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Mathematical formulae 

The governing equation for the dynamic behavior of the CNT under the external load, which 

uses the modified couple stress theory (MCST), is presented in Equation 1. 
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where E, I, G, A, l, w, x, T*, c and t at the left-hand side are, respectively, elastic modulus, 

moment of inertia, shear modulus, cross-sectional area, length scale parameter, deflection, 

axial coordinate, axial force, damping coefficient and time. In addition, qfluid, qelec, and qvdW at 

the right-hand side denote the forces that result from the fluid flow, the electrostatic actuation 

and vdW interaction, respectively. The force due to the fluid flow can be obtained using the 

Navier–Stokes equation as below [1]:  
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where mf, vav, p*, mc, μ and Ai denote, respectively, fluid mass, fluid velocity, fluid pressure, 

mass of the CNT per length, fluid viscosity and fluid cross section. Inserting the above 

formula in Equation 1, we can write: 
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where Nt is the axial force that results from the thermal variation and can be obtained from 

Equation 4 [2]: 
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where ν, αx and ΔT are Poisson’s ratio, the longitudinal thermal expansion coefficient and the 

temperature change, respectively. The axial force T* is considered to be the mid-plane 

stretching effect equaling: 
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All of the parameters [         ]
   

   
 in the second term of Equation 3 equal zero for the 

cantilever boundary conditions. The maximum deflections of the cantilever and doubly 

clamped CNTs are at the tip or longitudinal center, respectively. The cantilever and doubly 

clamped boundary conditions, respectively, can be formulated as below: 
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where, L is the length of the CNT. 

The considered model, i.e., the continuum model, has been applied in different papers [3-11]. 

All of them considered continuum mechanics for the fluid flow through the nanotube in their 

researches. The CNT studied in this paper has a diameter larger than 1 nm. Thus, the fluid 

flow through it can be investigated via continuum mechanics. On the other hand, this study 

can be easily generalized for the CNTs with larger dimensions based on the requirements of 

the system.  

The electrostatic force on the right-hand side of Equation 3 is presented as [12]: 
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where ε0, V, R and G0, respectively, represent the electrical permittivity, voltage, radius of the 

CNT and initial gap.  

In addition, the vdW force on the right-hand side of Equation 3 can be formulated as below 

[12]: 
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where c6 and σ
2
  are the parameters of the Lennard-Jones potential that describes the vdW 

force and NG represents number of graphene sheets.  

 

Solution of the governing equations 

By introducing the following non-dimensional parameters, we can non-dimensionalize the 

terms of the governing equations. 
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Inserting these non-dimensional parameters in Equation 3, Equation 8 and Equation 9 we get: 
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where do and di are the outer and inner diameters of the CNT and  
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As mentioned before α, p* and Nt equal zero for the cantilever boundary conditions. 
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Static deflection under DC voltage 

For the static actuation of the nanosystem, the terms of Equation 11 that contain time 

derivatives are set to zero. Thus, the partial derivatives transform to the ordinary ones. Hence, 

the governing equation for the static deflection of the CNT under a gradually increasing DC 

voltage is presented in Equation 13. 
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The equation above is solved by using the step-by-step linearization method (SSLM) [13]. 

This is an effective approach to solve the nonlinear governing equations of the MEMS and 

NEMS and it has been applied in various studies [14-17]. For the current case, we apply 

SSLM twice: The first time only for the vdW force and the next time for both vdW and 

electrostatic forces. The first one is required to obtain the equilibrium position of the CNT 

under only the vdW force before a DC voltage is applied. Considering λi in the range [0,1], 

the first SSLM is applied. Hence, for the ith
 
step Equation 13 can be rewritten as follows: 
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It can be formulated for the (i+1)th
 
step as below: 
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Substituting  ̅     ̅   ̅  and            in Equation 15, subtracting Equation 14 

from Equation 15 and using a Taylor expansion for the right-hand side of Equation 15, we 

have: 
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(17) 

 

In order to obtain the equilibrium position of the carbon nanotube the Galerkin method is 

applied to Equation 16. A detailed description of this method is to be discussed in the 

following lines. The deflection obtained in this step is added to the deflection to be calculated 

in the next application of the SSLM. 

Now, the second application of the SSLM is going to be used. The voltage and deflection at 

the kth step are Vk and wk, and at the (k+1)th step they are Vk+1 and wk+1. By subtracting the 

kth step from the (k+1)th step, we can write: 

                              (18) 

 

For the kth
 
step Equation 16 can be rewritten as Equation 19: 
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Also, for the (k+1)th step Equation 16 can be rewritten as Equation 20: 
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It is worth noting that for very small deviations,  (         ), can be expanded into a two-

dimensional Taylor series as follows: 
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and 
  ̅    

  ̅
 is obtained from Equation 17. 

By subtracting the kth step from the (k+1)th step, we get: 
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Equation 23 is the final governing equation for the static deflection of the CNT under a static 

DC actuation. To solve it, we use the expansion theory as given below [18]: 
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The shape modes that correspond to the cantilever and doubly clamped boundary conditions 

are presented in Equation 25 and Equation 26, respectively [19]. 
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Only its first mode shape appears for the static deflection of the CNT, therefore we only 

consider the first one. 
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Substituting Equation 27 in Equation 23, we have: 
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By applying the Galerkin method, the governing equation to the static deflection of the CNT 

under a DC voltage is obtained as follows: 
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Dynamic behavior under stepped DC 

In order to solve the governing equation for the dynamic behavior of the CNTs under 

electrostatic actuation, the expansion theory is applied to Equation 9 as follows [13]: 
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The first mode shape is considered in the investigation of the desired behavior. To simplify 

the solution procedure, the deflection on the right-hand side of Equation 9 in each step is 

considered same as the deflection in the previous step. 
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Applying the Galerkin method to the above equation, we get: 
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Equation 34 is solved by using the 4th order Runge–Kutta method in order to obtain the 

dynamic behavior of the system and also to investigate the effects of fluid flow through the 

CNT. 

The nondimensional length scale parameter of the MCST that will be applied in the following 

section is defined as below: 
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