Supporting Information

for

Synthesis of metal-fluoride nanoparticles supported on

thermally reduced graphite oxide

Alexa Schmitz¹, Kai Schütte¹, Vesko Ilievski¹, Juri Barthel², Laura Burk³,

Rolf Mülhaupt³, Junpei Yue⁴, Bernd Smarsly⁴ and Christoph Janiak*,§,1

Address: ¹Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-

Universität Düsseldorf, 40204 Düsseldorf, Germany; ²Gemeinschaftslabor für

Elektronenmikroskopie RWTH-Aachen, Ernst Ruska-Centrum für Mikroskopie und

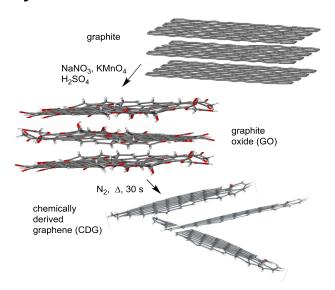
Spektroskopie mit Elektronen, D-52425 Jülich, Germany; ³Freiburg Materials

Research Center and Institute for Macromolecular Chemistry, Albert-Ludwigs-

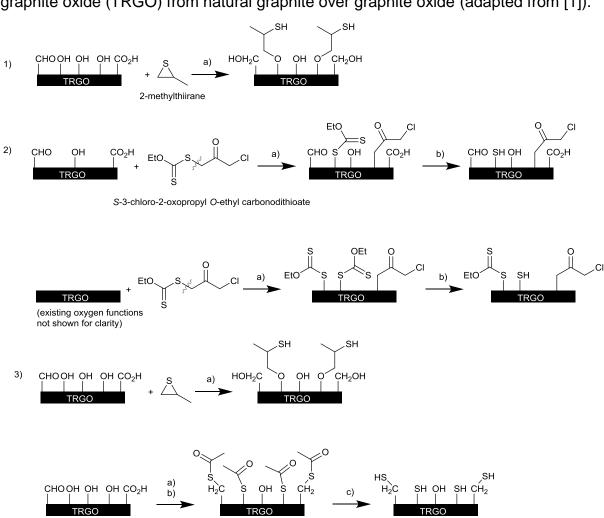
University Freiburg, 79104 Freiburg, Germany and ⁴Physikalisch-Chemisches

Institut, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany

Email: Christoph Janiak* - janiak@uni-duesseldorf.de

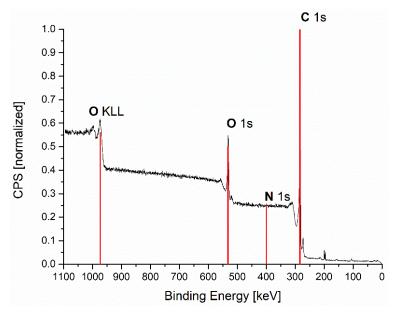

* Corresponding author

§Fax: +49-211-81-12287; Tel: +49-211-81-12286


Additional experimental data

S1

Synthesis of TRGO and TRGO-SH



Scheme S1: Synthesis of chemically derived graphene (CDG)/ thermally reduced graphite oxide (TRGO) from natural graphite over graphite oxide (adapted from [1]).

Scheme S2: Synthesis of TRGO-SH. Three different routes for the synthesis of TRGO-SH from TRGO-400 (adapted from [2]).

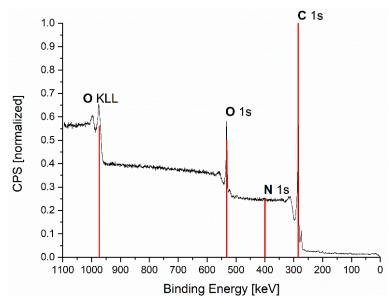
Analysis of TRGO-300, -400, -750 and -SH TRGO-300

Figure S1: Photoelectron spectrum of TRGO-300. The red bars are a guide to the eye on the binding energy axis.

Table S1: XPS quantification of TRGO-300.

name	position	area	atom %	R.S.F.
O 1s	532	111030	14	2.93
C 1s	283	223791	86	1

In the XP spectra a clear oxygen and carbon signal was seen. Quantification of oxygen against carbon showed that TRGO-300 contains 14 atom % oxygen.


