2 article(s) from Marqués-López, Eugenia
Graphical Abstract
Figure 1: Chemical structures of isosteric gelators 1 and 2 previously studied [33], and squaramide-based analogu...
Scheme 1: Synthesis of squaramide-based gelators 3 and 4.
Figure 2: Comparison of CGC, gelation time and Tgel values corresponding to six gels made using 3 and 2 [33] as g...
Figure 3: DFS measurements for model gels made of 3 in methanol (c = 47 g/L) and ethyl acetate (c = 36 g/L). ...
Figure 4: Representative FESEM images of selected xerogels prepared by freeze-drying the corresponding organo...
Graphical Abstract
Figure 1: Different configurations of 1,2-aminoindanol 1a–d.
Scheme 1: Asymmetric F–C alkylation catalyzed by thiourea 4.
Figure 2: Results for the F–C reaction carried out with catalyst 4 and the structurally modified analogues, 4'...
Figure 3: (a) Transition state TS1 originally proposed for the F–C reaction catalyzed by thiourea 4 [18]. (b) Tra...
Scheme 2: Asymmetric F–C alkylation catalyzed by thiourea ent-4 in the presence of D-mandelic acid as a Brøns...
Figure 4: Transition state TS2 proposed for the activation of the thiourea-based catalyst ent-4 by an externa...
Scheme 3: Friedel–Crafts alkylation of indoles catalyzed by the chiral thioamide 6.
Scheme 4: Scalable tandem C2/C3-annulation of indoles, catalyzed by the thioamide ent-6.
Scheme 5: Plausible tandem process mechanism for the sequential, double Friedel–Crafts alkylation, which invo...
Scheme 6: One-pot multisequence process that allows the synthesis of interesting compounds 14. The pharmacolo...
Scheme 7: Reaction pathway proposed for the preparation of the compounds 14.
Scheme 8: The enantioselective synthesis of cis-vicinal-substituted indane scaffolds 21, catalyzed by ent-6.
Scheme 9: Asymmetric domino procedure (Michael addition/Henry cyclization), catalyzed by the thioamide ent-6 ...
Scheme 10: The enantioselective addition of indoles 2 to α,β-unsaturated acyl phosphonates 24, a) screening of...
Figure 5: Proposed transition state TS7 for the Friedel–Crafts reaction of indole and α,β-unsaturated acyl ph...
Scheme 11: Study of aliphatic β,γ-unsaturated α-ketoesters 26 as substrates in the F–C alkylation of indoles c...
Figure 6: Possible transition states TS8 and TS9 in the asymmetric addition of indoles 2 to the β,γ-unsaturat...
Figure 7: Transition state TS10 proposed for the asymmetric addition of dialkylhydrazone 28 to the β,γ-unsatu...
Scheme 12: Different β-hydroxylamino-based catalysts tested in a Michael addition, and the transition state TS...
Scheme 13: Enantioselective addition of acetylacetone (36a) to nitroalkenes 3, catalyzed by 37 and the propose...
Scheme 14: Addition of 3-oxindoles 39 to 2-amino-1-nitroethenes 40, catalyzed by 41.
Scheme 15: Michael addition of 1,3-dicarbonyl compounds 36 to the nitroalkenes 3 catalyzed by the squaramide 43...
Scheme 16: Asymmetric aza-Henry reaction catalyzed by the aminoindanol-derived sulfinyl urea 50.
Figure 8: Results for the aza-Henry reaction carried out with the structurally modified catalysts 50–50''.
Scheme 17: Diels–Alder reaction catalyzed by the aminoindanol derivative ent-41.
Scheme 18: Asymmetric Michael addition of 3-pentanone (55a) to the nitroalkenes 3 through aminocatalysis.
Scheme 19: Substrate scope extension for the asymmetric Michael addition between the ketones 55 and the nitroa...
Scheme 20: A possible reaction pathway in the presence of the catalyst 56 and the plausible transition state T...