

Supporting Information

for

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH₃)₂CI]₂

Elif Bilgilisoy, Ali Kamali, Thomas Xaver Gentner, Gerd Ballmann, Sjoerd Harder, Hans-Peter Steinrück, Hubertus Marbach and Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199. doi:10.3762/bjnano.14.98

Additional figures and tables

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ <u>licenses/by/4.0</u>). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)

Figure S1: Prepared lamella for STEM and SAED experiments.

The observed gold nanoparticles (Figure 1d) have irregular shapes. Therefore, the diameter of the selected particle was defined by considering the perpendicular distance between two parallel tangent lines of the particle at an arbitrary angle. This particle size analysis method is known as Feret diameter or caliper diameter. Beside the diameter of the particles, their approximate amount in one SEM image was also acquired by firstly removing the background from the SEM image, then applying the image threshold, and finally counting the numbers automatically (Figure S2).

Figure S2: (a) An SEM image of FEBID gold nanoparticles. (b) Background-subtracted SEM image of (a) using ImageJ. (c) Image after the automatic threshold was applied in ImageJ program. (d) and (e) Results of automatic particle count in the program. (f) Illustration of the Feret parameters: minimum Feret (min. Feret), maximum Feret (max. Feret), and Feret angle.

The comparative histogram graphs of particle numbers versus particle diameters with respect to the beam currents for 400 pA (blue bars), 1.5 nA (green bars) and 3 nA (purple bars) were obtained from SEM and AFM, and plotted in Figure S3.

Figure S3: (a) and (b) The particle size distributions obtained from SEM and AFM, respectively, for the FEBID gold nanoparticles with respect to the different applied beam currents.

Figure S4: The AFM image of the FEBID deposit (5 kV, 400 pA) is shown on the left, and the line profiles from 10 different lines and their average line profile are shown on the right.

Figure S5: AES on Si(111) before surface treatment (green line) and after surface treatment (45 min. Ar⁺ sputtering + 90 min. annealing at 823 K under oxygen) on the same substrate (blue line).

Table S1: All optimized geometries (parent molecule and cations) and their Gibbs free energy(Eh) at the PBE0/ def2-TZVP level of theory, expressed as Cartesian coordinates (Å).

Molecule	Cartesian coordinates (Å)		Final Gibbs free energy (Eh)
	Au	-2.072104 3.052679 -0.000000	
	Au	-1.989186 -0.547564 0.000000	
	Cl	-3.700537 1.214412 -0.000000	
	Cl	-0.360753 1.290702 -0.000000	
	C	-0.673402 4.528115 0.000000	
	н	-1 112834 5 522029 0 000000	
	н	-0.068504 + 4.373457 = 0.893801	
	П П	-0.000004 + .575457 - 0.095001	
	П	-0.006504 4.575457 0.695801	
	U U	-5.481400 4.517209 0.000000	
	H		1251 07726225
$[Au_2Cl_2(CH_3)_4]$	H	-3.365518 5.129161 -0.893266	-1351.07736325
	H	-3.365518 5.129161 0.893266	
	C	-3.387887 -2.023002 0.000000	
	Н	-2.948454 -3.016916 0.000008	
	Н	-3.992779 -1.868350 -0.893805	
	Н	-3.992789 -1.868340 0.893796	
	С	-0.579889 -2.012155 0.000000	
	Η	0.385662 -1.508527 -0.000000	
	Н	-0.695771 -2.624047 -0.893266	
	Н	-0.695770 -2.624046 0.893267	
	Au	-2.035627 2.919475 -0.027570	
	Au	-2.017481 -0.444636 -0.010941	
	Cl	-3.788694 1.232543 0.016664	
	Cl	-0.261716 1.250851 -0.054282	
	С	-0.669548 4.439482 -0.345837	
	Н	-1.190608 5.274419 -0.803414	
	Н	0.084423 4.008933 -1.000436	
	н	-0.281488 4.671763 0.645097	
	C	-3 414131 4 432888 0 268665	
	н	-4 246110 3 972802 0 796011	
$[\Delta u_{0}Cl_{0}(CH_{0})_{i}]^{+}$	н	-3 68/83/ / 768818 -0 731350	-1350 73933/80
$[Au_2CI_2(CII_3)_4]$	П П	-3.004034 4.700010 -0.731330	-1550.75755480
	П	-2.929908 5.205118 0.858950	
		-5.388970 -1.973135 -0.243290	
	H	-2.920810 -2.738725 -0.801040	
	H	-4.248317 -1.518273 -0.731478	
	H	-3.615120 -2.321/1/ 0.761195	
	C	-0.632326 -1.956939 0.242645	
	Н	0.172322 -1.510011 0.821366	
	Н	-0.322947 -2.225852 -0.766396	
	Н	-1.114845 -2.775127 0.767926	
	Au	-1.819984 2.875611 0.004036	
	Au	-2.287517 -0.353586 0.107295	
	Cl	-3.785590 1.579411 0.201733	
	Cl	-0.320606 0.946395 -0.090320	
$[Au_2Cl_2(CH_3)_2]^+$	С	-2.858006 4.635135 0.063053	-1271.03956804
[102012(013)2]	Н	-3.352792 4.697531 1.029611	
	Н	-3.556767 4.643787 -0.770184	
	Н	-2.043623 5.357541 -0.051498	
	С	-1.251219 -2.114009 0.047678	