Table S2: CHN analysis of TRGO-300.

Sample	C [wt %]	H [wt %]	S [wt %]
TRGO-300	79.86	0.77	0.55

The sulfur impurity is believed to be derived from graphite.

The BET surface of TRGO-300 was 430 m^2/g .

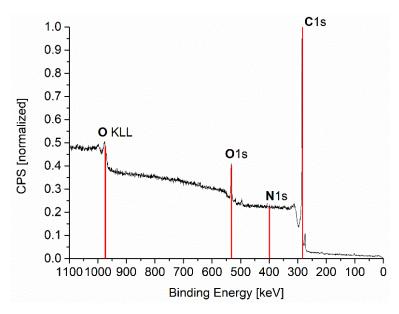
TRGO-400

Figure S2: Photoelectron spectrum of TRGO-400. The red bars are a guide to the eye on the binding energy axis.

Table S3: XPS quantification of TRGO-400.

name	position	area	atom %	R.S.F.
O 1s	533	127192	15	2.93
C 1s	284	248465	85	1
	20.	210100		·

In the XP spectra a clear oxygen and carbon signal was seen. Quantification of oxygen against carbon showed that TRGO-300 contains 15 atom % oxygen.


Table S4: CHN analysis of TRGO-400.

sample	C [wt %]	H [wt %]	S [wt %]
TRGO-400	80.93	0.8	0.73

The S impurity is believed to be derived from graphite.

The BET surface of TRGO-400 was $450 \text{ m}^2/\text{g}$.

TRGO-750

Figure S3: Photoelectron spectrum of TRGO-400. The red bars are a guide to the eye on the binding energy axis.

Table S5: XPS quantification of TRGO-750.

name	position	area	atom %	R.S.F.
O 1s	533	41954	9	2.93
C 1s	284	150049	91	1

In the XP spectra a clear oxygen and carbon signal was seen. Quantification of oxygen against carbon showed that TRGO-300 contains 9 atom % oxygen.

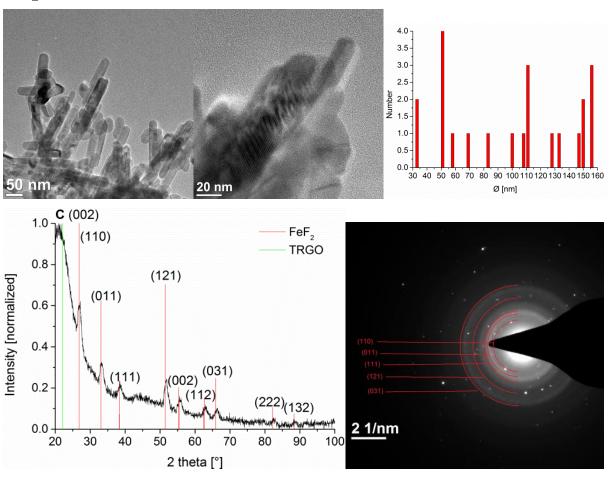
Table S6: CHN analysis of TRGO-750.

sample	C [wt %]	H [wt %]
TRGO-750	82.39	0.81

The BET surface of TRGO-750 was 520 m^2/g .

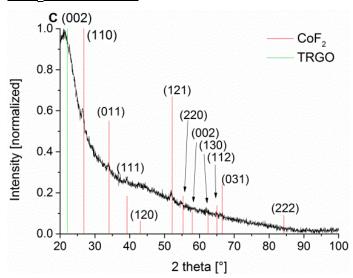
TRGO-SH

Table S7: CHN analysis of TRGO-SH.

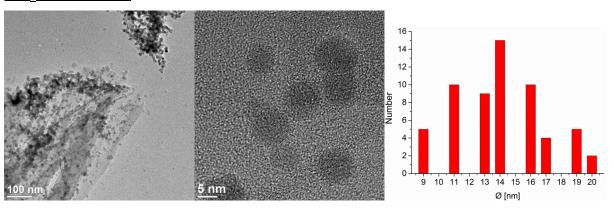

sample	C [wt %]	H [wt %]	S [wt %]
TRGO-SH	54.77	1.48	0.96

The BET surface of TRGO-SH was 189 m^2/g .

