Supporting Information

Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

Elena Capetti ${ }^{1}$, Anna M. Ferretti ${ }^{1}$, Vladimiro Dal Santo ${ }^{2}$, and Alessandro Ponti ${ }^{1, * \S}$

Address: ${ }^{1}$ Laboratorio di Nanotecnologie, Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, via G. Fantoli 16/15, 20138 Milano, Italy, and ${ }^{2}$ Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Ricerche, via C. Golgi 19, 20133 Milano, Italy

Email: Alessandro Ponti - alessandro.ponti@istm.cnr.it

* Corresponding author
${ }^{\text {T Tel.: }}+39025031$ 4280, Fax: +39 0250313927

Additional TEM images and ED patterns of MnO and MnS nanocrystals

Morphology of MnO and MnS Nanocrystals

Being an in-depth discussion of NC morphology outside the scope of this paper, we limit ourselves to a brief summary of the size and shape of the MnO and MnS NC obtained using stearic acid (StAC) as a precursor. Morphological data are collected in Table S1 (TEM images of selected samples can be found in Figure 1 of the main text). MnO NCs prepared from $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ have octahedral shape and size in the $10-20 \mathrm{~nm}$ range with dispersity $15-22 \%$. Manganese monooleate gave somewhat larger and more disperse (15-27\%) MnO NCs with shape similar to the MnO case.

MnO NCs usually have spherical or octahedral shape. Size and dispersity depend on the precursor. MnO NCs prepared from $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ have size in the $10-20 \mathrm{~nm}$ range with dispersity $15-$ 22\%. Manganese monooleate gave somewhat larger and more disperse (15-27\%) MnO NCs. Size and dispersity further increased when manganese dioleate $\left(\mathrm{MnOl}_{2}\right)$ was used and even further when the precursor was manganese distearate $\left(\mathrm{MnSt}_{2}\right)$.

The size of $\alpha-\mathrm{MnS}$ NCs was in the $10-65 \mathrm{~nm}$ range, with dispersity $15-35 \%$, as already observed [A. Puglisi; S. Mondini; S. Cenedese; A. M. Ferretti; N. Santo; A. Ponti, Chem. Mater. 2010, 22, 2804-2813]. In most cases, α-MnS NCs display spherical or octahedral shape.

In general, considering that no effort was spent to optimize the synthetic conditions, the NCs size dispersion is acceptable and a remarkable shape uniformity was achieved.

Finally, it is noteworthy that manganese dicarboxylate precursors yielded multipodal MnO NCs when S / Mn < 1:1 was used. MnOl_{2} resulted in multipodal NCs comprising up to 6 oval lobes (form factor $=1.6$). When MnSt_{2} was used, multipodal NCs (rods, T 's, crosses) had more elongated branches (form factor $=3.6$) with constant width and jagged edges. The analysis of MnO multipodes will be deferred to future publications.

Table S1: Properties of NCs synthesized by the thermal decomposition of a manganese precursor in octadecene containing varying amounts of sulfur (S) and stearic acid (L).

Precursor	S/Mn	$\mathrm{L} / \mathrm{Mn}^{\text {a }}$	NC type	Shape ${ }^{\text {b }}$	Median diameter $(\mathrm{nm})^{\mathrm{c}}$	Diameter std. dev. (nm) ${ }^{\text {c }}$
$\mathrm{Mn}_{2}(\mathrm{CO})_{10}$						
	1:1	1:1	MnO / α-MnS	octahedron	12	1.7
		2:1	MnO	octahedron	12	1.4
		3:1	MnO	octahedron	17	3.1
	2:1	2:1	$\mathrm{MnO} / \alpha-\mathrm{MnS}$	octahedron	10	1.8
		3:1	MnO	octahedron	12	1.8
		4:1	$\alpha-\mathrm{MnS}$	octahedron	23	3.8
				sphere	8	1.2
	4:1	2:1	$\alpha-\mathrm{MnS}$	sphere	40	8.9
		3:1	$\alpha-\mathrm{MnS}$	sphere	28	3.3
$\mathrm{Mn}(\mathrm{OH}) \mathrm{Ol}^{\text {d }}$						
	0:5	1:1	MnO	IRC	63×10	31.4×5.8
		4:1	MnO	octahedron	25	6.7
	1.7:1	0.6:1	$\alpha-\mathrm{MnS}$	sphere	14	2.3
	2:1	0:1	$\alpha-\mathrm{MnS}$	sphere	17.5	2.3
	2.3:1	0.6:1	$\alpha-\mathrm{MnS}$	sphere	14.7	2.7
		1:1	MnO / α-MnS	sphere	20	4.9
				octahedron	25	6
	3:1	0:1	α-MnS	sphere	18	2.4
	4:1	0:1	$\alpha-\mathrm{MnS}$	sphere	16	2.8
MnOl_{2}						
	0:1	3:1	MnO	spheroidal	6	1.8
		4:1	MnO	octahedron	72	19
	0.5:1	0:1	MnO	IRC	45	12.2
		1:1	MnO	octahedron	46	7.2
		2:1	MnO	quasisphere	20	2.8
		3:1	MnO	4-flower	54	12.8
				octahedron	53	12.3
				T-shape	53×47	12.3×12.2
		4:1	MnO	crosses	80	16.4
				T-shape	82×56	16.1×16.1
				6-flower	77	16
		6:1	MnO	sphere	23	18
				T-shape	71×43	22.5×22.3
				flower-like	71	19.1
		7:1	MnO	quasisphere	34×21	10.6×10.5
		8:1	MnO	sphere	12	2.8
	2:1	0:1	$\alpha-\mathrm{MnS}$	sphere	19	2.5
		1:1	$\mathrm{MnO} / \alpha-\mathrm{MnS}$	sphere	24	2.0
	3:1	0:1	$\alpha-\mathrm{MnS}$	sphere	21.6	2.9

