐸𝑞. 𝑆2𝑐 

|𝑐௡| = ට𝑎௡
ଶ + 𝑏௡

ଶ     𝐸𝑞. 𝑆2𝑑 

Φ௡ = − 𝑎𝑡𝑎𝑛 ൬
𝑏௡

𝑎௡
൰      𝐸𝑞. 𝑆2𝑒 
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i) Periodic pulse train

Figure S1  Periodic pulse train of period T, consisting of rectangular pulses of duration W and amplitude A. The 

duty cycle  is defined by W/T. 

In this case, F(t) can be defined by: 

𝐹(𝑡) = ቄ
 𝐴, 0 ≤ 𝑡 ≤ 𝑊
0, 𝑊 < 𝑡 ≤ 𝑇

 𝐸𝑞. 𝑆3 

Here W is the pulse width. The duty cycle ratio  is equal to W/. Note that the pulse amplitude 

(or magnitude), labeled A, should not be confused with the modulus coefficients of the Fourier 

series. Confusion may arise from the fact that the |cn| together are referred to as the signal 

amplitude spectrum. Note also that we have chosen to use a function with a zero base level for 

simplicity. The same Fourier coefficients would be obtained for n1 if the function were shifted 

by a DC component. Both comments apply to the following. 

The set of equations in S2 yields: 

𝑐௡ =
𝐴

𝑇
න 𝑒ି௝௡ఠ௧𝑑𝑡    𝐸𝑞. 𝑆4𝑎

ௐ

଴

 

𝑐௡ =
𝑗𝐴

2𝜋𝑛
ൣ𝑒ି௝௡ఠௐ − 1൧    𝐸𝑞. 𝑆4𝑏 

𝑎௡ =
𝐴

𝜋𝑛
sin(2𝜋𝑛 × 𝜂)    𝐸𝑞. 𝑆4𝑐 

𝑏௡ =
𝐴

𝜋𝑛
[1 − cos(2𝜋𝑛 × 𝜂)]    𝐸𝑞. 𝑆4𝑑 

|𝑐௡| =
𝐴

𝜋𝑛
ඥ2(1 − cos(2𝜋𝑛 × 𝜂) = 2𝜂|sinc(𝜋𝑛 × 𝜂|    𝐸𝑞. 𝑆4𝑒 
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In the case of a square-wave signal (=0.5), even component are zero, and odd ones are: 

𝑎௡ = 0 , 𝑏௡ =
2𝐴

𝜋𝑛
 ,   |𝑐௡| =

2𝐴

𝜋𝑛
 , Φ௡   = −90°  (𝑛 𝑜𝑑𝑑)   𝐸𝑞. 𝑆5 

ii) Sawtooth waveform

Figure S2  Sawtooth  waveform of period T, and amplitude A. 

In this case, F(t) is defined by: 

𝐹(𝑡) =
𝐴𝑡


 𝐸𝑞. 𝑆6 

𝑐௡ =
𝐴

𝑇
න 𝑡 × 𝑒ି௝௡ఠ௧𝑑𝑡    𝐸𝑞. 𝑆7

்

଴

 

Performing an integration by parts yields: 

𝑐௡ =
𝐴

𝑇
ቈ
−𝑡 × 𝑒ି௝௡ఠ௧

𝑗𝑛𝜔
቉

଴

஋

+
𝐴

𝑇
න

𝑒ି௝௡ఠ௧

𝑗𝑛𝜔
𝑑𝑡    𝐸𝑞. 𝑆8

஋

଴

 

Which simplifies in: 

𝑐௡ = −
𝐴

𝑗𝑛𝜔
 𝐸𝑞. 𝑆9 

Finally, one gets: 

𝑎௡ = 0 , 𝑏௡ = −
𝐴

𝜋𝑛
 , |𝑐௡| =

𝐴

𝜋𝑛
 , Φ௡   = +90°     𝐸𝑞. 𝑆10 
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ii) Pulse followed by an exponential decay

Figure S3 a) Time evolution of the surface potential (SP) under pulsed illumination. The time intervals 

corresponding to the pump signal are marked by semi-transparent green rectangles. Illumination is performed for 0 

≤ t ≤ W. T: Pump signal period. VD: surface potential in the dark. VI: maximum value of the surface potential during 

illumination. If the pulse duration exceeds the photovoltage build-up or rise time constant (τb or τr), VI is equal to the 

SP value that would be measured under continuous wave illumination (Vcw). The "static" (or steady state) surface 

photovoltage is equal to VI-VD. τd: surface photovoltage decay time constant. b) Time function F(t) (or waveform) 

used to calculate the Fourier coefficients describing the time-periodic surface photovoltage. We make the 

approximation of an instantaneous sample photo-charging (i.e., τr=0). The waveform amplitude is equal to the 

steady state SPV, but the base level has been set to zero (this shift does not affect the coefficients for n1). 

