

Supporting Information

for

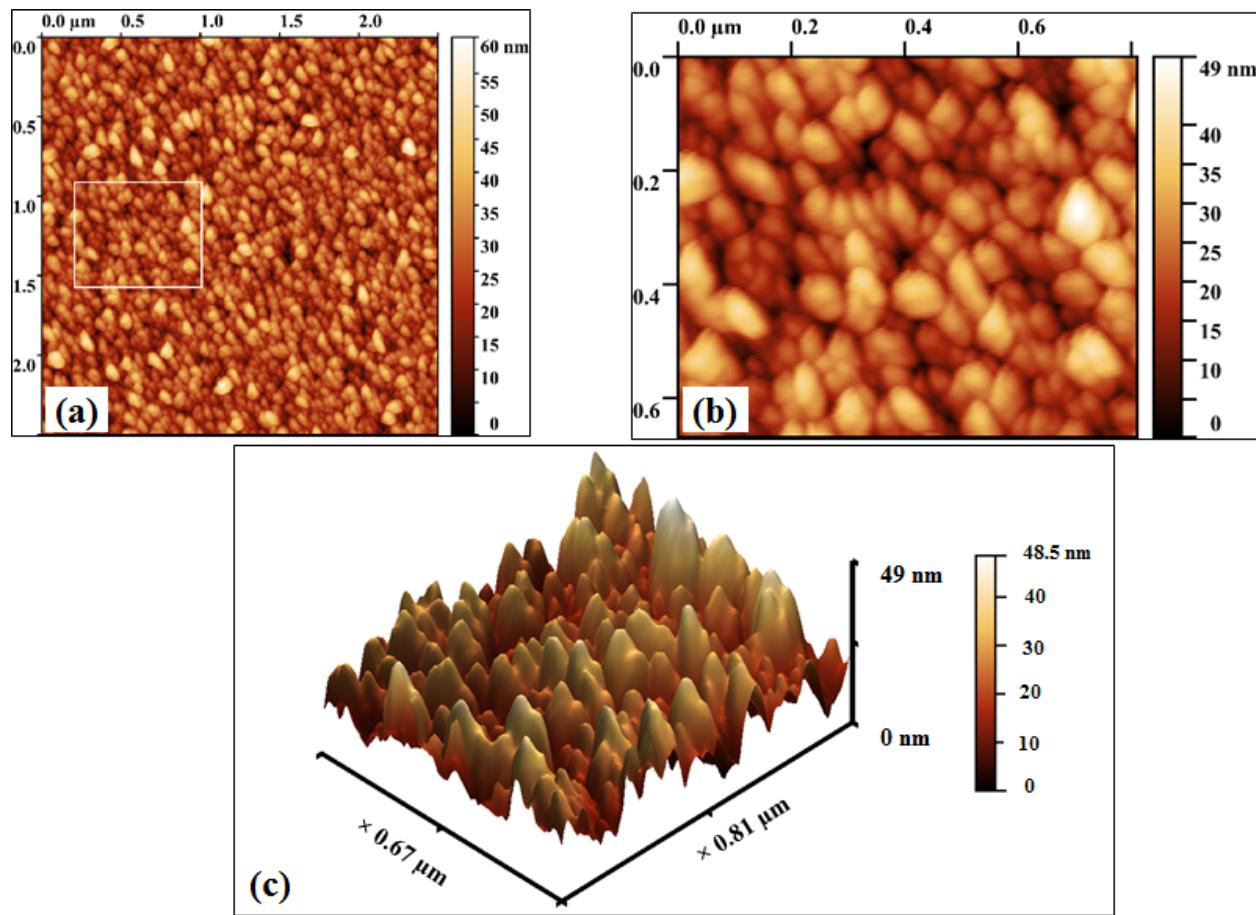
Toward the use of CVD-grown MoS₂ nanosheets as field-emission source

Geetanjali Deokar*^{1,4}, Nitul S. Rajput¹, Junjie Li², Francis Leonard Deepak², Wei Ou-Yang*³, Nicolas Reckinger⁴, Carla Bittencourt⁵, Jean-Francois Colomer⁴ and Mustapha Jouiad*¹

Address: ¹Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, A part of Khalifa University of Science and Technology, 54224, Abu Dhabi, United Arab Emirates; ²Department of Advanced Electron Microscopy, Imaging and Spectroscopy, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga 4715-330, Portugal; ³Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China; ⁴Research Group on Carbon Nanostructures (CARBONNAGE), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium and ⁵Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, Research Institute for Materials Science and Engineering, University of Mons, Mons, Belgium

