Search results

Search for "Au@TiO2" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • a KCl-saturated Ag/AgCl rod are used as the working, counter, and reference electrodes, respectively. Using this approach, Au/TiO2 nanocomposites formed on Pt substrates yielded a SERS enhancement factor of 1.8 × 108 for R6G molecules [34]. Chang et al. [35] fabricated different Ag nanostructures on
PDF
Album
Full Research Paper
Published 16 Oct 2020

Fabrication of Ag-modified hollow titania spheres via controlled silver diffusion in Ag–TiO2 core–shell nanostructures

  • Bartosz Bartosewicz,
  • Malwina Liszewska,
  • Bogusław Budner,
  • Marta Michalska-Domańska,
  • Krzysztof Kopczyński and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2020, 11, 141–146, doi:10.3762/bjnano.11.12

Graphical Abstract
  • template was used in the fabrication of rattle-type HSs of Au@TiO2 using multistep template deposition and a surface-protected etching method [13], of TiO2 HSs of mixed anatase/rutile composition loaded with noble metal NPs (Au, Pt, Pd) [14], and of N-doped Ag/TiO2 HSs [15]. A hard-templating method with a
  • gradual diminishment of the silver core (DP50 = 113 nm) and the formation of much smaller Ag particles (diameter below 10 nm) on the titania shell surface are observed. The metal diffusion into the titania shell has not been observed in the case of Au@TiO2 CSNs fabricated using the same method as Ag@TiO2
PDF
Album
Supp Info
Letter
Published 10 Jan 2020

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • ), Ag(I) and Ag(II)), as shown in Figure 3. All modified titania samples were coloured due to LSPR of NMNPs. Gold-modified samples were violet (light violet for larger titania and gold NPs (Au/TiO2(ST41), Au/TiO2(FP6)) and dark violet for smaller particle sizes (Au/TiO2(TIO12), Au/TiO2(ST01)), and
  • done. At the moment, it is clear that the activity of bare titania in the dark and under vis irradiation is negligible compared to the high activity of the silver-modified samples. For comparison, a gold-modified sample (Au/TiO2(TIO12)) was also tested, and the obtained data are shown in Supporting
  • that silver and gold ions are not releases from modified titania to the medium. All paper discs impregnated with silver-modified titania (Ag/TiO2(ST41) and Ag/TiO2(ST01)) and gold-modified titania (Au/TiO2(ST41) and Au/TiO2(ST01)) were avoided by all tested mould fungi under vis irradiation. This
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels

  • Stefanie Krüger,
  • Michael Schwarze,
  • Otto Baumann,
  • Christina Günter,
  • Michael Bruns,
  • Christian Kübel,
  • Dorothée Vinga Szabó,
  • Rafael Meinusch,
  • Verónica de Zea Bermudez and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2018, 9, 187–204, doi:10.3762/bjnano.9.21

Graphical Abstract
  • particle size and preparation procedure on the photocatalytic activity of Au/TiO2 catalysts. Lower Au loadings of 0.25% Au on P25 TiO2 produced more efficient water splitting catalysts than materials with Au loadings of 1.5% or 2.2%. Moreover, the authors showed that 532 nm laser light is more efficient
  • an aqueous HAuCl4 solution (10, 5, or 2.5 mg in 50 mL of water) overnight. No additional reducing agent was added to this reaction mixture. After 2 days the surface color changed from yellow to purple, indicating the deposition of AuNPs on the surface. The as-prepared Au/TiO2/silk hybrid material was
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2018

Evaluating the toxicity of TiO2-based nanoparticles to Chinese hamster ovary cells and Escherichia coli: a complementary experimental and computational approach

  • Alicja Mikolajczyk,
  • Natalia Sizochenko,
  • Ewa Mulkiewicz,
  • Anna Malankowska,
  • Michal Nischk,
  • Przemyslaw Jurczak,
  • Seishiro Hirano,
  • Grzegorz Nowaczyk,
  • Adriana Zaleska-Medynska,
  • Jerzy Leszczynski,
  • Agnieszka Gajewicz and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 2171–2180, doi:10.3762/bjnano.8.216

Graphical Abstract
  • ranging from 118.39 ± 2.19 to 275.63 ± 3.13 µg/mL are presented in Figure 2. The cytotoxic effect of monometallic Au-TiO2, Pd-TiO2 and bimetallic Au/Pd-TiO2 was stronger than one that was observed for pure TiO2 (Figure 2). Overall, the experimental results showed that TiO2-based nanoparticles exhibit low
  • main physicochemical parameters that may govern toxic effects of the TiO2-based mono- and bimetallic nanoparticles to mammalian Chinese hamster ovary (CHO-K1) cells and to bacteria E. coli. The findings from this research study have clearly demonstrated that the cytotoxic effect of monometallic Au-TiO2
PDF
Album
Full Research Paper
Published 17 Oct 2017