This waveform is used to adjust the spectroscopic data obtained on the organic heterojunction 

thin film. The sample is exposed to a periodic light pulse train (periodicity , pulse width W). We 

assume that the surface photovoltage (SPV) is constant during the pulse duration (approximating 

an instantaneous photo-charging once the light is turned on, i.e. a SPV rise time constant r 

equal to zero) and that it follows an exponential decay characterized by a single time constant 

(d) between light pulses. As above, since we only want to calculate the harmonic coefficients 

(n1), we are in the simplified case of a signal characterized by a zero baseline and an amplitude 

(or magnitude) labeled A. 

𝑆𝑃𝑉(𝑡) =  𝐹(𝑡) = ൜
 𝐴, 0 ≤ 𝑡 ≤ 𝑊

𝐴 × 𝑒ି(௧ିௐ) ఛ೏⁄ , 𝑊 < 𝑡 ≤ 𝑇
 𝐸𝑞. 𝑆11 

𝑐௡ = 𝑐௡
௣

+ 𝑐௡
ௗ =

𝐴

𝑇
න 𝑒ି௝௡ 𝑑𝑡 +

ௐ

଴

𝐴

𝑇
න 𝑒ି(௧ିௐ) ఛ೏⁄ × 𝑒ି௝௡ఠ௧𝑑𝑡

்

ௐ

 𝐸𝑞. 𝑆12 

The first integral (cnp for “pulse part”) has already been calculated above, it corresponds to 

the case of a pulse train. The second integral (cnd for “decay part”) can be derived as follow: 
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𝑐௡
ௗ =

𝐴 × 𝑒ௐ/ఛ

𝑇
න 𝑒ି௧(ଵା௝௡ఠఛ) ఛ೏⁄ 𝑑𝑡    𝐸𝑞. 𝑆13

்

ௐ

 

𝑐௡
ௗ =

𝐴 × 𝜏ௗ 𝑇 × (1 − 𝑗𝑛𝜔𝜏ௗ)⁄

1 + 𝑛ଶ𝜔ଶ𝜏ௗ
ଶ

ൣcos(𝑛𝜔𝑊) − 𝑒ି(்ିௐ) ఛ೏⁄ − 𝑗 sin(𝑛𝜔𝑊)൧    𝐸𝑞. 𝑆14 

These complex coefficients can be used to calculate "intermediate" and and and bnd terms, 

which are added to those already calculated for the pulse part (by the linearity of the Fourier 

transform). For this purpose, it can be noted that the complex coefficients can be described by 

a sum of a functions, respectively even and odd in n. This facilitates the calculation of and and 

bnd (following Eqs. S2b and S2c). 

𝑐௡
ௗ =

𝐴 × 𝜏ௗ 𝑇⁄

1 + 𝑛ଶ𝜔ଶ𝜏ௗ
ଶ

[𝐸𝑣𝑒𝑛(𝑛) − 𝑗𝑂𝑑𝑑(𝑛)]    𝐸𝑞. 𝑆15 

𝐸𝑣𝑒𝑛(𝑛) = ൣ(cos(𝑛𝜔𝑊) − 𝑒ି(்ିௐ) ఛ೏⁄ ) − 𝑛𝜔𝜏ௗ × sin(𝑛𝜔𝑊)൧    𝐸𝑞. 𝑆16𝑎 

𝑂𝑑𝑑(𝑛) = ൣsin(𝑛𝜔𝑊) + 𝑛𝜔𝜏ௗ × (cos(𝑛𝜔𝑊) − 𝑒ି(்ିௐ) ఛ೏⁄ )൧    𝐸𝑞. 𝑆16𝑏 

One gets: 

𝑎௡
ௗ =

2𝐴 × 𝜏ௗ 𝑇⁄

1 + 𝑛ଶ𝜔ଶ𝜏ௗ
ଶ

ൣ(cos(𝑛𝜔𝑊) − 𝑒ି(்ିௐ) ఛ೏⁄ ) − 𝑛𝜔𝜏ௗ × sin(𝑛𝜔𝑊)൧    𝐸𝑞. 𝑆17𝑎 

𝑏௡
ௗ =

2𝐴 × 𝜏ௗ 𝑇⁄

1 + 𝑛ଶ𝜔ଶ𝜏ௗ
ଶ

ൣsin(𝑛𝜔𝑊) + 𝑛𝜔𝜏ௗ × (cos(𝑛𝜔𝑊) − 𝑒ି(்ିௐ) ఛ೏⁄ )൧    𝐸𝑞. 𝑆17𝑏 

Finally, the total coefficients are: 

