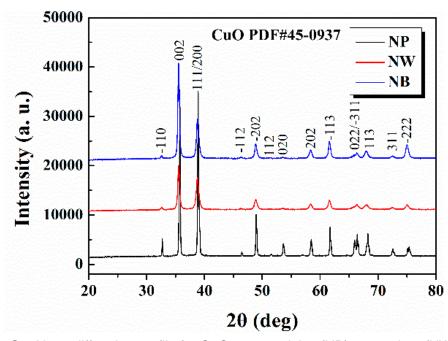
Supporting Information

for

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

Qingquan Kong¹, Yichun Yin², Bing Xue^{3,4}, Yonggang Jin^{*5}, Wei Feng¹,

Zhi-Gang Chen⁶, Shi Su⁵ and Chenghua Sun*⁷


Address: ¹School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China, ²School of Chemistry, Faculty of Science, Monash University, VIC 3800 Australia, ³CSIRO Energy, PO Box 883, Kenmore, QLD 4069 Australia, ⁴School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621000, PR China, ⁵CSIRO Energy, 1 Technology Court, Pullenvale QLD 4069, Australia, ⁶Centre for Future Materials, University of Southern Queensland, Springfield QLD 4300, Australia and ⁷Department of Chemistry and Biotechnology, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

Email: Yonggang Jin - yonggang.jin@csiro.au; Chenghua Sun -

chenghuasun@swin.edu.au

*Corresponding author

X-ray diffraction profile

Figure S1: X-ray diffraction profile for CuO nanoparticles (NP), nanowires (NW) and nanobelts (NB).