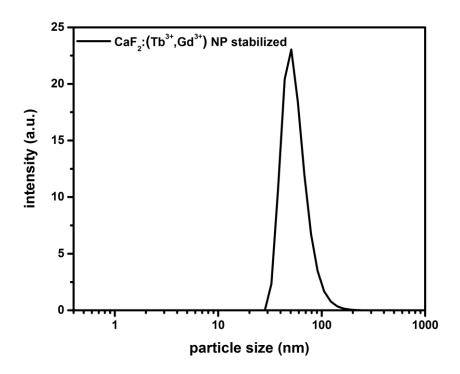
Supporting Information

for

Calcium fluoride based multifunctional nanoparticles for multimodal imaging

Marion Straßer*,^{‡,1,2}, Joachim H. X. Schrauth^{‡,3,4}, Sofia Dembski^{1,5,6}, Daniel Haddad^{3,7}, Bernd Ahrens^{8,9}, Stefan Schweizer^{8,9}, Bastian Christ⁵, Alevtina Cubukova⁵, Marco Metzger^{5,6}, Heike Walles^{5,6}, Peter M. Jakob^{3,4} and Gerhard Sextl^{1,2}

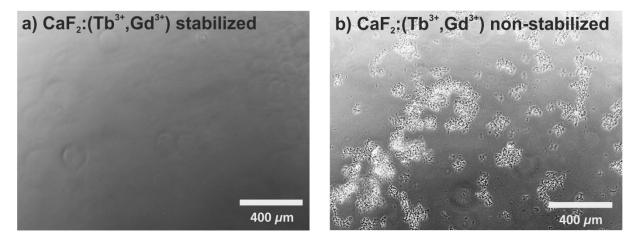

Address: ¹Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Wuerzburg, Germany; ²Department of Chemical Technology of Materials Synthesis, University of Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany; ³MRB Research Center for Magnetic Resonance Bavaria, Am Hubland, 97074 Wuerzburg, Germany; ⁴Department of Experimental Physics 5 (Biophysics), University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany; ⁵Translational Center Wuerzburg "Regenerative Therapies for Oncology and Musculosceletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Wuerzburg, Germany; ⁶University Hospital Wuerzburg, Chair Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070 Wuerzburg, Germany; ⁷Magnetic Resonance and X-ray Imaging Department of Fraunhofer Development Center X-ray Technology EZRT, a division of Fraunhofer Institute for Integrated Circuits IIS, Am Hubland, 97074 Wuerzburg, Germany; ⁸South Westphalia University of Applied Sciences, Luebecker Ring 2, 59494 Soest, Germany and ⁹Fraunhofer Application Center for Inorganic Phosphors, Branch Lab of Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Luebecker Ring 2, 59494 Soest, Germany

Email: Marion Straßer* - marion.strasser@isc.fraunhofer.de

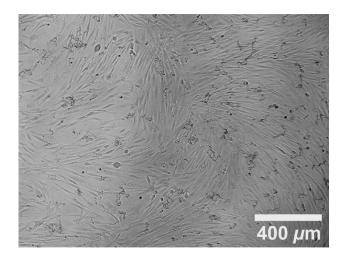
Additional figures and data

^{*} Corresponding author

[‡] Equal contributors


Figure S1: DLS measurement of the CaF_2 : (Tb^{3+},Gd^{3+}) NPs stabilized with Melpers[®]2450 (number-weighted).

$$r_1 = \frac{4.59 \cdot 10^3 \cdot \text{mL} \cdot \text{mol}}{10^{-3} \cdot \text{mol} \cdot \text{s} \cdot 938 \cdot 10^3 \cdot \text{mg}}$$


Relaxivity Magnevist: 4.59 L·mmol⁻¹·s⁻¹ from literature [38]

Molar Mass Magnevist: 938 g⋅mol⁻¹

Figure S2: Calculating method for converting the unit of the relaxivity.

Figure S3: Microscopic images of the CaF_2 : (Tb^{3+},Gd^{3+}) NPs $(c = 5 \text{ mg} \cdot \text{mL}^{-1})$: a) stabilized with Melpers[®]2450 and b) non-stabilized.

Figure S4: Representative microscopic image of the untreated hdF in DMEM with 10% FCS.