Overview of all samples


MFx@TRGO-300:

FeF₂@TRGO-300


Figure S4: TEM and size distribution (top), PXRD and SAED (bottom, FeF₂–reference reflections in red from COD 9009074) of 0.5 wt % FeF₂-NPs in [BMIm][BF₄] @TRGO-300 from Fe(AMD)₂.

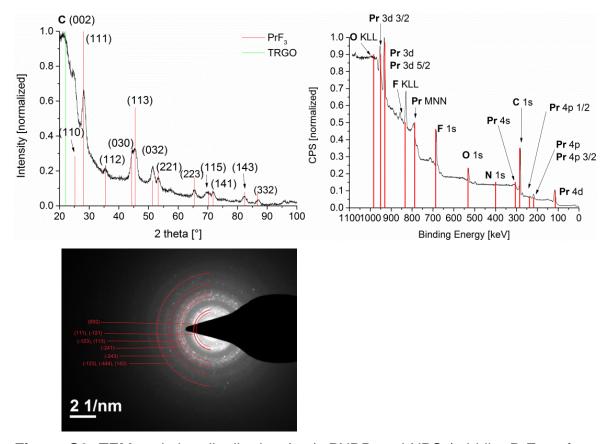
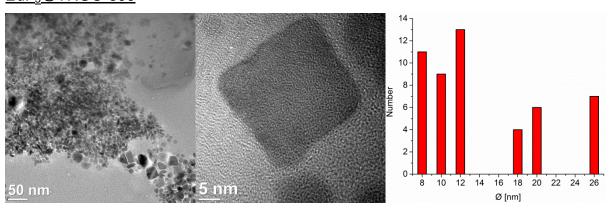

CoF₂@TRGO-300

Figure S5: PXRD (CoF_2 – reference reflections in red from COD 9009073) of 0.5 wt % CoF_2 –NPs in [BMIm][BF₄] @TRGO–300 from $Co(AMD)_2$.


PrF₃@TRGO-300

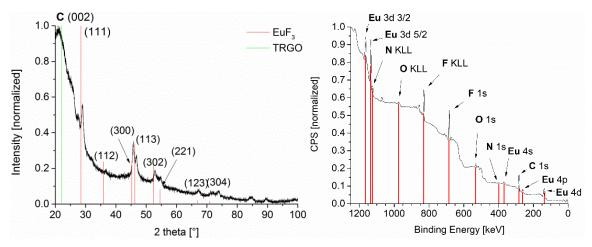


Figure S6: TEM and size distribution (top), PXRD and XPS (middle, PrF_{3} - reference reflections in red from COD 1010984) and SAED (bottom) of 0.5 wt % PrF_{3} -NPs in [BMIm][BF₄] @TRGO-300 from $Pr(AMD)_{3}$. XPS: The red bars are a guide to the eye on the binding energy axis.

EuF₃@TRGO-300

Figure S7: TEM and size distribution (top), PXRD and XPS (bottom, EuF₃- reference reflections in red from ICDD 33–0373) of 0.5 wt % EuF₃-NPs in [BMIm][BF₄] @TRGO–300 from Eu(dpm)₃. XPS: The red bars are a guide to the eye on the binding energy axis.

Table S8: d-spacing references for FeF₂ and PrF₃ from the literature compared with the measured d-spacing.

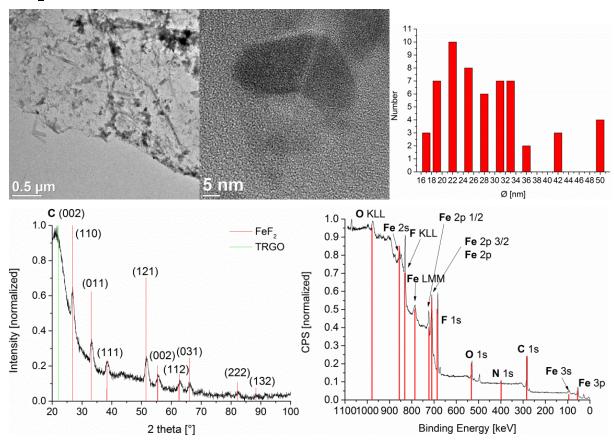
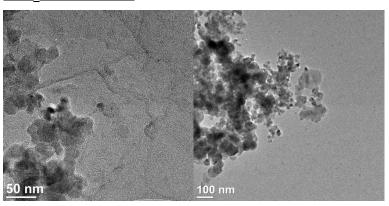

