TY - JOUR A1 - Su, Qiwen A1 - Hamilton, Tamara D. T1 - Extending mechanochemical porphyrin synthesis to bulkier aromatics: tetramesitylporphyrin JF - Beilstein Journal of Organic Chemistry PY - 2019/// VL - 15 SP - 1149 EP - 1153 SN - 1860-5397 DO - 10.3762/bjoc.15.111 PB - Beilstein-Institut JA - Beilstein J. Org. Chem. UR - https://doi.org/10.3762/bjoc.15.111 KW - condensation KW - grinding KW - mechanochemistry KW - milling KW - porphyrin KW - sterically-hindered N2 - Aldehydes with bulky substituents in the ortho-positions have been historically difficult in porphyrin synthesis, presumably owing to steric hindrance around the reactive site. We have used mechanochemistry for the simple, room-temperature synthesis of tetra-meso-substituted porphyrins. In the present study, mesitaldehyde undergoes acid-catalyzed mechanochemical condensation with pyrrole to give meso-tetrakis[2,4,6-(trimethyl)phenyl]porphyrin (TMP) after oxidation in solution. Yields are similar to those obtained using high-temperature porphyrin synthesis, although they remain significantly lower than some optimized room-temperature, solution-based methods. Yields of the mechanochemical synthesis were found to increase slightly upon longer exposure to an organic oxidizing agent in solution. This indicates that the mechanochemical condensation step may be more successful than initially realized. This work shows that mechanochemistry is a successful, simple, room-temperature method for producing tetra-meso-substituted porphyrins with bulky substituents. ER -