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Abstract
Background
Asymmetric introduction of fluorine α-to a carbonyl has become popular recently, largely because the direct fluorination of enolates

by asymmetric electrophilic fluorinating reagents has improved, and as a result such compounds are becoming attractive synthons.

We have sought an alternative but straightforward asymmetric method to this class of compounds, utilising the zwitterionic aza-

Claisen rearrangement by reacting α-fluoroacid chlorides and homochiral N-allylpyrrolidines as starting materials.

Results
Treatment of N-allylmorpholine with 2-fluoropropionyl chloride under Yb(OTf)3 catalysis generated the zwitterionic aza-Claisen

rearrangement product in good yield and demonstrated the chemical feasibility of the approach. For the asymmetric reaction,

N-allyl-(S)-2-(methoxymethyl)pyrrolidine was treated with either 2-fluoropropionyl chloride or 2-fluorophenylacetic acid chloride

under similar conditions and resulted in N-(α-fluoro-γ-vinylamide)pyrrolidine products as homochiral materials in 99% de. These

products were readily converted to their corresponding α-fluoro-γ-lactones by iodolactonisation and in good diastereoselectivity.

Conclusion
Molecules which have fluorine at a stereogeneic centre are finding increasing utility in pharmaceutical, fine chemicals and mater-

ials research. The zwitterionic aza-Claisen rearrangement proved to be an effective and competitive complement to asymmetric

electrophilic fluorination strategies and provides access to versatile synthetic intermediates with fluorine at the stereogenic centre.
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Scheme 3: Reagents: i iPr2EtN, Yb(OTf)3, 9, DCM, 92%; ii I2, THF/ H2O, Na2S2O3, 82%.

Introduction
The development of methods for the stereoselective introduc-

tion of the C-F bond, α-to a carbonyl group has been a signi-

ficant and recent focus in organo-fluorine chemistry.[1,2] Most

effort has involved enolate reactions with electrophilic fluorin-

ating reagents, either using asymmetric enolates, [3,4] asym-

metric  fluorinating  reagents[5,6]  or  asymmetric  Lewis

acids.[7-9] Most recently organocatalysis mediated asymmetric

fluorinations have been explored[10] and this has resulted in the

efficient preparation of α-fluoroaldehydes in high enantiomeric

purity.[11] Successes in this area has advanced methodology in

organofluorine chemistry considerably over the last decade or

so.[1,2] In this paper we explore an alternative approach for the

preparation of α-fluorocarbonyls using an asymmetric zwit-

terionic aza-Claisen rearrangement on appropriate fluorinated

substrates,  to  generate  α-fluoro-γ-vinyl  amides  and  then

α-fluoro-γ-lactones as the end products after iodolactonisation.

In  1998  Nubbemeyer[12,13]  reported  on  such  aza-Claisen

rearrangements  using  the  N-allylproline  ester  1  and  the

N-allylpyrrolidine ether 2 with the acid fluoride of azidoacetic

acid to generate the α-azido-γ-vinyl amide diastereoisomers 3

and 4, with good diastereo control (~88%de) (Scheme 1).

Scheme 1: Reagents: i N3CH2C(O)F, AlMe3

With this background, it  was envisaged that the aza-Claisen

approach could be exploited to generate α-fluoro-γ-vinyl amide

products from appropriate α-fluoroacid chlorides and suitable

amines,  to  offer  an  alternative  strategy to  α-fluorocarbonyl

compounds. Such products can be converted to γ-lactones by

straightforward  iodolactonisation.[14]  γ-Lactones  are  a

ubiquitious motif found in many natural product sand they are

also useful templates for the synthesis of a wide range of bio-

actives of pharmaceutical interest.[15] It is well known too that

selective fluorination can improve pharmacokinetics and the

fluorine substituent can often modify bio-activity in an advant-

ageous manner.[16] For example in the structural series relevant

to this study the α-fluorinated-γ-lactone 5 is a key intermediate

in the synthesis of the anti-HIV nucleoside β-FddA1 6. [17,18]