d-spacing reference (hkl) [FeF ₂ COD: 9009074]	<i>d</i> -spacing measured	d-spacing reference (hkl) [PrF ₃ COD: 1010984]	<i>d</i> -spacing measured
3.32 (110)	3.30	3.61 (002)	3.63
2.70 (011)	2.71	3.17 (111/–121)	3.14
2.34 (111)	2.38	1.99 (–123/113)	1.99
1.77 (121)	1.78	1.71 (–241)	1.70
1.41 (031)	1.42	1.42 (–243)	1.44
		1.16 (–153/ –444/	1.14
		143)	

 Table S9: Comparison of XPS binding energies.

MF _x @TRGO-300 binding energies [keV]					
	metal signals				
element	measured	M(0) metal	M(3+) oxidation state [3,4]		
Pr 3d 5/2	934.6	932	933–933.5		
Eu 3d 5/2	1135.8	1126	3: 1135		
	F 1s signal				
	measured	metal fluorides	organic fluorides [3,4]		
F (in PrF ₃)	686	684–685.5	688–689		
F (in EuF ₃)	684.8				


TRGO-400:

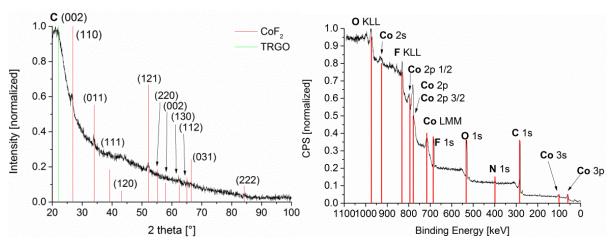
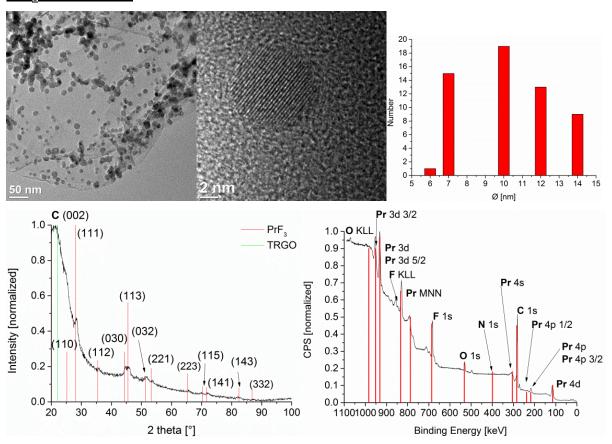
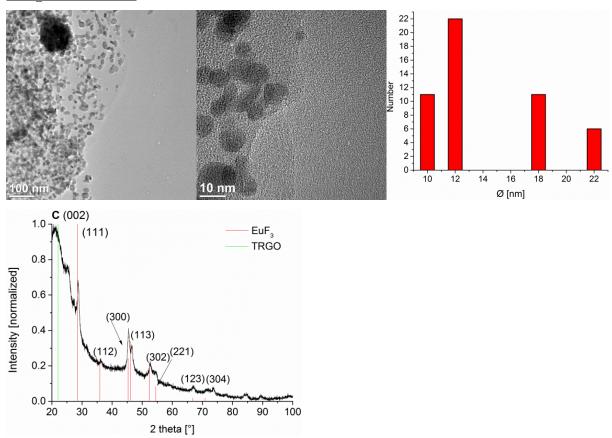

FeF₂@TRGO-400

Figure S8: TEM and size distribution (top), PXRD and XPS (bottom, FeF₂-reference reflections in red from COD 9009074) of 0.5 wt % FeF₂-NPs in [BMIm][BF₄] @TRGO-400 from Fe(AMD)₂. XPS: The red bars are a guide to the eye on the binding energy axis.


CoF₂@TRGO-400


Figure S9: TEM and PXRD (top) CoF_2 — reference reflections in red from COD 9009073), XPS (bottom) of 0.5 wt % CoF_2 —NPs in [BMIm][BF₄] @TRGO–400 from $Co(AMD)_2$. XPS: The red bars are a guide to the eye on the binding energy axis.

