

Supporting Information

for

Electron-induced deposition using $Fe(CO)_4MA$ and $Fe(CO)_5 - effect$ of MA ligand and process conditions

Hannah Boeckers, Atul Chaudhary, Petra Martinović, Amy V. Walker, Lisa McElwee-White and Petra Swiderek

Beilstein J. Nanotechnol. 2024, 15, 500–516. doi:10.3762/bjnano.15.45

Additional figures and tables

License and Terms: This is a supporting information file under the terms of the Creative Commons Attribution License (https://creativecommons.org/ Licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the author(s) and source are credited and that individual graphics may be subject to special legal provisions.

The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms)

Figure S1: (a) ESD of neutral species during irradiation with 31 eV electrons from an Fe(CO)₅ multilayer on a Ta substrate held at 100 K (ESD). The thickness of the condensed layer was roughly 4 monolayers. (b) Mass spectra recorded during leaking of Fe(CO)₅ into the UHV chamber (gas inlet). Both data sets include a background mass spectrum (BG) recorded immediately prior to precursor leakage and electron irradiation, respectively. Ticks on the vertical axis indicate the baseline for each curve.

Figure S2: Time evolution of characteristic ESD signals recorded during irradiation with 50 eV electrons from an Fe(CO)₅ multilayer on a Ta substrate held at 100 K. The thickness of the condensed layer was roughly 5 monolayers. m/z 28 represents desorption of CO, m/z 56 was recorded to determine if Fecontaining species desorb. m/z 44 was monitored to search for desorption of CO₂. The total electron exposure was 10000 μ C/cm². Ticks on the vertical axis indicate the baseline for each curve at the beginning of the experiment.

Figure S3: TDS obtained (a) from a pristine $Fe(CO)_5$ multilayer and (b) from an $Fe(CO)_5$ multilayer after irradiation with a total electron exposure of 10000 μ C/cm² at 50 eV shown in Figure S2. The thickness of the condensed layers prepared on a Ta substrate held at 100 K was roughly 5 monolayers. Ticks on the vertical axis indicate the baseline for each curve at the beginning of the experiment. A slope in the baseline was due to pumping of residual precursor gas from the chamber.

Figure S4: Time evolution of characteristic ESD signals from an Fe(CO)₄MA multilayer on a Ta substrate held at 100 K, recorded during irradiation with 20 eV electrons. The thickness of the condensed layer was roughly 5 monolayers. *m/z* 28 represents desorption of CO, *m/z* 2 is H₂, and *m/z* 55 and 56 were recorded to determine if Fe-containing species or the free ligand or fragments thereof desorb. *m/z* 44 was monitored to search for desorption of CO₂. Irradiation was performed in three steps, each consisting of electron exposures of 2000 μ C/cm². Ticks on the vertical axis indicate the baseline for each curve at the beginning of the experiment. A slope in the baseline was due to pumping of residual precursor gas from the chamber.

Figure S5: TDS obtained (a) from a pristine Fe(CO)₄MA multilayer without electron irradiation (denoted as 0 μ C/cm²) and (b) from Fe(CO)₄MA multilayers after three irradiation steps with a total electron exposure of 6000 μ C/cm² at 50 eV, and (c) after the same irradiation experiment but performed at 20 eV. The thickness of the condensed layers prepared on a Ta substrate held at 100 K was roughly 5 monolayers. Ticks on the vertical axis indicate the baseline for each curve at the beginning of the experiment. A slope in the baseline was due to pumping of residual precursor gas from the chamber.

