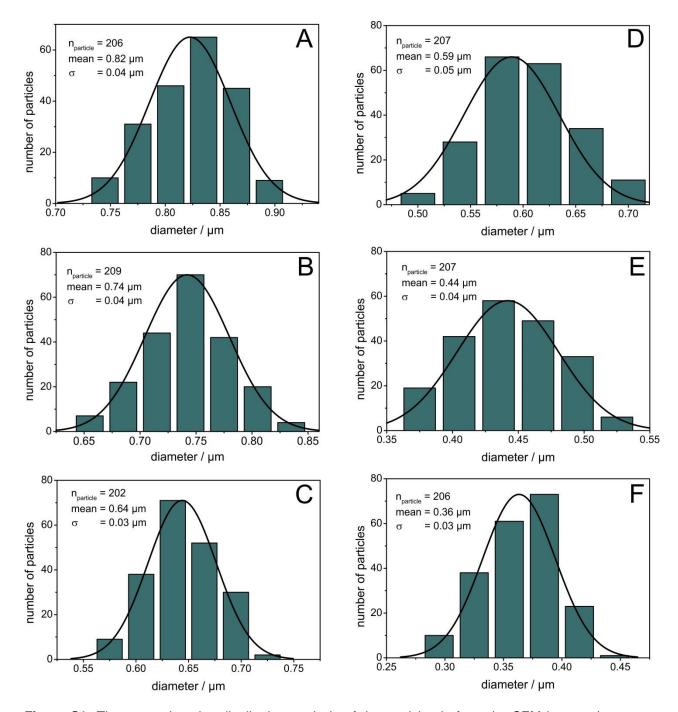
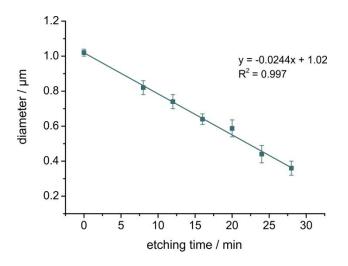
Supporting Information

for

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples


Christa Genslein¹, Peter Hausler², Eva-Maria Kirchner¹, Rudolf Bierl², Antje J. Baeumner¹ and Thomas Hirsch^{*1}

Address: ¹Institute of Analytical Chemistry, Chemo and Biosensors, University of Regensburg, 93040 Regensburg, Germany and ²Sensorik-ApplikationsZentrum, OTH Regensburg, Franz-Mayer-Str. 1, 93053 Regensburg, Germany


Email: Thomas Hirsch* - thomas.hirsch@ur.de

* Corresponding author

Additional experimental data

Figure S1: The respective size distribution analysis of the particles is from the SEM images (compare Figure 3). A Gaussian function was used for fitting. Substrates were covered by ~45 nm Au with a ~3 nm Ti adhesion layer. A decrease in the diameter of the polystyrene particles with an increase of the etching time from 8 min (A) to 28 min (F) can be seen.

Figure S2: Time dependence of the particle diameter reduction. Particles have a starting diameter of 1.02 μ m. Etching is performed using reactive ion etching with oxygen plasma. Standard deviation is taken from the respective size distribution of the SEM image analysis (Figure S1).

Table S3: Fitting parameter for the interaction of DEP with rGO on various substrates. The Langmuir model was used.

substrate		<i>Κ</i> / μΜ	<i>K</i> _A / μM ⁻¹	R ²
continuous film		0.17 ± 0.03	6 ± 1	0.9693
nanohole array with <i>D</i> / <i>P</i>	0.35	0.22 ± 0.05	5 ± 1	0.9149
	0.43	0.15 ± 0.02	7 ± 0.9	0.9847
	0.58	0.20 ± 0.04	5 ± 1	0.9585

$$\Delta s = \frac{c}{K+c} \,,$$

where Δs is the signal change, *c* is the DEP concentration and *K* represents the equilibrium dissociation constant.