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Details on theoretical calculations 

 

Number of free holes in nanowire 

The number of free holes in the core of the nanowire will depend on the number 

of charge traps at the core/shell interface.  We assume for simplicity that the total 

number of carriers from the surface states,    , is equal to the total number of 

occupied surface states, given by: 

                       (S1) 

where   is the radius of the nanowire,     is the density of occupied surface states 

and   is the length of the wire. Equation S1 shows that the number of carriers is 

linearly proportional to the radius if the density of surface states is constant. We 
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assume that the surface state density is constant for all wires grown with the same 

growth conditions. The resistivity depends not on the carrier number, as given by 

Equation S1, but on the carrier concentration. To find the carrier concentration we 

shall need to calculate the volume of the region to which the carriers are confined. 

 

Regime 1:     

The free holes in the germanium core are attracted to the electrons trapped in 

the shell and consequently for large diameter wires exist predominantly in a region 

near the interface called the space-charge region [1, 2]. The depth   to which the 

space-charge region extends into the sample is found by solving Poisson’s equation 

[2]. Assuming that the space-charge region has a constant charge density    , it can 

be shown that for a cylindrical geometry [3]: 
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where    is the electrostatic potential at the surface,    is vacuum permittivity,    is 

the dielectric constant of germanium, and   is the charge of the electron. The carrier 

concentration will fall off gradually away from the surface, and there will not be a 

sharp distinction between the occupied space charge region and the empty centre of 

the nanowire. For this reason Equation S2 is only valid when    . 

The volume of the space-charge region is the volume of the whole nanowire 

minus the inner cylindrical region with no charge: 
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and thus we have for the carrier concentration in the space charge region: 
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where we have again assumed that there is a constant carrier concentration over 

some distance  . Finally, by multiplying by the charge of the electron and the 

mobility,  , we can find the dependence of the resistivity,  , on the diameter: 
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Regime 2:     

Wavefuction of the Charge Carriers 

To calculate the mobility with the Kubo–Greenwood formula we first need to 

calculate the momentum relaxation times for different scattering processes. For this 

we require the wavefunction of the carriers in the wire. We model the nanowire as an 

infinite cylindrical well, assuming that the mobile holes are present throughout the 

entire wire volume. The advantage of this approach is that it allows us to solve for 

the wavefunction analytically. In cylindrical coordinates (  (     )) the wavefuction, 

 ( ) can be decomposed into its radial,  ( ), angular,  ( ), and longitudinal,  ( ), 

parts [8]: 

 ( )   ( ) ( ) ( )      (S6) 

For our calculations we only require the radial part due to cylindrical symmetry of 

the system. The radial part of the wavefunction is given by [8]: 
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where           ,         ,   is the m-th Bessel function of the first kind and 

    is the n-th positive zero of the m-th Bessel function. Each possible pair of values 

for   and   corresponds to a different subband. We will label each subband with a 

single index,  , instead of with   and   for clarity in later equations. We note that the 

assumption of an infinite potential well leads to parabolic bands. However, in low 

dimensional structures the bands are no longer well described as parabolic which 

can be accounted for by a nonparabolic correction term,  . We took the value of   to 

be 0.7 eV-1 for heavy holes and 0.2 eV-1 for light holes, as has previously been 

calculated for germanium nanowires [10]. 

The number of charge carriers in a nanowire can be calculated by integrating the 

density of states,  ( ), over energy up to the Fermi level,   : 

  ∫  ( )  
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This expression is only strictly valid at 0 K, but can be used if the Fermi level does 

not change by a significant amount as the sample is heated to room temperature, 

which should be the case for our quasi metallic nanowires [11]. Inserting Equation 

S4 for   and  ( ) (see below) into Equation S8 allows us to find the Fermi level as a 

function of diameter and the density of surface states. 
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Density of States and Expectation Value of Potential Energy 

We calculate the density of states in one dimension starting from the non-

parabolic bands. In this the following expressions hold1 
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where   ( ) is the group velocity of the carrier in subband   at energy   and   is the 

valley degeneracy. It should be noted that these expressions are valid for either the 

conduction band or the valence band. In the case of the valence band there are no 

valleys and so  =1. Furthermore, the effective mass will no longer be constant as the 

bands are no longer parabolic. The effective mass that appears in the expressions 

above is the effective mass for the parabolic band. 

In these equations also the term    appears which is the expectation value of the 

potential energy for a given subband [4, 9],    ∫   
 ( )   ( )  Due to the fact that 

we are setting the potential inside the wire to be   at all points the term    vanishes 

everywhere, simplifying the calculation. 

