Supporting Information

for

Effective sensor properties and sensitivity considerations of a
dynamic co-resonantly coupled cantilever sensor

Julia Körner

Address: University of Utah, 50 S. Central Campus Dr #2110, Salt Lake City, UT-84112, USA

Email: Julia Körner - julia.koerner2k@gmail.com

Details on mathematical derivations
Derivation of frequency shift for dynamic-mode cantilever sensors

The frequency shift \(\Delta \omega \) for a dynamic-mode cantilever sensor is generally given as:

\[
\Delta \omega = \sqrt{\frac{k + \Delta k}{m_{\text{eff}} + \Delta m}} - \sqrt{\frac{k}{m_{\text{eff}}}},
\]

where \(k \) and \(m_{\text{eff}} \) are the cantilever’s spring constant and effective mass, respectively and \(\Delta k \) and \(\Delta m \) denote small changes due to external interactions (force gradient or mass addition).

For negligible mass change, i.e. \(\Delta m = 0 \), the frequency shift in dependence of a force gradient \(\Delta k \) can be derived by applying the approximation \([1]\):

\[
\sqrt{1 + \epsilon} \approx \frac{\epsilon}{2} + 1, \quad \epsilon \ll 1
\]

for small \(\Delta k \) to the first term in equation (S.1). This results in:

\[
\Delta \omega = \sqrt{\frac{k (1 + \frac{\Delta k}{k})}{m_{\text{eff}}}} - \sqrt{\frac{k}{m_{\text{eff}}}}
\]

(S.3)

\[
\Delta \omega = \sqrt{\frac{k}{m_{\text{eff}}} \cdot \sqrt{1 + \frac{\Delta k}{k}} - \sqrt{\frac{k}{m_{\text{eff}}}}}
\]

(S.4)

\[
\Delta \omega \approx \sqrt{\frac{k}{m_{\text{eff}}} \cdot \left(\frac{\Delta k}{2k} + 1 \right) - \sqrt{\frac{k}{m_{\text{eff}}}}}
\]

(S.5)

\[
\Delta \omega \approx \sqrt{\frac{k}{m_{\text{eff}}} \cdot \frac{\Delta k}{2k} + \frac{k}{m_{\text{eff}}} - \sqrt{\frac{k}{m_{\text{eff}}}}}
\]

(S.6)

\[
\Delta \omega \approx \omega_0 \cdot \frac{\Delta k}{2k}
\]

(S.7)

For negligible \(\Delta k \), a similar expression can be found for the frequency shift in dependence on the mass change \(\Delta m \). In this case a Taylor series expansion is employed under the assumption that \(\Delta m \) is small, i.e. at the point \(\Delta m = 0 \). To do so, equation (S.1) is rewritten:

\[
\Delta \omega (\Delta m, 0) = \sqrt{k \cdot (m_{\text{eff}} + \Delta m)^{-1/2}} - \sqrt{\frac{k}{m_{\text{eff}}}}.
\]

(S.8)

It is sufficient to consider only the first two terms (stationary and first derivative) of the expansion:
\[\Delta \omega (\Delta m, 0) \approx \Delta \omega (0) + \frac{\partial \Delta \omega (0)}{\partial \Delta m} \cdot (\Delta m - 0) \quad (S.9) \]
\[\Delta \omega (\Delta m, 0) \approx 0 - \frac{1}{2} \sqrt{k (m_{eff})^{-3/2}} \cdot \Delta m \quad (S.10) \]
\[\Delta \omega (\Delta m, 0) \approx -\frac{\Delta m}{2 m_{eff}} \cdot \sqrt{\frac{k}{m_{eff}}} \quad (S.11) \]
\[\Delta \omega (\Delta m, 0) \approx -\Delta m \cdot \omega_0 \quad (S.12) \]

Effective properties of the coupled system in dependence on eigenfrequency deviation

Resonance frequencies

The resonance frequencies of the coupled system can be expressed as a function of the eigenfrequency deviation \(\Delta \omega_{eigen} = (\omega_2 - \omega_1)/\omega_1 \):

\[\omega_{a,b}^2 = \omega_1^2 \cdot \left[\frac{1}{2} \left(K_{12} + K_{23} \cdot \Omega^2 \right) \mp \sqrt{\frac{1}{4} \left(K_{12} - K_{23} \cdot \Omega^2 \right)^2 + \frac{k_2}{k_1} \Omega^2} \right] \quad , \quad (S.13) \]

with

\[\Omega = 1 + \Delta \omega_{eigen} \quad . \quad (S.14) \]

In that case, the eigenfrequency of the bigger oscillator (1) is assumed to be fixed and only that of the nanocantilever is varied. Please note that this is just a different form of equation (11) from the main text.

Effective spring constants

Based on equation (S.13) and equations (15) and (16) from the main paper, the effective spring constants can also be expressed in dependence on the eigenfrequency deviation, leading to:

\[k_{a,b}^{eff} = k_3 \frac{2}{3} \sqrt{\frac{1}{2} \left(K_{12} + \Omega^2 \right) \mp \sqrt{\frac{1}{4} \left(K_{12} - \Omega^2 \right)^2 + \frac{k_2}{k_1} \Omega^2}} \quad , \quad (S.15) \]

with

\[A = \sqrt{\frac{1}{2} \left(K_{12} + K_{23} \cdot \Omega^2 \right) \mp \sqrt{\frac{1}{4} \left(K_{12} - K_{23} \cdot \Omega^2 \right)^2 + \frac{k_2}{k_1} \Omega^2}} - \sqrt{\frac{1}{2} \left(K_{12} + \Omega^2 \right) \mp \sqrt{\frac{1}{4} \left(K_{12} - \Omega^2 \right)^2 + \frac{k_2}{k_1} \Omega^2}} \quad . \quad (S.16) \]
References