	Н	-0.553619 -2.123453 0.882026	
	Н	-0.754647 -2.175376 -0.918170	
	н	-2.065026 -2.837038 0.159960	
		2.002020 2.037030 0.137700	
	A 11	2 710731 3 628260 1 202848	
	Au	-2.710751 -5.020200 1.202040	
	Au Cl	-0.870081 0.382329 -0.199134	
		-1.0/23/9 2.990585 -0.250808	1001 01077007
$[Au_2Cl_2(CH_3)]^T$	C	-1.119442 -1.403061 -0.364717	-1231.21077897
	H	-1.118450 -1.935881 0.580988	
	H	-0.527731 -1.861705 -1.150811	
	H	0.579778 0.504658 0.312600	
	Au	-2.056269 2.768478 0.000000	
	Au	-2.005021 -0.263367 0.000000	
$[Au_2Cl_2]^+$	Cl	-3.870060 1.221887 -0.000000	-1191.35489549
	Cl	-0.191230 1.283232 -0.000000	
	.		
	Au	-2.333092 3.153032 0.004622	
	Au	-2.2193/5 -0.696612 0.07/322	
	Cl	-0.911089 1.215951 0.078406	
	C	-3.533568 4.824477 -0.052434	
	Н	-3.801526 4.928425 -1.104208	
$[Au_2Cl(CH_2CH_3)]^+$	Η	-4.372147 4.586128 0.601986	-731.29110113
_ ` ` ` ` ` ` ` `	Н	-2.880646 5.612803 0.325635	
	C	-3.225313 -2.301311 0.078777	
	Н	-2.770456 -3.294805 0.109287	
	н	-4 316942 -2 343808 0 049542	
		1.510912 2.515000 0.019512	
	Au	-1.973262 2.076357 -0.883223	
	Au	1.414636 0.775184 0.287775	
	Cl	-0.345118 2.376157 0.689014	
	C	2 984080 -0 502369 -0 097905	
$[Au_2Cl(CH_3)]^+$	ч	3 660789 0 071733 -0 729953	-771.12783263
	и П	2520562 + 255607 + 0.504045	
	п	2.520505 -1.555007 -0.594045	
	п	3.369621 -0.713024 0.900903	
	Au	-1 995645 3 106475 0 000000	
	Au	-1 918943 -0 598947 0 000001	
$[Au_2Cl]^+$	Cl	-0.602069 + 1.281921 + 0.000001	-731.29110113 Eh
		-0.002009 1.281921 0.000001	
	Au	-4.755924 0.426633 2.421132	
	Au	-2.189804 -0.011332 1 982566	
	C	-6.841047 1.019418 2.105349	
	C	-6 728617 0 480247 3 374092	
$[Au_2(CH_2CH_2)]^+$	с u	6 000154 0 556426 2 562072	340 72187310
		-0.990134 -0.330430 - 3.302073	-549.72107510
	п	-0.01/303 1.122300 4.242231	
	H	-7.193350 0.415805 1.274756	
	Н	-6.820579 2.094239 1.955491	
	Δ11	-4 297039 1 251104 -0 422872	
	C	-2 616996 0 250825 0 471262	
		-2.010776 0.237023 -0.471203 1 544376 1 861455 0 260224	
[Au(CH)AuH] ⁺		-1.5++570 1.001455 -0.500554	-310.36432548
. –		-2.303271 -0.033309 0.003992	
	п	-0.070828 1.338935 -0.313894	
[Au_] ⁺	An	-0.191712 -0.032106 1.367387	-271 50548729
			<i>L</i> 71.303107 <i>L</i> 7