Results and discussion
In order to undertake the appropriate zwitterionic aza-Claisen

rearrangement reactions an efficient method for the production

of the α-fluoro acid chloride substrates was required. A number

of routes to 2-fluoropropionyl chloride 9 were explored but the

method  of  choice  involved  nucleophilic  fluorination  of  the

mesylate 7 with KF to give ethyl 2-fluoropropionate 8 (Scheme

2).[19]  Saponification  and  then  treatment  with  phthaloyl

dichloride  gave  9  after  distillation.  2-Fluorophenylacetyl

chloride  was  prepared  from  phenylglycine  as  previously

described.[20]

Scheme 2: Reagents: i KF, DMF, 73%; ii NaOH, EtOH then aqHCl,
44%; iii (CO)2Cl2, 90%.

In the first instance a Yb(OTf)3 mediated aza-Claisen rearrange-

ment  using  allyl  morpholine  10  and  acid  chloride  9  was

explored following MacMillan's protocol.[21] This proceeded

smoothly to give the α-fluoroamide 11 in good yield although

reduction  of  the  equivalence  of  the  Lewis  acid  below  0.5

resulted  in  poor  conversions.

Iodolactonisation of amide 11 afforded the α-fluoro-iodolac-

tone 12 as the major diastereoisomer[12] in a mixture of 12 and

13 (10:1). Isomer 12 was assigned the anti stereochemistry by
1H-NMR nOe analysis  as shown in Scheme 3,  a conclusion

which is entirely consistent with the literature.[22] An asym-

metric variant of the reaction was then explored. In the first
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Scheme 4: Reagents i. I2, THF/H2O.

Scheme 5: Reagents: (a) I2, THF/H2O, Na2S2O3.

instance  (R)-2-(diphenylmethyl)pyrrolidine  14[23]  was

converted to allylamine 15 as a potential substrate for the aza-

Claisen reaction. Subsequent treatment of allylamine 15 with

2-fluoropropionyl chloride, Hünigs base and Yb(OTf)3, gener-

ated the diastereoisomers 16 and 17 in a 3:1 ratio. The diaste-

reoselectivity was not high and it could not be improved, even

with more than 1 equivalent of the Lewis acid. Never-the-less,

the diastereoisomers could be easily separated by chromato-

graphy to  generate  16  and 17  as  homochiral  materials.  The

major diastereoisomer 16, was then subjected to iodolactoniza-

tion and this resulted in a stereoisomer mixture of (3S, 5S)-12

and (3S, 5R)-13 in a ratio of 9.4:1 (Scheme 4).

Interestingly iodolactonisation of 17 gave a single product (3R,

5R)-12 ([α]D = +16°) with complete anti selectivity and with no

indication of the syn isomer. A similar reaction sequence was

explored  for  the  analogous  substrate  but  without  fluorine.

Accordingly allyl amine 15 was treated with propionyl chloride

to generate a product which was also a mixture of diastereoi-

somers 18 and 19 in a ratio (3:1) similar to that observed in the

fluorinated case.  These diastereoisomers were again readily

separated by column chromatography to generate homochiral

Scheme 6: Reagents: i iPr2EtN, Yb(OTf)3, 9 or PhCHFCOCl, DCM,
92%.

materials. Iodolactonization of 18 furnished the corresponding

γ-lactones (3R, 5S)-20 and (3R, 5S)-21[24] with a significant

preference (10:1) for the anti diastereoisomer 20 as confirmed

by 1H-NMR nOe analysis (Scheme 5).

Iodolactonisation of diastereoisomer 19 again generated a single

product (3S, 5R)-20,  indicating a much more stereoselective

cyclisation.

In  order  to  improve the  stereoselectivity  of  the  aza-Claisen

rearrangement (S)-2(methoxymethyl)pyrrolidine 22 was then

explored as the chiral auxiliary.[25] This auxiliary was selected

to include a co-ordinating oxygen in place of the bulky diphen-

ylmethane group in 14 to compare steric versus co-ordination

effects.  Allylation then gave 23  as  the required aza-Claisen

substrate.

Accordingly allyl pyrrolidine 23 was treated with 2-fluoropropi-

onyl chloride in the presence of Hünig's base and Yb(OTf)3.