 

Hole-Phonon Scattering 

Charge carriers can be scattered by either acoustic or optical phonons. Acoustic 

phonons have little or no momentum at the Brillouin zone centre, in contrast to 

optical phonons [11]. The momentum relaxation time for a hole in the subband   due 

to scattering from an acoustic phonon is given by [5]: 
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where    is the average acoustic deformation potential which,     is the density of 

germanium,   is the speed of sound in germanium,    ( ) is the density of states in 

                                                      
1
 cf. S. Jin, M.V. Fischetti, T. Tang, Modeling of electron mobility in gated silicon nanowires at room 

temperature: Surface roughness scattering, dielectric screening, and band nonparabolicity, Journal of Applied 

Physics, 102 (2007) 083715-083714; A. Godoy, Z. Yang, U. Ravaioli, F. Gámiz, Effects of nonparabolic bands 

in quantum wires, Journal of Applied Physics, 98 (2005) 013702-013705. 
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the sub-band   , and      is the so called form factor for a one dimensional wire, given 

by [5]: 
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The momentum relaxation time associated with scattering from optical phonons is 

given by [5]: 
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where    is the average optical deformation potential,      is the energy of an 

optical phonon,  ( ) is the Fermi–Dirac distribution,     is the phonon number, 

determined by (   (
   

    
)   )

  

 [12], and the   signs account for forward and 

backward scattering, both of which are included in the calculation. We use the 

angular frequency of bulk phonons in our model which has been found to be a good 

approximation for germanium nanowires with diameters above 10 nm [8]. 

 

Finally we come back to the effective deformation potentials,    in Equation S10 

and    in Equation S12.    describes the local energy shift of the valence band that 

is caused by the presence of a phonon distorting the crystal structure [13, 14]. The 

acoustic deformation potential is a second rank tensor quantity [13, 14], related to 

the strain tensor. For the valence band there are three deformation potentials [15] 

due to the fact that the valence band is derived from a p-orbital, that is, deformation 

potential related to (i) isotropic deformations, (ii) deformations along the [100] 

direction and (iii) deformations along the [111] direction. Despite this complexity it 

has been found that a single, scalar, effective deformation potential can be used 

which results in an error of less than 5% in the final calculation [16, 17]. Similarly the 

effective optical deformation potential    should be a vector quantity that is related 

to the displacement of the atoms by the phonon [13, 14]. This too can be 

approximated by an effective scalar which has been shown to introduce a negligible 

error [16, 17]. 
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Coulomb Scattering 

The momentum relaxation time for a carrier in a subband   to scatter due to a 

Coulomb scattering centre located at    is given by the following set of equations 

[18]: 
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where          is the change of the hole wavevector upon scattering (i.e. the 

momentum transfer),   is the channel length of the device,   ( ) is the density of 

Coulomb centres at the position  ,    is the charge located at that position,        

is the dielectric constant of the material and the   sign refers to forward and 

backward scattering.    (   
 ) is a Green’s function. These equations can be used 

for scattering from Coulomb centres located anywhere in the channel or in the 

dielectric material around the channel. The form of the Green’s function changes 

depending on the relative position of the scattering centre and the charge carrier. In 

our calculation we assume that all the traps are located at the core/shell interface, by 

setting   ( )      (   ), where  (   ) is the delta distribution, and we 

assumed that all of the holes were located in the germanium core. In this case the 

Green’s function is given by the following set of equations [4]: 
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where      (  ),       (   ),       (   ),      (  ),      ( (        )), 

     ( (        )),   
       (  ),   (  ) and   (  ) are modified Bessel 

functions of the first and second kind, respectively,      ,     is the dielectric 

constant of germanium and tshell is the thickness of the oxide. We note that if 
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tshell  0 then the Green’s function is zero at all points. We therefore must include 

the shell in the calculations. Equation S14 shows that the Green’s function is 

modified by the thickness and dielectric constant of the shell. 

 

 

Figure S1: Green’s function for Coulomb scattering as a function of radial position in the wire. The 

blue line corresponds to a wire with a diameter of 12 nm, while the orange line shows a 17 nm wire. 

The Greens function is larger for the smaller wire at all lengths. The insert shows a closer view of the 

Green’s functions near to the centre of the wire. It is clear from these graphs that the scattering will 

depend very strongly on the distribution of the electrons within the wire. The value of the Green’s 

function at the surface is 360 times larger than at the centre of the nanowire for the 12 wire and 

almost 4000 times larger for the 17 nm wire. 