PrF₃@TRGO-400

Figure S10: TEM and size distribution (top), PXRD and XPS (bottom, PrF₃-reference reflections in red from COD 1010984) of 0.5 wt % PrF₃-NPs in [BMIm][BF₄] @TRGO–400 from Pr(AMD)₃. XPS: The red bars are a guide to the eye on the binding energy axis.

EuF₃@TRGO-400

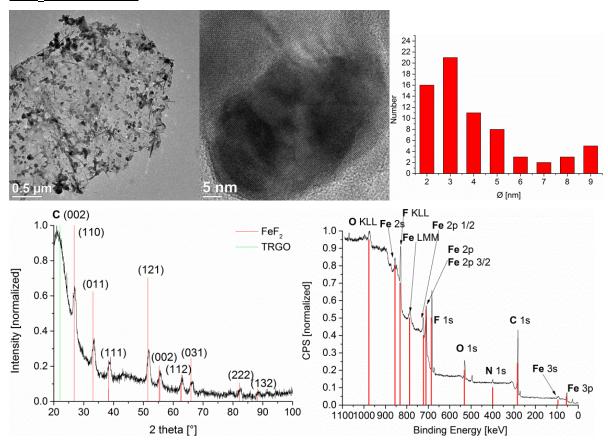
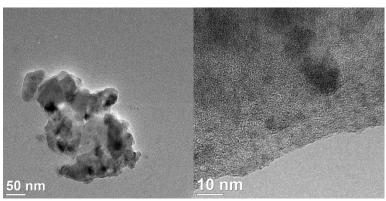

Figure S11: TEM and size distribution (top), PXRD (bottom, EuF_3 -reference reflections in red from ICDD 33–0373), of 0.5 wt % EuF_3 -NPs in [BMIm][BF₄] @TRGO-400 from $Eu(dpm)_3$.

 Table S10: Comparison of the XPS binding energies.

MF _x @TRGO-400 binding energies [keV]				
metal signals				
element	measured	M(0) metal	M(+2/+3) oxidation state [3,4]	
Fe 2p 3/2	712.5	706.7	+2: 710.4	
Co 2p 3/2	783	778.2	+2: 779.7	
Pr 3d 5/2	934.3	932	+3: 933–933.5	
	,	F 1s signal		
	measured	metal fluorides	organic fluoride [3,4]	
F (in FeF ₂)	685.6			
F (in CoF ₂)	685.9	684–685.5	688–689	
F (in PrF ₃)	686.3			


TRGO-750:

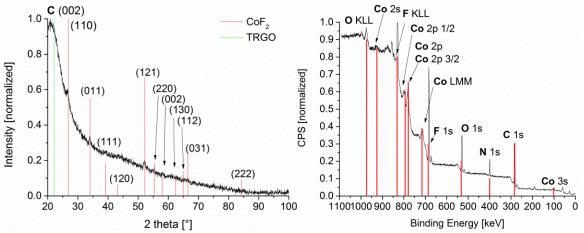
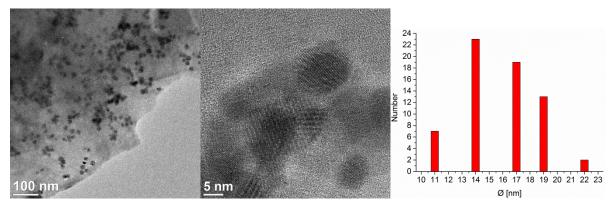

FeF₂@TRGO-750

Figure S12: TEM and size distribution (top), PXRD and XPS (bottom, FeF $_2$ -reference reflections in red from COD 9009074) of 0.5 wt % FeF $_2$ -NPs in [BMIm][BF $_4$] @TRGO-750 from Fe(AMD) $_2$. XPS: The red bars are a guide to the eye on the binding energy axis.


