Supporting Information

for

Sb$_2$S$_3$ grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

Erki Kärber1, Atanas Katerski1, Ilona Oja Acik1, Arvo Mere1, Valdek Mikli2 and Malle Krunks1

Address: 1Laboratory of Thin Film Chemical Technologies, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia and 2Chair of Semiconductor Materials Technology, Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

Email: Erki Kärber* - erki.karber@ttu.ee

* Corresponding author

Additional experimental data
Figure S1: Top-view SEM images of Sb$_2$S$_3$ layers grown by ultrasonic-CSP using a) a solution with Sb/S source ratio of 1:3 and b) a solution with Sb/S source ratio of 1:2. Crystalline and amorphous parts are evident in image a. The single tetrahedral crystal in image b is composed of Sb and O according to EDX.
Figure S2: Top-view SEM image of Sb$_2$S$_3$ crystals grown by 7-cycles of spraying of solutions with Sb/S precursor ratio of 1:6 onto a TiO$_2$ substrate kept at 250 °C.
Figure S3: Optical transmittance of the glass/ITO/TiO$_2$/Sb$_2$S$_3$ stack at two different photon energies (1.9 eV and 2.5 eV) as a function of Sb$_2$S$_3$ growth cycles. The transmittance includes the specular and the diffuse component.
Figure S4: Current–voltage characteristics (A) and series resistance (B) of the glass/ITO/TiO$_2$/Sb$_2$S$_3$/P3HT/Au solar cells as a function of the duration of light-soaking using A.M1.5 illumination up to 45 min. The series resistance of the solar cell is calculated using the slope of the I–V curve rightwards from the location of the V_{oc}.