Fe(CO)₅	AES PtP h	eights			Thickness [nm] ^a	Fe : C : O (at%) ^b					
	Та	C (0	Fe							
TDS experiments (precursor condensed at 100 K followed by warm-up):											
Sputtering / AES / 2x TDS (2.5 mTorr) / AES / 2x TDS (2.5 mTorr) / AES											
TDS w/o precursor	62372	4438	6969	0							
	62595	7225	19228	0	0 /0 (1)	0:1:1.2					
	61545	8678	32633	0	0.01/0.01 (2)	0:1:1.6					
TDS 1	55059	9181	11204	0							
	36478	25619	43528	5516	0.16/0.26 (2x)	1:8.9:6.6					
	31384	28628	47306	7702	0.21/0.36 (4x)	1:7.2:5.1					
TDS 2	55874	9978	10426	0							
	38256	27793	44674	5313	0.14/0.24 (2x)	1:10.1:7.0					
	32856	29579	46932	6828	0.20/0.34 (4x)	1:8.3:5.7					
EBID experiment (precursor dosing at room temperature during electron irradiation):											
Sputtering / AES / EBID (5 mTorr) / AES / EBID (5 mTorr) / AES											
EBID w/o precursor	62396	4049	6098	0							
50 eV	62684	10064	27564	0	0 /0 (1)	0:1:1.2					
	56943	11873	45537	0	0.04/0.06 (2)	0:1:1.7					
EBID 1, 50 eV	57483	8904	15985	0							
	37552	22304	54787	9628	0.16/0.27 (1)	1:4.5:4.7					
	29259	20180	66745	20019	0.26/0.43 (2)	1 : 1.9 : 2.8					
EBID 2, 50 eV	57567	8698	13721	0							
	36336	22804	55371	12694	0.17/0.29 (1)	1:3.5:3.6					
	24071	18468	60976	24382	0.33/0.56 (2)	1:1.5:2.1					
Cryo-EBID experiments (precursor condensed at 100 K, then electron irradiation and warm-up):											
Sputtering / AES / cryo-EBID (5 mTorr) / AES / cryo-EBID (5 mTorr) / AES											
Cryo-EBID 1, 50 eV	57543	7865	10700	0							
	23787	24736	43934	28178	0.34/0.57 (1)	1:1.7:1.3					
	13511	25533	42896	44919	0.55/0.93 (2)	1:1.1:0.8					
Cryo-EBID 2, 50 eV	56061	7609	10971	0							
	23060	23849	41354	28883	0.34/0.57 (1)	1:1.6:1.2					
	13543	23055	42903	45878	0.54/0.91 (2)	1:1.0:0.8					
Autocatalytic growth experiments (EBID seed deposit from Fe(CO) ₅ , then thermal growth):											
Sputtering / AES / EBID (5 mTorr Fe(CO) ₅) / AES / AG (5 mTorr) / AES / AG (5 mTorr) / AES											
AG 1	65309	4714	6953	0							
	41283	29583	49171	12860	0.17/0.29 (EBID)	1:4.4:3.2					
	31209	26257	56175	26249	0.28/0.47 (1)	1:1.9:1.8					
	22389	22615	57624	40104	0.41/0.69 (2)	1:1.1:1.2					
AG 2	66904	5003	6877	0							
	38819	27646	50353	13302	0.21/0.35 (EBID)	1:4.0:3.2					
	29736	24833	54703	23929	0.31/0.52 (1)	1:2.0:1.9					
	21583	21907	56148	35208	0.43/0.72 (2)	1:1.2:1.3					

Table S1: Summary of deposition experiments by thermal reactions (TDS), room temperature EBID, cryo-EBID, and autocatalytic growth (AG) using Fe(CO)₅.

^a Thickness calculated from the attenuation of the Ta signal. Upper and lower values result from electron attenuation lengths of Ta_{NNN} electrons in Fe (0.38 nm at 183 eV) as well as in C (0.64 nm at 183 eV) [1], respectively.

^b Composition derived from peak-to-peak heights of the AES signals weighted by tabulated sensitivity factors at 5 keV for the elements Fe (0.9168 at 705 eV), C (0.4763 at 275 eV), and O (1.1012 at 510 eV) [2] assuming a homogeneous distribution of the elements within the deposit.

Fe(CO)₄MA	AES PtP h	eights			Thickness [nm] ^a	Fe : C : O (at%) ^b				
	Та	Ta C C		Fe						
TDS experiments (precursor condensed at 100 K followed by warm-up):										
Sputtering / AES / 2x TDS (2.5 mTorr) / AES / 2x TDS (2.5 mTorr) / AES										
TDS w/o precursor	62372	4438	6969	0						
	62595	7225	19228	0	0 /0 (1)	0:1:1.2				
	61545	8678	32633	0	0.01/0.01 (2)	0:1:1.6				
TDS 1	57035	7017	12060	0						
	35532	27409	46533	5650	0.18/0.30 (2x)	1:9.3:6.9				
	28704	29780	49356	5998	0.26/0.44 (4x)	1 : 9.5 : 6.9				
TDS 2	55494	8934	11226	0						
	33760	28382	41311	5134	0.19/0.32 (2x)	1 : 10.6 : 6.7				
	29460	30940	46577	7115	0.24/0.41 (4x)	1:8.4:5.5				
EBID experiment (precursor dosing at room temperature during electron irradiation):										
Sputtering / AES / EB	ID (5 mTor	r) / AES /	EBID (5 r	nTorr) / A	AES /	I				
EBID w/o precursor	62396	4049	6098	0						
50 eV	62684	10064	27564	0	0.00/0.00 (1)	0:1:1.2				
	56943	11873	45537	0	0.04/0.06 (2)	0:1:1.7				
EBID 1, 50 eV	57299	15401	21606	0						
	32783	28900	57368	11517	0.21/0.36 (1)	1:4.7:3.7				
	18405	29867	65/25	23188	0.43/0.73 (2)	1:2.5:2.4				
EBID 2, 50 eV	5/543	9569	16819	0	0 24/0 40 (4)	1 10 11				
	30679	29458	53790	12021	0.24/0.40(1)	1:4.8:4.1				
	15802	29511	68985	24785	0.49/0.83 (2)	1:2.3:2.3				
EBID 1, 100 eV	59037	6984 2005 C	13/06	0		1.27.27				
	26394	30956	51263	15949	0.31/0.51(1)	1:3.7:2.7				
	12250	31999	51421	34499	0.60/1.00 (2)	1:1.8:1.2				
CBID 2, 100 eV	22174	7202	8044 42860	19021		1.22.20				
	23174	30853	43800	21200	0.32/0.54(1)	1:3.3:2.0				
	12211	30703	42828	31398	0.50/0.95 (2)	1:1.9:1.1				
Cryo-EBID experiments (precursor condensed at 100 K, then electron irradiation and warm-up):										
Cryo-EBID 1, 50 eV	55504	6975	10461	0						
, , ,	8266	27479	45190	19930	0.72/1.22 (1)	1:2.7:1.9				
	2697	28042	44556	23647	1.15/1.94 (2)	1:2.3:1.6				
Cryo-EBID 2, 50 eV	54222	6949	9343	0						
	6792	27112	43469	19126	0.79/1.33 (1)	1:2.7:1.9				
	2827	29151	46850	24854	1.12/1.90 (2)	1:2.3:1.6				
Autocatalytic growth experiments (EBID seed deposit from Fe(CO) ₅ , then thermal growth):										
Sputtering / AES / EBID (5 mTorr Fe(CO) ₅) / AES / AG (5 mTorr) / AES / AG (5 mTorr) / AES										
AG 1	55154	5525	8412	0						
	34316	24225	45809	11581	0.18/0.30 (EBID)	1:4.0:3.3				
	27555	26168	48466	13479	0.26/0.44 (1)	1:3.7:3.0				
	23593	28045	52627	15689	0.32/0.54 (2)	1:1.8:2.8				
AG 2	55527	5486	6489	0						
	34241	24407	44110	11555	0.18/0.31 (EBID)	1:4.0:3.2				
	33530	34105	57444	17238	0.19/0.32 (1)	1:3.8:2.8				
	27608	34600	58881	20967	0.27/0.45 (2)	1:1.7:2.8				

