Supporting Information

for

A facile approach to nanoarchitectured threedimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries

Wenyu Zhang^{1,2}, Yi Zeng¹, Chen Xu^{1,3}, Ni Xiao¹, Yiben Gao⁴, Lain-Jong Li⁵, Xiaodong Chen¹, Huey Hoon Hng¹ and Qingyu Yan^{*1,2,3}

Address: ¹School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore, ²TUM CREATE Research Centre @ NTU, Nanyang Technological University, Singapore 637459, Singapore, ³Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637553, Singapore, ⁴School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore and ⁵Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan

Email: Qingyu Yan - alexyan@ntu.edu.sg

* Corresponding author

Additional figures

Figure S1: Raman spectra for (a) Mn_2O_3 /graphene prepared with 0.15 M $MnSO_4$ in the electrochemical process and (b) $LiMn_2O_4$ /graphene prepared by lithiating Mn_2O_3 /graphene with $I_{MO:G} = 0.99$ by molten salt reaction. The D, G and 2D bands are indicated.

Figure S2: Thermogravimetric analyses of (a) Mn_2O_3 /graphene and (b) $LiMn_2O_4$ /graphene with various $I_{LMO:G}$ values.

Figure S3: (a, c) SEM and (b, d) HRTEM images of $LiMn_2O_4$ /graphene with (a, b) $I_{LMO:G}$ = 8.80 and (c, d) $I_{LMO:G}$ = 22.81.

Figure S4: Rate performance of $LiMn_2O_4$ /graphene with $I_{LMO:G} = 8.80$ and 22.81 between 2 and 4.5 V.

Figure S5: (a) SEM image and (b) XRD pattern of commercial LiMn₂O₄.

а

Figure S6: Discharge voltage profiles of LMO/G ($I_{LMO:G} = 5.37$) electrode at various current densities.

Figure S7: Cycling performance of $LiMn_2O_4$ /graphene electrodes with different $I_{LMO:G}$ values at the 38 C discharge rate and 19 C charge rate.

Figure S8: The curve of dQ/dV against potential (vs Li) of the second-cycle voltage profiles of LiMn₂O₄/graphene ($I_{LMO:G} = 1.22$) between 3 and 4.5 V at 1.27 C.

Figure S9: The curve of dQ/dV against potential (vs Li) of the second-cycle voltage profiles of $LiMn_2O_4$ /graphene ($I_{LMO:G} = 1.22$) between 2 and 4.5 V at 1.27 C.