Synthesis and characterization of noble metal–titania core–shell nanostructures with tunable shell thickness

  • Bartosz Bartosewicz,
  • Marta Michalska-Domańska,
  • Malwina Liszewska,
  • Dariusz Zasada and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2017, 8, 2083–2093, doi:10.3762/bjnano.8.208

Graphical Abstract
  • formation is desired. A sol–gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM
  • ). Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS) technique. The optical properties of the synthesized structures were characterized using UV–vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40–70 nm and 90 nm, for the Ag
  • characterization of metal–metal oxide core–shell nanostructures. Keywords: Ag@TiO2; Au@TiO2; core–shell nanostructures; titania coating; titanium dioxide; tunable resistive pulse sensing; Introduction In recent years, core–shell nanostructures (CSNs) have become one of the most widely studied hybrid structures
PDF
Album
Supp Info
Full Research Paper
Published 05 Oct 2017

Growth and morphological analysis of segmented AuAg alloy nanowires created by pulsed electrodeposition in ion-track etched membranes

  • Ina Schubert,
  • Loic Burr,
  • Christina Trautmann and
  • Maria Eugenia Toimil-Molares

Beilstein J. Nanotechnol. 2015, 6, 1272–1280, doi:10.3762/bjnano.6.131

Graphical Abstract
  • growth of many different segmented structures combining polymers, semiconductors, and metals, such as AuTiO2 [11], Au–polypyrrole [22], Cu–Se [23], and Au–Co [24]. While segmented nanowires can be grown by sequential exchange of the electrolyte [8][25][26], it is also possible to use a single
PDF
Album
Supp Info
Full Research Paper
Published 08 Jun 2015

Palladium nanoparticles anchored to anatase TiO2 for enhanced surface plasmon resonance-stimulated, visible-light-driven photocatalytic activity

  • Kah Hon Leong,
  • Hong Ye Chu,
  • Shaliza Ibrahim and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2015, 6, 428–437, doi:10.3762/bjnano.6.43

Graphical Abstract
  • the electron and hole recombination rates drastically [5][10][11]. Ingram et al. have shown that the use of noble metals to synthesize Au/TiO2 and Ag/TiO2 NPs for water splitting increased absorption of visible light by a factor of 10 as compare to N-TiO2 [25]. Jiang et al. successfully fabricated one
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2015

Inorganic Janus particles for biomedical applications

  • Isabel Schick,
  • Steffen Lorenz,
  • Dominik Gehrig,
  • Stefan Tenzer,
  • Wiebke Storck,
  • Karl Fischer,
  • Dennis Strand,
  • Frédéric Laquai and
  • Wolfgang Tremel

Beilstein J. Nanotechnol. 2014, 5, 2346–2362, doi:10.3762/bjnano.5.244

Graphical Abstract
  • nanoparticles is shifted to more negative potentials, thus, enabling the engineering of the Fermi level of photocatalysts dependent on the size of the conjugated metal domain [49]. Recently, Au@TiO2 Janus particles were proven useful for visible-light hydrogen generation due to the strong coupling of plasmons
  • to the optical transitions in amorphous TiO2 leading to enhanced optical absorption and, thus, generation of electron–hole pairs for photocatalysis (Figure 6a,b) [50]. Furthermore, plasmonic dye-sensitized solar cells based on Au@TiO2 nanostructures show remarkably enhanced power conversion
  • d) embedding of the final hybrid particle at the interface in a PS-PMMA blend. Reprinted with permission from [34]. Copyright 2013 Elsevier. a) Proposed photocatalytic process for efficient hydrogen generation using the Janus Au@TiO2 nanostructures, based on excitation of the LSPR under visible
PDF
Album
Review
Published 05 Dec 2014

Microstructural and plasmonic modifications in Ag–TiO2 and Au–TiO2 nanocomposites through ion beam irradiation

  • Venkata Sai Kiran Chakravadhanula,
  • Yogendra Kumar Mishra,
  • Venkata Girish Kotnur,
  • Devesh Kumar Avasthi,
  • Thomas Strunskus,
  • Vladimir Zaporotchenko,
  • Dietmar Fink,
  • Lorenz Kienle and
  • Franz Faupel