		1:1	$\mathrm{MnO} / \alpha-\mathrm{MnS}$	sphere	7	0.7
				sphere	22	6.9
				octahedron	21.5	4.3
	4:1	0:1	$\alpha-\mathrm{MnS}$	sphere	21.5	3.6
		1:1	$\alpha-\mathrm{MnS}$	sphere	21.9	3.0
MnSt2						
	0:5	0:1	MnO	IRC	55	9.2
		0:8	MnO	crosses	98	28.4
				T-shape	105×60	27.4×27.2
				rod	114	28.2
		1:1	MnO	crosses	80	24.3
				T-shape	79×45	24.5×24.4
				rod	73	21.7
		2:1	MnO	quasisphere	39	24.0
				T-shape	81×63	24.8×24.7
				rod	81	25.2
		3:1	MnO	IRC	25	5.9
		4:1	MnO	crosses	78	24
				T-shape	75×75	23.6×23.6
				rod	73	23.6
	2:1	0:1	α-MnS	quasisphere	65	9.9
				IRC	12×8	4×2
		1:1	$\alpha-\mathrm{MnS}$	quasisphere	7	1.2
		4:1	$\mathrm{MnO} / \alpha-\mathrm{MnS}$	ellipse	31×23	4×3
	4:1	0:1	$\alpha-\mathrm{MnS}$	octahedron	29	8.7

${ }^{a}$ For $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ and $\mathrm{MnSt}_{2}, \mathrm{~L}=$ stearic acid; for $\mathrm{Mn}(\mathrm{OH}) \mathrm{Ol}$ and $\mathrm{MnOl}_{2}, \mathrm{~L}=$ oleic acid.
${ }^{\mathrm{b}}$ IRC $=$ irregular, rounded, convex shape; quasi-sphere $=$ shape very close to spherical.
${ }^{\text {c Both maximum and minimum values are shown for anisotropic shapes. }}$
${ }^{\mathrm{d}}$ Data are in part taken from A. Puglisi; S. Mondini; S. Cenedese; A. M. Ferretti; N. Santo; A. Ponti,
Chem. Mater. 2010, 22, 2804-2813.

TEM images and ED patterns of NCs prepared by thermal decomposition of manganese(II) distearate $\left(\mathrm{MnSt}_{2}\right)$ in the presence of sulfur (S) and different surfactants (L) with $\mathbf{S} / \mathbf{M n}=\mathbf{2}$ and $L / M n=4$. See Table 1 in the main text.

$\mathrm{L}=$ DdAm; outcome: $\boldsymbol{\gamma}$-MnS NCs.

$\mathrm{L}=$ HdAm; outcome: γ-MnS NCs.

$\mathrm{L}=$ OdAm; outcome: γ-MnS NCs.

$\mathrm{L}=$ OlAm; outcome: $\gamma-\mathrm{MnS}$ NCs.

$\mathrm{L}=$ OlAm + DdTh; outcome: $\gamma-\mathrm{MnS}$ NCs.

$\mathrm{L}=$ none; outcome: α-MnS NCs.

$\mathrm{L}=$ OlAlc; outcome: α-MnS NCs.

$\mathrm{L}=\mathrm{DdTh}$; outcome: $\alpha-\mathrm{MnS}$ NCs.

$\mathrm{L}=\mathrm{StAc}$; outcome: $\alpha-\mathrm{MnS}$ NCs.

$\mathrm{L}=\mathrm{DdTh}$; outcome: α-MnS NCs.

TEM images and ED patterns of NCs prepared by thermal decomposition of manganese decacarbonyl $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right.$] in the presence of sulfur (S) and different amine surfactants (L) with $S / M n=2$ and $L / M n=4$. See. Table 2 in the main text.

$\mathrm{L}=$ OlAm; outcome: α-MnS NCs.

$\mathrm{L}=$ DdAm; outcome: α-MnS NCs.

L = HdAm; outcome: $\alpha-\mathrm{MnS}$ NCs.

$\mathrm{L}=$ OdAm; outcome: α-MnS NCs.

TEM images and ED patterns of NCs prepared by thermal decomposition of manganese decacarbonyl $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{10}\right]$ in the presence of sulfur (S) and a mixture of carboxylic acid ($\mathrm{L}_{\text {acid }}$) and amine ($\mathrm{L}_{\text {amine }}$) surfactants with $\mathrm{S} / \mathrm{Mn}=2, \mathrm{~L}_{\text {acid }} / \mathrm{Mn}=2$ and $\mathrm{L}_{\text {amine }} / \mathrm{Mn}=4$. See Table 3 in the main text.

$\mathrm{L}_{\text {amine }}=$ OlAm, $\mathrm{L}_{\text {acid }}=$ StAc; outcome: $\gamma-\mathrm{MnS}$ NCs.

[^0]
$\mathrm{L}_{\text {amine }}=$ OdAm, $\mathrm{L}_{\text {acid }}=$ StAc; outcome: $\boldsymbol{\gamma}$-MnS NCs.

[^0]: $\mathrm{L}_{\text {amine }}=$ DdAm, $\mathrm{L}_{\text {acid }}=$ StAc; outcome: $\boldsymbol{\gamma}$-MnS NCs.