Email: Geetanjali Deokar* - gdeokar@masdar.ac.ae;

Wei Ou-Yang* - ouyangwei@phy.ecnu.edu.cn;


Mustapha Jouiad* - mjouiad@masdar.ac.ae

*Corresponding author

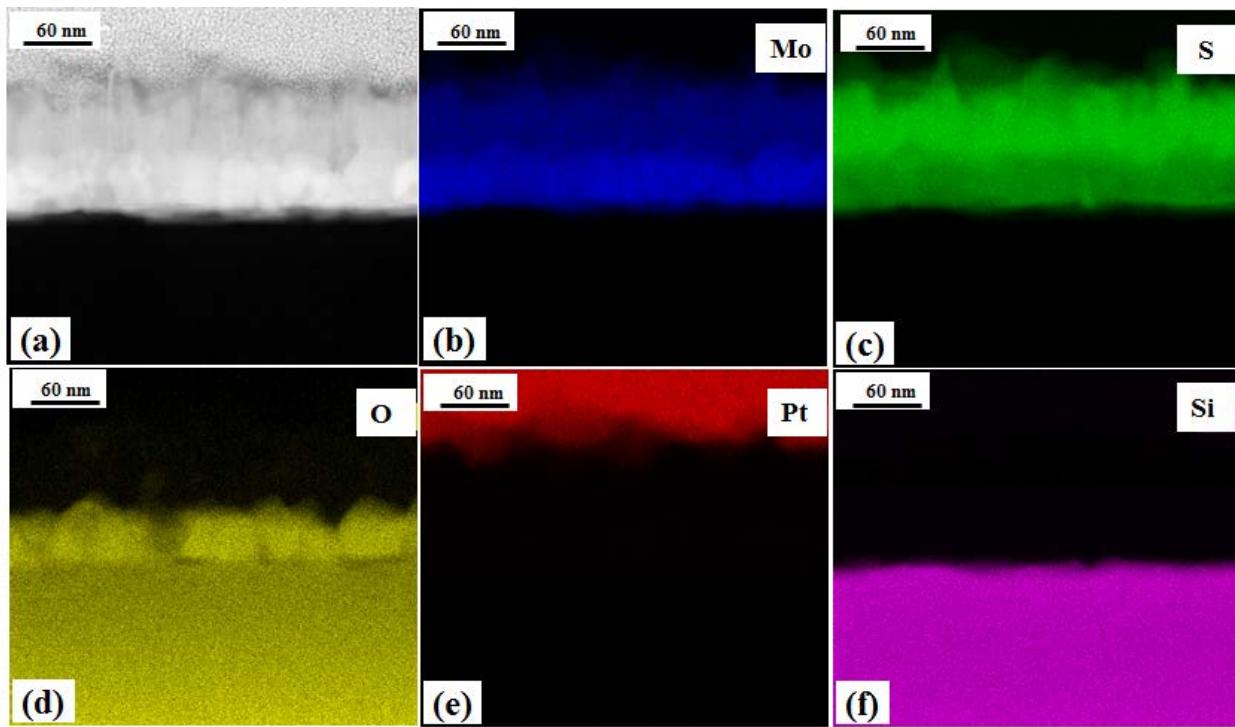

Additional experimental data

Table S1: Peak fitting analysis results of the Mo 3d, S 3p, and O 1s core-level high-resolution XPS spectra from Figure 2b,c (BE = binding energy and FWHM = full width at half maximum).

Phase	Core level Mo3d / S1s	Peak BE	FWHM	Core level S2p/O1s	Peak BE	FWHM
MoS₂	Mo3d_{5/2}	228.9	0.81	S2p _{3/2}	161.8	0.73
	Mo3d_{3/2}	232	0.91	S2p _{1/2}	163	0.73
MoS₂	S2s	226.2	2.02			
MoO₂	Mo3d_{5/2}	232.7	0.68	O1s	530.3	1.36
	Mo3d_{3/2}	235.6	1.67			
-C-O				O1s	532.0	2.54

Figure S1: AFM resonant-mode mapping for MoS₂ sample grown by double sulfurization of a 50 nm Mo film at 850 °C on SiO₂/Si substrates: (a) Topographic view of a $2.5 \times 2.5 \mu\text{m}^2$ area and (b) zoom-in over the white square in panel (a); (c) 3D image of panel (b).

Figure S2: MoS₂ sample grown by double sulfurization of a 50 nm Mo film at 850 °C on SiO₂/Si substrates: (a) HAADF-STEM image, (b–f) EDS mapping results for various elements, over the area in panel (a).