Beilstein J. Nanotechnol. 2014, 5, 1419–1431, doi:10.3762/bjnano.5.154

Graphical Abstract
  • swift heavy ions. AuTiO2 and Ag–TiO2 nanocomposite thin films with varying metal volume fractions were deposited by co-sputtering and were subsequently irradiated by 100 MeV Ag8+ ions at various ion fluences. The morphology of these nanocomposite thin films before and after ion beam irradiation has
  • been investigated in detail by transmission electron microscopy studies, which showed interesting changes in the titania matrix. Additionally, interesting modifications in the plasmonic absorption behavior for both AuTiO2 and Ag–TiO2 nanocomposites were observed, which have been discussed in terms of
  • nanocomposites at different ion beam fluences has been studied and discussed here. Results and Discussion The microstructural morphologies of AuTiO2 nanocomposites with metal volume filling fractions (MVF) from 7 to 50% were investigated by transmission electron microscopy (TEM) studies and are shown in Figure
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • complete within 50 fs and the electron injection yield reached 20–50% under 550 nm excitation [77][78]. Brückner et al. were first to use in situ EPR spectroscopy for monitoring water reduction over AuTiO2 photocatalysts. They observed a visible-light driven electron transfer from the Au nanoparticles to
  • example, Zhang and co-workers have investigated the influence of different sizes of gold nanoparticles on the performance of the composite Au/TiO2 nanotube photonic crystal (NTPC) photocatalysts [72]. As described in Figure 6, a variable photocurrent density can be obtained if the TiO2 NTPC is modified
  • nanoparticles and the photonic bandgap of photonic crystal as the main reason for Au (556)/TiO2 NTPC to display the best photoelectrochemical performance among three different sizes of Au/TiO2 NTPC photocatalysts. There are also other groups of nanoarchitectures such as silver nanoparticle–WO3 [81], gold
PDF
Album
Review
Published 23 May 2014

Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au

  • Lu-Cun Wang,
  • Yi Zhong,
  • Haijun Jin,
  • Daniel Widmann,
  • Jörg Weissmüller and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2013, 4, 111–128, doi:10.3762/bjnano.4.13

Graphical Abstract
  • closely resembles the behavior of Au/TiO2 catalysts during CO oxidation [64][65]. In contrast, the other three NPG(Ag) catalysts exhibited a distinctly different reaction behavior. For these samples, the activity first increased steadily, for 2–3 h, and afterwards decayed by 20–30% (see Figure 5a). After
  • amounts of CO/O2 pulses required to remove the precovered surface oxygen species. In contrast to these findings for the NPG catalysts, steady catalytic activities can be achieved when performing similar single-pulse TAP reactor measurements on supported Au catalysts such as Au/TiO2 catalysts [23][46]. The
  • very low catalytic activity of the NPG catalysts in the TAP reactor compared to that of Au/TiO2 catalysts under low pressure conditions points to a very low probability for O2 activation under these reaction conditions. Most simply, this can be explained by a highly nonlinear pressure dependence for O2
PDF
Album
Supp Info
Full Research Paper
Published 19 Feb 2013

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • ) heterojunction nanowires by a “bottom-up” approach [96]. Here, AuTiO2–Au nanowires were prepared within nanoholes of anodic aluminum oxide templates. The preparation procedure included the deposition of gold by electroplating, chemisorption of 1,8-octanedithiol (HS–(CH2)8–SH), oxidation of the terminal thiol
PDF
Album
Review
Published 20 Dec 2011

Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

  • Matthias Roos,
  • Dominique Böcking,
  • Kwabena Offeh Gyimah,
  • Gabriela Kucerova,
  • Joachim Bansmann,
  • Johannes Biskupek,
  • Ute Kaiser,
  • Nicola Hüsing and
  • R. Jürgen Behm

Beilstein J. Nanotechnol. 2011, 2, 593–606, doi:10.3762/bjnano.2.63

Graphical Abstract
  • , Germany Transmission Electron Microscopy Group, Ulm University, D-89069 Ulm, Germany Materials Chemistry, Paris-Lodron University Salzburg, Austria 10.3762/bjnano.2.63 Abstract Aiming at model systems with close-to-realistic transport properties, we have prepared and studied planar Au/TiO2 thin-film
  • above the film with a scanning mass spectrometer. We can demonstrate that the thin-film model catalysts closely resemble dispersed Au/TiO2 supported catalysts in their characteristic structural and catalytic properties, and hence can be considered as suitable for catalytic model studies. The linear
  • increase of the catalytic activity with film thickness indicates that transport limitations inside the Au/TiO2 film catalyst are negligible, i.e., below the detection limit. Keywords: Au catalysis; Au/TiO2; CO oxidation; gold nanoparticles; model catalysts; thin-film catalyst; Introduction There is a
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2011
Other Beilstein-Institut Open Science Activities