 

To demonstrate that the value of the Green’s function is not strongly affected by 

the parameters thickness and dielectric constant of the shell, we examined the effect 

of changing them to a range of values. We assumed the value of the dielectric 

constant to be that of silicon, 11.9 [19], and that of germanium oxide, 7.4. The value 

of the Green’s function was approximately 10 % lower of the case of the silicon 

compared to germanium oxide. A change of less than 1 % was seen when we 

changed the thickness of the shell from 20 nm to 1 nm. Therefore the choice of 

parameters here does not have a large bearing on the final result. For these reasons 

we took the dielectric constant to be the same as for germanium oxide and assumed 

a constant thickness of 1 nm. 

In Figure S1 we show the Green’s function for scattering from the first (   ) to 

the second (    ) subband for a nanowire with a 12 nm diameter and a wire with a 

17 nm diameter wire as a function of  , the radial position of the charge carrier in the 
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wire. The Green’s function increases strongly approaching the surface of the wire, 

where the trapped charge is located, especially for the larger diameter wires. In this 

case the value of the Green’s function at the surface (   ) is 360 times larger than 

the value at the centre (   ) of the nanowire for the 12 nm wire, and 3958 times 

larger in the case of the 17 nm wire. For this reason the Coulomb scattering will be 

strongly affected by the distribution of the carriers within the wire, especially for 

larger diameter wires. We expect that at large diameters the charge carries will be 

located closer to the surface, and so scattering from electrons in the interface states 

will play a larger role. We do not take into account this carrier distribution and we are 

therefore likely to underestimate quantitatively the Coulomb scattering especially for 

large diameter wires. 

In Table S1 the values of the parameters used in the calculation are shown. The 

calculation of the mobility involves solving the Kubo–Greenwood formula [6, 7], 

which contains an integral over the energy from zero to infinity. In principle we 

should therefore include infinitely many subbands. In practice however we solve this 

integral numerically and include only a limited number of subbands. Only holes near 

to the Fermi level contribute to the mobility as quantified (following Refs.[4] and [5]) 

by the term   (         (
    

    
)). 
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Table S1: Constants used in calculating the mobility 

Symbol Description Value Unit 

  

 

Non-parabolicity parameter 

 

0.7 for heavy holes; 0.2 

for light holes [10] 

eV-1 

 

   

 

Total potential energy of the 

subband   

 

0 eV 

   
  

 

Effective mass of the heavy 

holes at     

 

0.28   [20] 

 

kg 

 

   
  

 

Effective mass of the light holes 

at     

 

0.044   [20] 

 

kg 

 

   

 

Average acoustic deformation 

potential 

 

6.49 [17] 

 

eV 

 

   

 

Average optical deformation 

potential 

 

12.17   108 [17] 

 

eV/cm 

 

     

 

Energy of optical phonon 

 

37.04 [17] 

 

eV 

 

  

 

Speed of sound in germanium 

 

5400 [17] 

 

m/s 

 

    

 

Density of germanium 

 

5.32 [17] 

 

g/cm3 

 

       

 

Dielectric constant of the shell 

 

7.4 

 

 

 

    Density of surface states 1013 cm-2 

    

 

 

Using the Fermi level determined from Equation S8 we find the first subband for 

which this term is below 10-3 for all energies and for every wire radius, which we 

refer to as the top subband. All subbands up to and including the top subband are 

included in the calculation. This is done for both light- and heavy-hole subbands. The 

number of subbands used in the calculation is diameter dependent both due to the 
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diameter dependence of the Fermi level and the diameter dependence of the 

intersubband energy spacing. 

 

 

Figure S2: Position of subband minima and Fermi level as a function of nanowire diameter. The blue 

lines correspond to heavy-hole bands, and the orange lines represent light-hole bands. The black 

dots are the Fermi level positions for the diameters at which the calculation was carried out. (a) and 

(b) show the results of the same calculation, but with different energy scales. (a) shows a broader 

energy scale to emphasise the spreading of the subband bottoms as the nanowire diameter is 

decreased, and the disparity in the energy separation of the heavy-hole and light-hole subbands. (b) 

shows the position of the Fermi level relative to the subband minima. 

 

In Figure S2a we plot the position of the bottom of the first 20 heavy-hole bands, 

in blue, and the first 3 light hole bands, in orange. It becomes apparent that the 

energy separation between the bottoms of the bands is increased as the diameter is 

decreased. Although we have plotted the bottom of the subband (   ) here, the 

same behaviour is seen for all values of  . Figure S2b shows the same evolution of 

the band bottoms as Figure S2a, but with a smaller energy scale to better show the 

change of the Fermi level at different diameters. It should be noted that in Figure S2b 

the scale on the y-axis is in steps of 25 meV, which is the thermal energy at room 

temperature, and therefore provides insight into the diameter at which single 

subband effects may be occurring. 