	Au	-0.191712 -0.032106 -1.267660	
	Au	-4.797108 0.324695 0.130111	
	С	-3.255948 1.646757 0.222182	
	Н	-2.412115 0.993246 -0.015651	
	Н	-3.236292 2.025981 1.240925	
$[(\mathbf{CH}_2)\Delta \mathbf{u}(\mathbf{CH}_2)]^+$	Η	-3.425177 2.410875 -0.531572	-215 12577260
	C	-6.214769 1.781065 0.177246	-215:12577200
	Н	-7.104844 1.195111 0.421352	
	Н	-6.236158 2.210645 -0.821382	
	Н	-5.947248 2.489221 0.956170	
	Au	-1.936113 2.153547 0.000000	
[AuCl ₂] ⁻	CI	-4.222798 2.061043 0.000000	-1056.07074733
[CI	0.350565 2.246094 0.000000	
	Δ.11	1 204616 2 652728 1 120722	
	Au Au	-1.294010 5.055728 $-1.1207351 721580 0 240883 0 010247$	
	Au Cl	-1.721380 -0.240885 -0.919247 -1.767896 -1.626343 -2.419054	
		0.273929 4.438163 -2.736831	
	C	-0.978834 = 5.308899 = 0.018036	
	н	-1 893686 5 902582 0 034097	
	Н	-0.166180 5.863241 -0.446048	
	Н	-0.720249 5.003606 1.032234	
[Au ₂ Cl ₂ (CH ₃) ₃] ⁻	C	-2.641690 3.056969 0.300580	-1311.34276020
	Н	-3.530829 2.701840 -0.221069	
	Н	-2.897767 3.863223 0.987765	
	Н	-2.197334 2.222438 0.845948	
	С	-1.675251 -1.832857 0.344300	
	Η	-0.649151 -2.187884 0.486364	
	Н	-2.271075 -2.664314 -0.046302	
	Η	-2.078061 -1.558642 1.325165	

Table S2: Full list of experimental DI and DEA threshold values compared to theoretically calculated threshold values at PBE0/def2-TZVP, DLPNO-CCSD(T)/TZVP, and DLPNO-CCSD(T)/SVP levels of theory for the [(CH₃)₂AuCl]₂.

m/z	Products	AE (eV)	PBE0- TZVP (eV)	DLPNO- CCSD(T)- SVP (eV)	DLPNO- CCSD(T)- TZVP (eV)		
Dissociative Ionization							
524	[Au ₂ Cl ₂ (CH ₃) ₄] ⁺	9.4 ± 0.3	<u>9.23</u>	9.69	9.92		
494	$[Au_2Cl_2(CH_3)_2]^+ + 2(CH_3)$		13.51	13.69	14.06		
	[Au ₂ Cl ₂ (CH ₃) ₂] ⁺ + CH ₃ CH ₃	9.7 ± 0.2	<u>9.67</u>	9.86	10.29		
	$[Au_2Cl_2(CH_3)_2]^+ + CH_2CH_2 + H_2$		11.28	11.36	11.65		
	$[Au_2Cl_2(CH_3)]^+ + 3(CH_3)$		15.01	14.59	15.04		
479	$[Au_2Cl_2(CH_3)]^+ + (CH_3) + CH_3CH_3$	11.4 ± 0.2	<u>11.18</u>	10.76	11.27		
	$[Au_2Cl_2(CH_3)]^+ + CH_2CH_2 + H_2 + (CH_3)$		12.78	12.26	12.64		
464	$[Au_2Cl_2]^+ + 4(CH_3)$		17.32	17.06	17.65		
	[Au ₂ Cl ₂] ⁺ + 2(CH ₃ CH ₃)	10.1 . 0.2	<u>9.65</u>	9.41	10.12		
	$[Au_2Cl_2]^+ + CH_3CH_3 + 2(CH_3)$	10.1 ± 0.2	13.48	13.23	13.89		
	$[Au_2Cl_2]^+ + CH_2CH_2 + H_2 + CH_3CH_3$		11.25	10.91	11.49		
	$[Au_2Cl(CH_2CH_3)]^+ + 2CH_3 + Cl + H$		18.72	17.87	18.50		
	$[Au_2Cl(CH_2CH_3)]^+ + CH_3CH_3 + Cl + H$		14.88	14.04	14.73		
150	[Au ₂ Cl(CH ₂ CH ₃)] ⁺ + CH ₃ CH ₃ + HCl	10.2 . 0.2	<u>10.46</u>	9.88	10.41		
458	$[Au_2Cl(CH_2CH_3)]^+ + (CH_4) + CH_3Cl$	10.3 ± 0.2	10.64	10.23	10.60		
	$[Au_2Cl(CH_2CH_3)]^+ + 2(CH_3) + HCl$		15.46	16.01	15.41		
	$[Au_2Cl(CH_2CH_3)]^+ + (CH_3) + CH_3Cl + H$		15.02	14.58	14.97		
	$[Au_2Cl(CH_3)]^+ + Cl + 3(CH_3)$		17.42	16.52	17.29		
111	$[Au_2Cl(CH_3)]^+ + Cl + CH_3CH_3 + (CH_3)$	120.02	13.58	12.69	13.52		
444	$[Au_2Cl(CH_3)]^+ + Cl(CH_3) + 2(CH_3)$	13.0 ± 0.2	13.72	13.23	13.76		
	$[Au_2Cl(CH_3)]^+ + Cl(CH_3) + CH_3CH_3$		9.88	9.40	9.99		
429	$[Au_2Cl]^+ + 4(CH_3) + Cl$		19.11	18.00	18.84		
	$[Au_2Cl]^+ + (CH_3) + CH_3Cl + CH_3CH_3$		11.57	10.89	11.54		
	$[Au_2Cl]^+ + HCl + 2(CH_4) + CHCH_2$		12.54	11.60	12.33		
	$[Au_2Cl]^+ + 2 CH_3CH_3 + Cl$	12.2 ± 0.2	11.44	10.35	11.30		
	$[Au_2Cl]^+ + Cl + CH_3CH_3 + 2(CH_3)$		15.27	14.18	15.07		
	$[Au_2Cl]^+ + 3(CH_3) + CH_3Cl$		15.41	14.72	15.31		

