Supporting Information

for

Fabrication of carbon nanospheres by the

of polyacrylonitrile-poly(methyl pyrolysis

methacrylate) core-shell composite

nanoparticles

Dafu Wei¹, Youwei Zhang² and Jinping Fu²

Address: ¹Key Laboratory for Ultrafine Materials of Ministry of Education,

School of Materials Science and Engineering, East China University of

Science and Technology, Shanghai 200237, China, and ²State Key Laboratory

for Modification of Chemical Fibers and Polymer Materials, College of

Materials Science and Engineering, Donghua University, Shanghai 201620,

China

Email: Youwei Zhang* - zhyw@dhu.edu.cn

* Corresponding author

Additional Experimental Details

S1

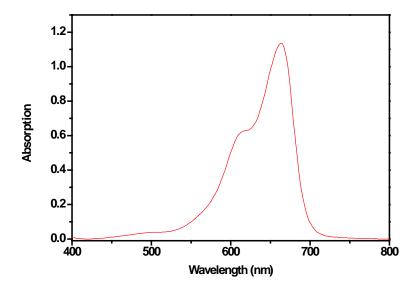


Figure S1: UV-vis spectrum of MB aqueous solution.

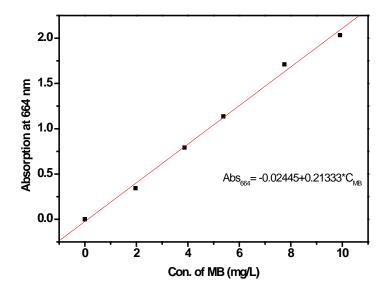


Figure S2: Calibration curve of MB aqueous solutions.

Table S1: Absorption of a series of MB aqueous solutions with known concentrations and supernatant of the MB/carbon-nanospheres/water mixture at $\lambda = 664$ nm.

Sample	C of MB (mg/L)	Absorption ^a				
MB aqueous solution	1.97	0.3425				
	3.87	0.7918				
	5.38	1.1367				
	7.75	1.7106				
	9.91	2.0327				
Supernatant obtained by centrifuging the	2.14^{b}	0.4313				
MB/carbon-nanospheres/water mixture after the	e					
adsorption experiment						

^aaverage value for three measurements; ^bcalculated according to the calibration equation displayed in Figure S2.

Table S2: Content of elements C, H and N of PAN seed nanoparticles and PAN-PMMA composite nanoparticles.

Sample	FVR	C(%)	H(%)	N(%)	WR ^a
	(MMA/AN,v/v)				
PAN latex	-	67.14	5.749	25.72	-
PAN-PMMA1	0.8	63.32	7.047	12.04	1.136
PAN-PMMA2	1.6	62.23	7.456	7.942	2.238
PAN-PMMA3	2.4	61.71	7.603	6.154	3.179

^aThe weight ratios (*WR*) of PMMA to PAN of the PAN-PMMA nanoparticles were estimated from the N content of the PAN seed nanoparticles and the PAN-PMMA nanoparticles determined by elemental analysis.

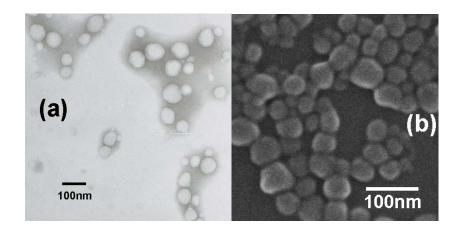


Figure S3: TEM (a) and SEM (b) micrographs of PMMA nanoparticles.

Table S3: Average particle diameters by TEM (D_{TEM}) and DLS (<D_h>) measurements of PAN seed nanoparticles and PAN-PMMA composite nanoparticles.

Sample	$D_{TEM}(nm)$	$\langle D_h \rangle (nm)^a$
PAN	90±16	97±1
PAN-PMMA1	105±20	122±3
PAN-PMMA2	146±12	154 ± 2
PAN-PMMA3	174±10	178±6
PAN-PMMA1 treated by 50%	120±13	
NaSCN aqueous solution		

^aThe average value and standard error for the z-average hydrodynamic diameters of three measurements.

Figure S4: Pre-oxidized products obtained after pre-oxidizing PAN-PMMA2 nanoparticles at 240 $^{\circ}\text{C}$ and 250 $^{\circ}\text{C}$.

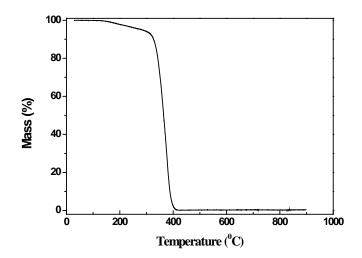


Figure S5: Thermogravimetric (TG) curve of PMMA nanoparticles at a heating rate of 10 °C/min under nitrogen protection.

Figure S6: The appearance of acetone dispersions of three carbonized products (the ultrasonication was used for dispersing various carbonized products in acetone) of PAN nanoparticles (a), PAN-PMMA1 nanoparticles (b) and PAN-PMMA2 nanoparticles (c) after overnight storage.

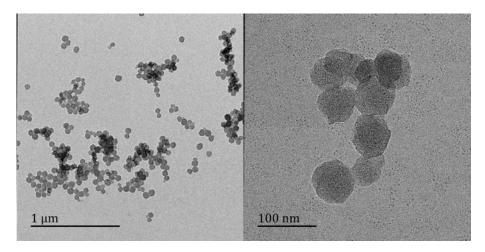


Figure S7: TEM images of carbonized products obtained after successively subjecting the PAN-cPMMA2 nanoparticles with DVB-crosslinked PMMA shell to pre-oxidization treatment at 250 $^{\circ}$ C and two carbonization treatments at 600 $^{\circ}$ C and 1000 $^{\circ}$ C.

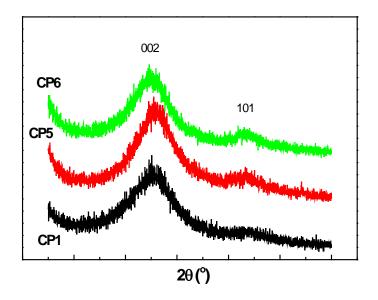


Figure S8: X-ray diffraction patterns of carbonized samples CP1, CP5 and CP6.

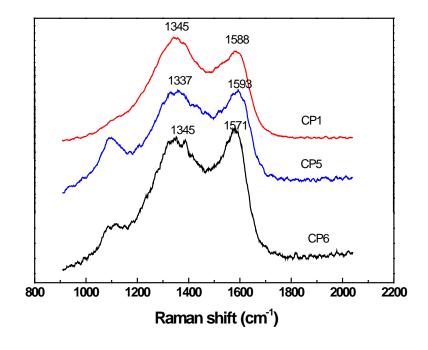


Figure S9: Raman spectra of carbonized samples CP1, CP5 and CP6.

Table S4: Raman shift, full width at half maximum and intensity of D band and G band of three carbon nanospheres obtained by Gauss fitting.

		D Band			G Band		
Sample	Raman shift	FWHM ^a	Intensity	Raman shift	FWHM ^a	Intensity	I_D/I_G
	(cm ⁻¹)	(cm ⁻¹)	(a.u.)	(cm ⁻¹⁾	(cm ⁻¹)	(a.u.)	
CP1	1352.9	290	154	1578.6	133	51.9	2.97
CP5	1367.3	274	155	1591.2	121	56.6	2.74
CP6	1362.4	272	114	1580.4	116	43.7	2.61

^aFWHM - full width at half maximum.