CoF₂@TRGO-750

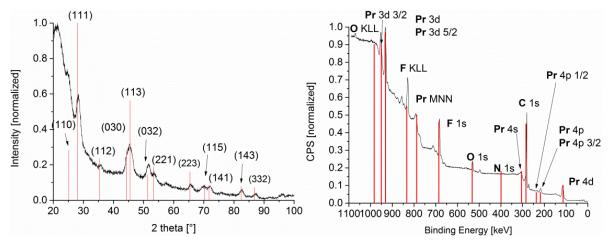
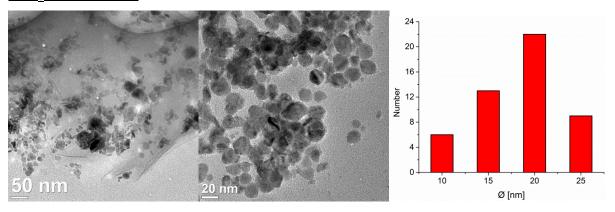


Figure S13: TEM and PXRD (top) CoF₂—reference reflections in red from COD 9009073), XPS (bottom) of 0.5 wt % CoF₂—NPs in [BMIm][BF₄] @TRGO–750 from Co(AMD)₂. XPS: The red bars are a guide to the eye on the binding energy axis.


PrF₃@TRGO-750

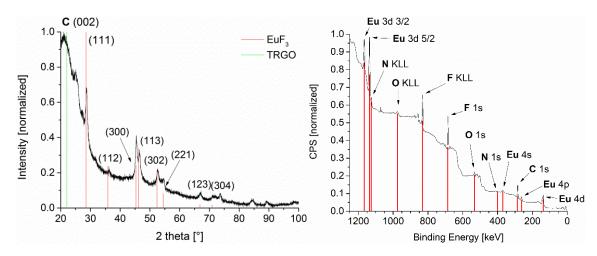


Figure S14: TEM and size distribution (top), PXRD and EDX (middle, PrF₃-reference reflections in red from COD 1010984), XPS (bottom) of 0.5 wt % PrF₃-NPs in [BMIm][BF₄] @TRGO–750 from Pr(AMD)₃. XPS: The red bars are a guide to the eye on the binding energy axis.

EuF₃@TRGO-750

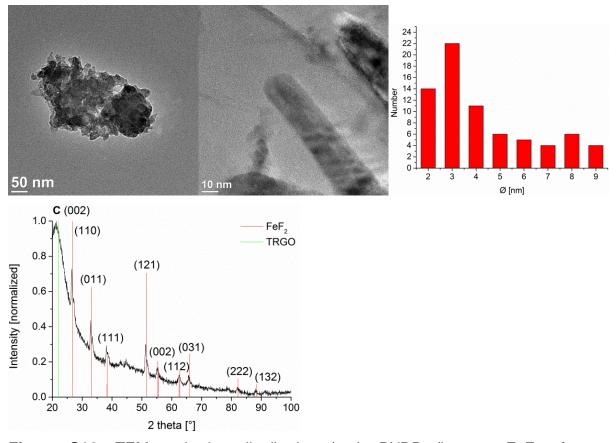
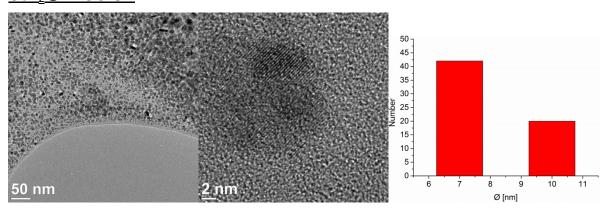

Figure S15: TEM and size distribution (top), PXRD and XPS (bottom, EuF $_3$ -reference reflections in red from ICDD 33–0373) of 0.5 wt % EuF $_3$ -NPs in [BMIm][BF $_4$] @TRGO–750 from Eu(dpm) $_3$. XPS: The red bars are a guide to the eye on the binding energy axis.

Table S11: Comparison of the XPS binding energies.