422	$[Au_2(CH_2CH_2)]^+ + 2(CH_3) + 2Cl + 2H$		22.20	20.87	21.84
	$[Au_2(CH_2CH_2)]^+ + 2Cl(CH_3) + H_2$	-	<u>10.53</u>	10.09	10.46
	$[Au_2(CH_2CH_2)]^+ + CH_3CH_3 + 2HCl$	10.2 . 0.2	9.51	8.72	9.44
	$[Au_2(CH_2CH_2)]^+ + 2CH_3 + 2HCl$	10.3 ± 0.3	13.34	12.55	13.21
	$[Au_2(CH_2CH_2)]^+ + 2(CH_3) + Cl_2 + H_2$		15.21	14.75	15.10
	$[Au_2(CH_2CH_2)]^+ + CH_3CH_3 + Cl_2 + H_2$		11.37	10.93	11.33
	$[Au_2(CH_2)]^+ + 3(CH_3) + 2Cl + H$		24.57	23.42	24.14
	$[Au_2(CH_2)]^+ + CH_2CH_2 + 2HCl + CH_4$	12.0 . 0.0	13.35	12.62	13.06
	$[Au_2(CH_2)]^+ + 3(CH_3) + HCl + Cl$		20.14	19.26	19.83
100	$[Au_2(CH_2)]^+ + CH_3CH_3 + CH_3 + HCl + Cl$		16.30	15.43	16.06
408	$[Au_2(CH_2)]^+ + CH_3CH_3 + HCl + Cl(CH_3)$	13.2 ± 0.2	12.60	12.15	12.54
	$[Au_2(CH_2)]^+ + 2(CH_3) + HCl + Cl(CH_3)$		16.44	15.97	16.30
	$[Au_2(CH_2)]^+ + CH_2CH_2 + HCl + Cl(CH_3) + H_2$		14.20	13.64	13.90
	$[Au_2(CH_2)]^+ + CH_3 + 2Cl(CH_3) + H$	-	17.16	16.84	17.10
	$[Au_2(CH)]^+ + 3(CH_3) + 2H + 2Cl$	13.8 ± 0.2	28.82	27.63	28.40
	$[Au_2(CH)]^+ + 3(CH_3) + 2HCl$		19.96	19.32	19.76
	$[Au_2(CH)]^+ + CH_3CH_3 + CH_3 + 2HCl$		16.13	15.49	15.99
	$[Au_2(CH)]^+ + (CH_3) + 2Cl(CH_3) + H_2$		17.15	15.97	16.13
407	$[Au_2(CH)]^+ + CH_3CH_3 + Cl + Cl(CH_3) + H_2$		17.02	16.32	16.78
	$[Au_2(CH)]^+ + CH_2CH_2 + Cl + Cl(CH_3) + 2H_2$		18.62	17.82	18.14
	$[Au_2(CH)]^+ + CH_3CH_3 + Cl^- + Cl(CH_3) + H_2$		<u>13.75</u>	14.46	13.69
	$[Au_2(CH)]^+ + 2HCl + CH_2CH_3 + CH_4$		15.92	15.35	15.85
	$[Au_2]^+ + 4(CH_3) + 2Cl$		22.39	21.94	22.09
	$[Au_2]^+ + 2[CH_3CH_3] + 2Cl$		<u>14.71</u>	14.28	14.56
	$[Au_2]^+ + 2(CH_3) + 2(CH_3Cl)$	-	<u>14.99</u>	15.36	15.05
394	$[Au_2]^+ + CH_2CH_2 + 2(CH_3) + 2HCl$	-	<u>15.56</u>	15.48	15.39
	$[Au_2]^+ + 4(CH_3) + Cl_2$	15.3 ± 0.2	19.66	20.02	19.68
	$[Au_2]^+ + 2[CH_3CH_3] + Cl_2$		11.99	12.36	12.14
	$[Au_2]^+ + CH_3CH_3 + 2(CH_3CI)$	-	11.15	11.53	11.28
	$[Au_2]^+ + CH_2CH_2 + H_2 + 2(CH_3Cl)$	-	12.75	13.03	12.65
	$[Au_2]^+ + CH_2CH_2 + CH_3CH_3 + 2HCl$		11.72	11.66	11.62
227	$[(CH_3)Au(CH_3)]^+ + 2(CH_3) + 2Cl + Au$		17.81	17.90	18.72
	$[(CH_3)Au(CH_3)]^+ + CH_3CH_3 + Cl_2 + Au$		11.24	12.15	12.54
	[(CH ₃)Au(CH ₃)] ⁺ + AuCl + CH ₃ CH ₃ + Cl	12.4 ± 0.2	12.46	11.63	12.20
	$[(CH_3)Au(CH_3)]^+ + 2(CH_3) + Cl_2 + Au$		15.08	15.98	16.31