Table S2: Summary of deposition experiments by thermal reactions (TDS), room temperature EBID, cryo-EBID, and autocatalytic growth (AG) using Fe(CO)₄MA.

^a Thickness calculated from the attenuation of the Ta signal. Upper and lower values result from electron attenuation lengths of Ta_{NNN} electrons in Fe (0.38 nm at 183 eV) as well as in C (0.64 nm at 183 eV) [1], respectively.

^b Composition derived from peak-to-peak heights of the AES signals weighted by tabulated sensitivity factors at 5 keV for the elements Fe (0.9168 at 705 eV), C (0.4763 at 275 eV), and O (1.1012 at 510 eV) [2] assuming a homogeneous distribution of the elements within the deposit.

Figure S6: (Top) Electron attenuation length as function of electron energy in pure Fe and C, respectively [1]. These values are used to obtain a lower and upper limit of the deposit thickness from the attenuation of the Ta_{NNN} AES signal as summarized in Tables S1 and S2. (Bottom) Attenuation of Ta_{NNN}, C_{KLL}, O_{KLL}, and Fe_{LMM} AES signal intensities originating from below an overlayer with varying thickness and consisting of pure Fe (left) and C (right), respectively. The intensities were obtained as $I = I_0 \cdot e^{-d/EAL}$ with overlayer thickness *d* and electron attenuation length *EAL* for Fe and C, respectively.

Figure S7: TDS curves obtained for m/z 28 (left), m/z 55 (middle), and m/z 56 (right) after leaking varying amounts of Fe(CO)₄MA onto the Ta substrate. The gas dose is defined as the pressure drop in the gas handing manifold in units of mTorr. A desorption signal in the m/z 28 TDS curves (CO⁺⁺) already appears well below a gas dose of 1 mTorr and develops into a sharp peak near 200 K above that dose. In contrast, signals in the m/z 55 and 56 curves (CH₂CHCO⁺⁺, the dominant fragment of MA, and Fe⁺, respectively), indicative of desorption of Fe(CO)₄MA, start to emerge only above 1 mTorr. The slope of the baseline that is most noticeable in the m/z 28 TDS curves is due to pumping of residual gas in the UHV chamber after leaking of the precursor.

Figure S8: ¹H NMR (400 MHz, 25 °C, C_6D_6) spectrum of Fe(CO)₄MA (MA = methyl acrylate, H₂C=CH-COOCH₃): δ 3.34 (s, 3H), 2.98 (dd, J = 11.6, 7.8 Hz, 1H), 2.73 (dd, J = 11.6, 2.3 Hz, 1H), 2.03 (dd, J = 7.7, 2.3 Hz, 1H).

Figure S9: FT-IR spectrum of Fe(CO)₄MA (MA = methyl acrylate, H₂C=CH-COOCH₃) obtained in hexane solution: v_{CO} (cm⁻¹): 2100, 2034, 2020, 1997.

References

[1] P. J. Cumpson and M. P. Seah, Surf. Interface Anal. **25**, 430 (1997).

[2] D. Briggs and J. T. Grant (eds), Surface analysis by Auger and X-ray photoelectron spectroscopy (IM Publications, Chichester, UK and Surface Spectra, Manchester, UK, 2003).