𝑎௡ =
஺

గ௡
sin(2𝜋𝑛 × 𝜂) +

ଶ஺×ఛ೏ ்⁄

ଵା௡మఠమఛ೏
మ ൣ(cos(2𝜋𝑛 × 𝜂) − 𝑒ି(்ିௐ) ఛ೏⁄ ) − 𝑛𝜔𝜏ௗ × sin(2𝜋𝑛 ×

𝜂)൧     𝐸𝑞. 𝑆18𝑎 

𝑏௡ =
𝐴

𝜋𝑛
[1 − cos(2𝜋𝑛 × 𝜂)]

+
2𝐴 × 𝜏ௗ 𝑇⁄

1 + 𝑛ଶ𝜔ଶ𝜏ௗ
ଶ

ൣsin(2𝜋𝑛 × 𝜂) + 𝑛𝜔𝜏ௗ × (cos(2𝜋𝑛 × 𝜂) − 𝑒ି(்ିௐ) ఛ೏⁄ )൧ 𝐸𝑞. 𝑆18𝑏
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These last coefficients are used to generate analytical formulas for the modulus (using Eq. 

S2d) and phase (Eq. S2e) coefficients that describe the time-periodic SPV signal. In the latter 

case (phase), the factor A obviously disappears when the ratio bn to an is made. Only one 

variable parameter (the decay time constant d) is thus needed to adjust the phase data. 

Conversely, two parameters (A and d) are used to adjust the amplitude/modulus data (as 

mentioned above, beware of the possible confusion between the signal amplitude A, and the 

Fourier amplitude spectrum, i.e. the |cn| coefficients).  

Note: to perform the phase adjustment, the function atan2(y,x) must be used instead of 

atan(y/x). The atan2 function is defined as the argument of the complex number x+jy. 
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Figure S4 – illustration of the dual frequency mixing effect. Top panel: modulated components of the electrostatic 

potential at harmonic (n1) frequencies of the optical pump (mod) are depicted in red. NB: here, we made the choice 

to illustrate a situation where the modulation frequency is set such a way that the frequencies of the first harmonics 

fall well below the first cantilever eigenmode. This would for instance be the case if mod/2=1kHz (while 

0/2=80kHz). A “first” frequency mixing effect is symbolized (multiplication symbol within a circle) between the 

cantilever mechanical oscillation (first eigenmode, 0) and the modulated components at n. mod. Middle panel: a 

“second” frequency mixing effect has to be taken into account, between the ac bias modulation and the spectral 

components at 0 n. mod. Here again, an arbitrary choice has been made, the situation is hypothetically depicted 

with a bias modulation frequency falling below 0. This has been done for pedagogical purposes only. Note also 

that there is off course no physical meaning to assume that there are two mixing processes that occur “one after 

the other”, all effects take place simultaneously. Bottom panel: 4n side bands result from the dual frequency mixing. 

By setting an appropriate value for the modulated bias frequency ac, one can “transfer” a given side band at the 

second cantilever eigenmode 1. 
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Python routine for switching the demodulation 

configuration

The following script can be used to switch the HF2LI configuration during the spectroscopic 
ramps.  

import time 
t_end = time.time() + val1 
while time.time()<t_end: 

sample=daq.getDouble(‘/dev18005/auxins/0/values/0’) 
if sample < val2 and sample > val3 : 
daq.setint(‘/dev18005/mods/0/enable’, 0) 
timesleep(val4) 
daq.setint(‘/dev18005/mods/0/enable’, 1) 

val1 : is a time-value exceeding the experiment duration. 

sample=daq.getDouble(‘/dev18005/auxins/0/values/0’ : samples a signal provided by the SPM 
controller during the spectroscopic ramp. 

if sample < val2 and sample > val3 : val2 and val3 are threshold values that correspond to a 
certain time-window during the spectroscopic ramp.  

 daq.setint(‘/dev18005/mods/0/enable’, 0): toggles the HF2LI modulation unit such a way, that it 
will not combine the reference signal at 1-0 with the reference signal at n.mod. Instead, the 
signal at the output of the HF2LI modulation unit simply ”follows” the reference signal at 1-0 
provided by the MFLI.     

val4 : time-value that defines the time-window during which the demodulation chain is operated 
in standard AM-heterodyne KPFM configuration. 

daq.setint(‘/dev18005/mods/0/enable’, 1): toggles back the HF2LI unit in DHe-KPFM 
configuration. Now the HF2LI modulation unit performs a combination of the signals at 1-0 
and n.mod (i.e. generation of a reference side band). 