	$[(CH_3)Au(CH_3)]^+ + CH_3CH_3 + 2Cl + Au$		13.97	14.07	14.95		
	$[(CH_3)Au(CH_3)]^+ + 2Cl(CH_3) + Au$		10.41	11.32	11.68		
	$[(CH_3)Au(CH_3)]^+ + CH_2CH_2 + 2HCl + Au$		10.98	11.44	12.01		
	$[(CH_3)Au(CH_3)]^+ + AuCl + HCl + CH_2CH_2 + H$		13.90	13.16	13.58		
	$[(CH_2)Au(CH_2)]^+ + AuCl + Cl + 2(CH_3) + H_2$		16.45	15.52	16.04		
225	$[(\mathbf{CH}_2)\mathbf{Au}(\mathbf{CH}_2)]^+ + \mathbf{CH}_3\mathbf{CH}_3 + \mathbf{Au} + \mathbf{Cl}_2 + \mathbf{H}_2$		<u>12.80</u>	12.22	12.61		
	$[(CH_2)Au(CH_2)]^+ + CH_3CH_3 + AuCl + H + HCl$	12 (. 0.4	<u>12.44</u>	11.73	12.28		
	$[(CH_2)Au(CH_2)]^+ + CH_3CH_3 + AuCl + Cl + H_2$	12.0 ± 0.4	<u>12.61</u>	11.69	12.27		
	$[(CH_2)Au(CH_2)]^+ + 2Cl(CH_3) + Au + H_2$		11.96	11.22	11.59		
	$[(CH_2)Au(CH_2)]^+ + 2Cl(CH_3) + AuH + H$		13.39	12.76	13.24		
Dissociative Electron Attachment							
m/z	Products	AE (eV)	PBE0- TZVP (eV)	DLPNO- CCSD(T)- SVP (eV)	DLPNO- CCSD(T)- TZVP (eV)		
	$[AuCl_2]^- + Au + 2CH_3CH_3$		-2.20	-2.24	-1.96		
267	$[AuCl_2]^- + Au(CH_3) + CH_3CH_3 + CH_3$	0.1-0.45	-0.80	-0.71	-0.67		
	$[\operatorname{AuCl}_2]^- + (\operatorname{CH}_3)\operatorname{Au}(\operatorname{CH}_3) + \operatorname{CH}_3\operatorname{CH}_3$		-1.82	-1.39	-1.54		
509	$[M - CH_3]^- + CH_3$	0-0.2	-0.96	-0.76	-0.88		