Supporting Information for

Sheet-on-belt branched TiO₂(B)/rGO powders with enhanced photocatalytic activity

Huan Xing¹, Wei Wen^{1,2} and Jin-Ming Wu^{*1}

Address: ¹State Key Laboratory of Silicon Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China and ²College of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, P. R. China

Email: Jin-Ming Wu - msewjm@zju.edu.cn

* Corresponding author

Additional FESEM images, low-temperature N_2 adsorption isotherms and photodegradation results to support the discussion

Figure S1: FESEM images of TGN-branches achieved by immersing in the precursor solution for (a) 0 h, (b) 2 h, (c) 4 h, (d) 6 h and (e) 8 h.

Figure S2: The low-temperature N_2 adsorption isotherms of the pristine TiO_2 nanobelt (TiO_2 NB), TGN and TGN-branch 4 h.

Figure S3: Photodegradations of phenol in the presence of TGN and TGN-branches achieved by immersing in the precursor solution for various durations, under UV light illumination: (a) the degradation curves; (b) the fitting results assuming a pseudo-first order reaction.