dev18005: HF2LI device 
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Figure S5 – a) Comparison of DHe-KPFM amplitude/phase spectra acquired by rejecting at the second eigenmode 

the n_4 side bands (ac=1-(0+0)+n. mod) or the n_1 side bands (ac=1-(0+0)-n. mod). The data are the 

same that the ones shown in Figure 2. The phase has been inverted (minus sign) for the first series of data (n_4 

side bands). b) Plot of the Fourier coefficients obtained by an analytic calculus. The amplitude has been 

“normalized” (i.e. by fixing its value to 5.2 for n=1) to ease the comparison with the experimental data. 
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Figure S6 – numeric zooms from the images (Figure 2, main text) acquired by DHe-KPFM on the PTB7:PC71BM 

blend. (a) Topography (b,c) amplitude and phase of the first harmonic. Pulsed illumination (=515nm, Popt = 300 

mW.cm−2, illumination in backside geometry). 0/283.3kHz. 1/2519.3kHz. 0/2=-30Hz. ac=1-

(0+0)+n.mod with n=1, Uac=1V. The optical pump consist in a square-shaped signal with a base period of 5ms 

(mod/2=200Hz) and a duty ratio of 20 percent (optical pulse duration: 1ms).  

. 
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Figure S7 – a) Curve of the KPFM potential as a function of time, recorded over the PTB7:PC71BM blend during a 

data-cube acquisition. The setup is configured for standard AM-heterodyne KPFM measurements, and the 

spectroscopic acquisition is performed with an open z-loop. 0/283.3kHz, 1/2519.3kHz, 0/2=-30Hz, 

ac=1-(0+0), Uac=0.5V. During the spectroscopic ramp, the illumination (continuous wave) is turned on during 

a pre-determined time-window. The difference between the KPFM compensation potential values in the dark state 

and under illumination can be calculated for each pixel. b) Differential SPV image calculated from the 2D matrix of 

spectroscopic data shows that the SPV is in overall positive whatever the sample area.  =515nm, Popt = 300 

mW.cm−2, illumination in backside geometry. c) Histogram of the SPV values. The curve shows the result of the 

data adjustment by a single Gaussian peak. The dotted lines indicate the 95% interval (xc +/-2. xc: peak centre. : 

standard deviation).      
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Figure S8 – DHe-KPFM data-cube spectroscopy on the PTB7:PC71BM blend. Images of the SPV magnitude and 

decay time-constant obtained by performing an automated adjustment of the 2D matrix of spectroscopic curves. 

This procedure allows also mapping images of the standard (relative) error generated by the fit for each pixel (in 

percent). Note that the same data are shown in Figure 4 (main text), but in that case the high frequency noise has 

been removed by applying a Gaussian smooth filter. a,b) SPV magnitude a) and standard error SPV/SPV×100 b) 

recalculated by performing an adjustment of the 2D matrix of amplitude spectra. c,d,e) SPV decay time constant d 

image c), standard error image d/d×100 d), and histogram of the decay time constant values e). Results obtained 

by adjusting the matrix of amplitude spectra. f,g,h) SPV decay time constant d image f), standard error image 

d/d×100 g), and histogram of the decay time constant values h). Results obtained by adjusting the matrix of phase 

spectra.  
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Concerning the SPV decay time-constant, the fit error is in average slightly smaller in the case of the data calculated 

by adjusting the phase spectra. Nevertheless, a certain fraction of the phase spectra could not be properly adjusted. 

For these “bad” pixels, the error diverges. The upper limit of the color scale has thus been fixed to 100%. Errors 

above that threshold appear as magenta pixels in g). These points correspond to an “anomalous” distribution of 

time-constant values in the histogram h), highlighted by an arrow.  
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Figure S9 – Images of the first ten harmonic phase signals recorded on the PTB7:PC71BM blend, reconstructed 

from the matrix of spectroscopic curves (same measurement as the one discussed in Figure 4)   
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Figure S10 – Curves of the time-resolved potential probed by pp-KPFM as a function of the pump-probe delay. For 

this measurement the pump and probe duration have been set to 20μs and 5μs, respectively (repetition period: 

100s). Half-transparent green and red rectangles show the respective time-positions of pump and probe signals 

for a pump-probe delay Δ(t) = 20s  (=515nm, Popt = 300 mW.cm−2, illumination in backside geometry). The data 

corresponding to the photocharging regime and SPV decay regime have been adjusted by functions, that have 

been derived on the assumption that the SPV time-evolution can be accounted by simple exponential-based 

functions [S1].b and d stand for the time-constants that characterize the SPV rise (or build-up) and decay dynamics, 

respectively. A detailed description of the pp-KPFM setup and data analysis protocol can be found in our previous 

report [S1].   
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CsPbBr3 nanosheets:  synthesis protocol 