MF _x @TRGO-750 binding energies [keV]					
	metal signals				
element	measured	M(0) metal	M(+2/+3) oxidation state [3,4]		
Fe 2p 3/2	712.6	706.7	+2: 710.4		
Co 2p 3/2	781.7	778.2	+2: 779.7		
Pr 3d 5/2	935.5	932	+3: 933–933.5		
Eu 3d 5/2	1136.2	1126	+3: 1135		
	F 1s signal				
	measured	metal fluorides	organic fluorides [3,4]		
F (in FeF ₂)	685.5				
F (in CoF ₂)	685.2	684–685.5	688–689		
F (in PrF ₃)	686				
F (in EuF ₃)	685.5				


TRGO-SH:

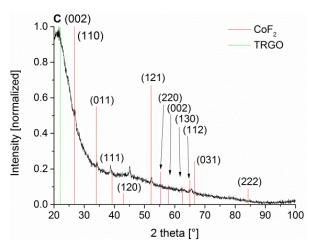
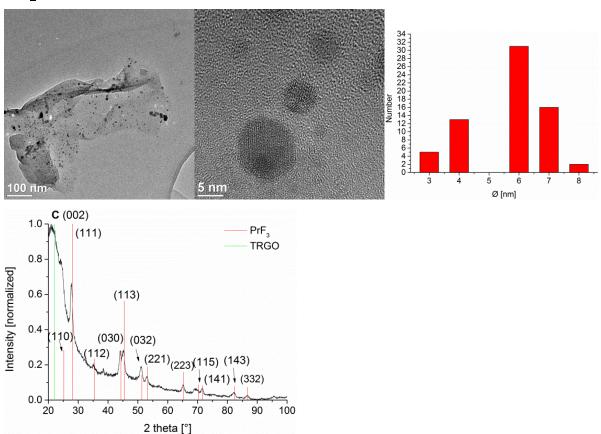
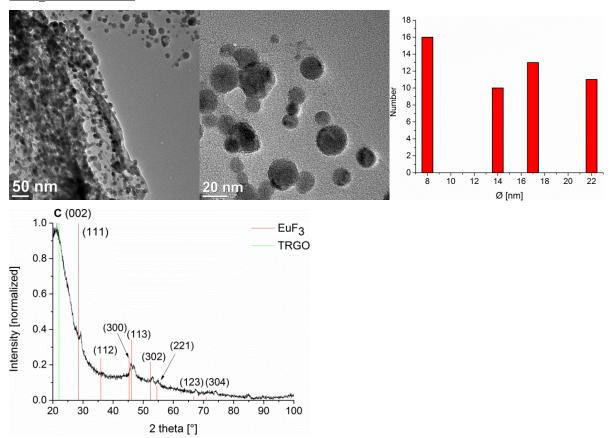

FeF₂@TRGO-SH

Figure S16: TEM and size distribution (top), PXRD (bottom, FeF₂-reference reflections in red from COD 9009074) of 0.5 wt % FeF₂-NPs in [BMIm][BF₄] @TRGO–SH from Fe(AMD)₂.


CoF₂@TRGO-SH


Figure S17: TEM and size distribution (top) PXRD (bottom. CoF_2 -reference reflections in red from COD 9009073), of 0.5 wt % CoF_2 -NPs in [BMIm][BF₄] @TRGO-SH from $Co(AMD)_2$.

PrF₃@TRGO-SH

Figure S18: TEM and size distribution (top), PXRD and EDX (bottom, PrF₃-reference reflections in red from COD 1010984), of 0.5 wt % PrF₃-NPs in [BMIm][BF₄] @TRGO–SH from Pr(AMD)₃.

EuF₃@TRGO-SH

Figure S19: TEM and size distribution (top), PXRD and EDX (bottom, EuF₃-reference reflections in red from ICDD 33–0373), of 0.5 wt % EuF₃-NPs in $[BMIm][BF_4]$ @TRGO-SH from Eu(dpm)₃.

References

- 1. Marquardt D.; Vollmer C.; Thomann R.; Steurer P.; Mülhaupt R.; Redel E.; Janiak C. *Carbon*, **2011**, 49, *1326-1332*.
- 2. Marquardt D.; Beckert F.; Pennetreau F.; Tölle F.; Mülhaupt R.; Riant O.; Hermans S.; Barthel J.; Janiak C. *Carbon*, **2014**, 66, 285-294.
- 3. Thermo Scientific XPS, http://xpssimplified.com/periodictable.php, (accessed December 2016).
- 4. Moulder J. F.; Stickle W. F.; Sobol P. E.; Bomben K. D. *Handbook of X-ray Photoelectron Spectroscopy*, Chastain J.; Perkin–Elmer Corporation, Minnesota, 1992.