The mobility of light and heavy holes,     and     respectively, will be different 

due to their dissimilar effective masses. We therefore calculate the mobility of light 

and heavy holes separately and then find the total mobility      : 
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Figure S3: (a) Density of states and (b) the average subband bottom’s spacing as a function of wire 

diameter. (a) shows the density of states for heavy holes and light holes in a 22 nm diameter wire, 

and the density of states for heavy holes in an 11 nm wire. The density of states for the heavy holes in 

the thinner wire is about an order of magnitude less than in the thicker wire. This reduction in the 

density of states is one of the factors that leads to a diameter dependent resistivity. Similarly the 

density of states for light holes in a wire of the same diameter is 1.5 to 2 orders of magnitude lower 

than that of the heavy holes. It is for this reason that heavy holes dominate charge transport 

properties. Each of the spikes is caused by the singularity at the bottom of each one-dimensional 

subband. (b) shows the average subband bottom spacing with all the subbands used in the 

calculation taken into account with equal weight. It can be seen that the average spacing is 

comparable to the thermal energy at room temperature, suggesting that the use of the one 

dimensional Kubo–Greenwood formula is justified. 

 

Scattering into light-hole and heavy-hole bands is taken into account in both cases. 

In general the light holes will have a higher mobility due to their lower effective mass, 

however the mobility of the material will be mainly determined by the heavy holes 

due to their greater density of states [10]. This is shown in Figure S3a where we plot 

the density of states for light and heavy holes in a nanowire with a 22 nm diameter. It 

can be seen that over the entire energy range the density of states of the heavy 

holes is 1 to 2 orders of magnitude larger than the light holes. This is due to both the 

fact that the density of states in a single band is higher, as well as from the fact that 

at any given energy there will be more heavy-hole bands contributing to the density 

of states due to the smaller energy separation between heavy-hole bands. The 

position of the Fermi level at each diameter is indicated in Figure S3a by the position 

of the black dots, and it is clear that there are a greater number of heavy hole bands 

beneath the Fermi level at every diameter. It has been found that in germanium at 

(b) 
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220 K 96 % of the holes are heavy, with 4 % light [10] 2, and remains unaffected 

down to 40 K. We therefore expect that there should not be a substantial change at 

room temperature. 

The average subband spacing for different wire diameters was found using the 

expression: 

 

            ( )
∑     (   )    (   )           

       (S16) 

where   (   ) is the energy of the bottom of the subband   for a wire of radius   and 

            ( ) is the number subbands used at that radius. It is plotted in 

Figure S3b. It is evident that the average spacing is comparable to the thermal 

energy at room temperature, 25 meV. The subband spacing close to the Fermi level 

exceeds 25 meV for the smallest diameter wires that we consider, and there are only 

a few subbands within a     of the Fermi level at all diameters. We note that the one 

dimensional Kubo–Greenwood formula has previously been used when the average 

subband spacing was found to be 10 meV [5]. Therefore the use of the one 

dimensional formula is reasonable. 

 

Form factor 

 

Figure S4: Form factor (Equation S11) for scattering from the first to the second subband.The fact 

that the form factor increases as the radius of the nanowire is decreased is clearly seen. This stems 

from the normalisation prefactor, √       (   )  in Equation S7. This impacts on the diameter 

dependence of the resistivity, as it results in the decrease in the phonon-limited mobility as the wire 

radius is decreased. 

                                                      
2
 The population of the split-off band was found to be negligible in the same study. In addition our Fermi level 

was found to be at most 92 meV, far below the split off distance of 296 meV [17] . For both of these reasons we 

do not include the split-off band in our calculations.  
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Width of the space charge region   

Inserting Equation S4 into Equation S2 we can find the width of the space 

charge region   for a given nanowire radius  , electrostatic surface-potential    and 

  . We assume that the relative permittivity is the same as in bulk, 16 for the case of 

germanium [19].    has been found to be 0.3 eV for p-type germanium nanowires 

with a native oxide [3]. In Figure S5 we plot the ratio of   to   as a function of 

nanowire diameter. We have assumed that          cm-2. We note that     for a 

wire with a diameter of about 18 nm. 

 

Figure S5: Ratio of space charge region width   to nanowire radius   as a function of diameter by 

solving the Poisson equation. The density of surface states is assumed to be 10
13

 cm
-2

. The mobile 

holes are distributed in an annular region near to the edge of the nanowire for nanowires with 

diameters above   18 nm. 
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