The nanosheets were synthesized following the same route as the one described in the work by 

Shamsi et al. [S2]  

Preparation of Cesium-oleate (Cs-OA) precursor: 

Cs-OA was obtained by loading 0.032 g Cs2CO3 with 10 mL oleic acid (OlAc) into a 25 mL 3-

neck flask This mixture was dried for 1h at 120 ºC under vacuum, and then heated to 140 ºC 

under Ar for 30 minutes until all Cs2CO3 reacted with OlAc. The major change in this way of 

preparing Cs-OA precursor is that it is dissolved in OlAc without using ODE, which alone leads 

to the formation of nanoplatelets (NPls) but not nanocubes (NCs), over a wide temperature range 

from 50 to 150 °C according to Shamsi et al. [S2] 

Synthesis of CsPbBr3 nanosheets (NSs): 

 0.013 g PbBr2 and 10 ml ODE were loaded with 250 µl OA, 250 µl oleylamine (OAm), 250 µl 

octanoic acid (OctA), and 250 µl octylamine (OctAm) into a 25 ml 3-neck flask and dried under 

vacuum for 20 minutes at 100 °C. After complete solubilization of the PbBr2 salt, the temperature 

was increased to 145 °C under Ar and 1 ml of the prepared Cs-OA (heated again at 100 °C) was 

swiftly injected. Accordingly, we used a volumetric ratio of 0.33 which represents the ratio of 

short to long ligands. After 5 minutes, the reaction mixture was quenched using a cold water 

bath [1].  

Isolation of CsPbBr3 NSs: 

To collect the NSs, 10 ml of anhydrous hexane was added to the crude solution and then the 

mixture was centrifuged at 700 RPM for 5 minutes. The supernatant was discarded and the NSs 

were dispersed in 3 ml of hexane. 

Purification of CsPbBr3 NSs: 

After depositing the solution on HOPG or SiO2 by spin coating (done at 2000 RPM for 45 

seconds), the substrate was gently dipped in anhydrous ethyl acetate (EtOAc) for few seconds 

to remove the excess of organics and thus be compatible for AFM characterization. 
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Figure S11  - CsPbBr3 nanosheets : photoluminescence spectroscopy. The main peak is consistent with the 

existence of nanosheets with a thickness equal or higher than 4-5nm [S2]. The left doublet indicates the existence 

in the solution of objects (nanosheets) characterized by a smaller thickness. These were not clearly visible in our 

AFM measurements.  
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Figure S12 - SEM imaging of CsPbBr3 nanosheets on a silicon substrate (same synthesis batch as the one used 

for deposition on the HOPG substrate). 
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Figure S13 - CsPbBr3 nanosheets: “tapping-mode” AFM characterizations (performed with an ICON setup from 

Brüker) in ambient conditions. a,b) NSs deposited on an HOPG substrate. a) Standard topographic representation. 

b) 3D mapping. The arrows pinpoint NSs monolayers. c,d) NSs deposited on a silicon substrate. c) Topographic

image recorded on an area covered in majority by monolayers. d) Topographic profile, corresponding to the path 

highlighted by a line in c).   
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Figure S14 – (a,b) Topography a) and surface potential b) images acquired in “dark conditions” by AM-heterodyne 

KPFM on the same area than the one investigated by differential SPV imaging and DHe-KPFM (Figure 5, main 

text). 0/263.6kHz. 1/2401.7kHz. 0/2=-4Hz. ac=1-(0+0), Uac=0.5V. c) Band diagram of the 

HOPG/CsPbBr3 interface. Under illumination, the build in interface electric field repels the photo-generated electron 

from the interface region, accounting for the negative SPV.  
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Figure S15 –  Plot of the demodulated amplitude (lock-in ouput) at the second cantilever eigemode as a function of time, 

recorded on an HOPG sample under electrical pumping, with a pump period =100µs. The pump signal amplitude was set to 

30mV peak-to-peak. The first 10 harmonics have been recorded. 0/275.4kHz, 1/2480.8kHz, 0/2=-12Hz, 

mod/2=10kHz, Uac=1V. According to Equ. S5 (page 4), each odd harmonic amplitude should be equal to 2A/n, with 

A=30mV. The 7th harmonic is clearly visible, demonstrating that modulated components of a few mV only can be detected 

(with n=7, the amplitude should be equal to 2.7mV) 
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