This generated product 24 as a single stereoisomer. Reduction

of Lewis acid from 1.0 to 0.5 eq did not adversely effect the

diastereoselectivity, however a stoichiometry lower than 0.5 eq

did  compromise  the  stereoselectivity  of  the  reaction.  An

analogous reaction with 2-fluorophenylacetyl chloride gener-

ated 25, also as a single stereoisomer. Clearly the co-ordination

of the Lewis acid to the ether oxygen is exerting full stereo-

chemical control on the reaction.

This is a highly stereoselective method for the preparation of

α-fluoroamides. When the reaction was conducted without a

fluorine in the substrate, using propionyl chloride in place of

2-fluoropropionyl  chloride,  then  the  diastereoselectivity
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Figure 1: ORTEP drawing of (2S, 2'S)-28 showing two crystallographically independent molecules within the unit cell. Crystal data: 28 C17H25NOFCl,
M = 313.83, monoclinic, space group P21, a = 7.0446(8), b = 23.709(4), c = 9.8268(16) Å, β = 92.554(4)°, U = 1639.6(4) Å3, F(000) = 672, Z = 4 [two
crystallographically independent molecules], Dc = 1.271 Mg m-3, μ = 0.242 mm-1, 4572 unique data (Rmerg = 0.0194). Conventional R = 0.0256 for
4485 reflections with I ≥ 2σ, GOF = 1.032. Final wR2 = 0.0657 for all data (390 refined parameters). The largest differences in the residual maps are
0.191 and -0.201e.Å-3. The Flack parameter refined to 0.01(3). Crystallographic data has been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication.

Scheme 7: Reagents: i. LiAlH4, THF, 99%; ii. HCl-Et2O.

Scheme 8: Reagents: (a) I2, THF/H2O, Na2S2O3.

decreased, generating 26 but in only 75% de. Thus the fluorine

as well as the co-ordinating auxiliary appear to play a role in

influencing the high diastereoselectivity observed for products

24  and  25.  The  reaction  presumably  progresses  via  a  six-

membered transition-state as depicted in Scheme 6. There are

two possible disastereoisomeric transition states with either the

allyl group 'anti'  (TS-A and TS-A') or 'syn'  (TS-B or TS-B')

with respect to the methyl ether substituent of the auxiliary.

Models  indicate  that  the  B-transition  states  are  much more

relaxed  than  the  A-transition  states,  with  the  transient  six

membered  ring  perpendicular  to  the  fused  five  and  seven

membered rings in B.  In the A  transitions states the six and

seven membered rings experience considerable steric interac-

tions. It is anticipated also that when the fluorine is gauche to

the ammonium nitrogen, that this will be significantly stabil-

ising. It has been shown recently that charge dipole interactions

[26,27]  between  vicinal  C-F  and  C-N+  bonds  significantly

stabilise gauche  over anti  conformations [28] between these

bonds.  This  effect  is  large  and  could  clearly  influence  the

diastereoselectivity in a favourable manner with the fluorinated

over the non fluorinated substrate. We anticipate that transition

TS-B derived from the E enolate will be lower in energy that

TS-B' derived from the Z enolate, due to a stabilising F-C-C-N+

gauche relationship in the former, favoured over the anti rela-

tionship in the latter.

In order to assign the absolute stereochemistry of the fluorin-

ated zwitterionic aza-Claisen products, amide 25 was converted

to a crystalline derivative for X-ray structure analysis. Treat-

ment of 25 with LiAlH4 generated amine 27 which upon HCl-

etherate treatment afforded the hydrochloride salt 28 (Scheme

7).  The  X-ray  structure  (Figure  1)  established  the  absolute

configuration as (2S, 2'S)-28 and revealed two crystallographic-

ally independent molecules with slightly different conforma-

tions in the solid state. Each independent hydrochloride salt

displays N-HCl hydrogen bonding [N(1)-H(1n)....Cl(1) 168(2)°,

N(21)-H(21n)....Cl(21) 163(2)°].

Iodolactonisation of both of the fluorinated products 24 and 25

gave diastereoisomeric γ-butyrolactone products (3R, 5R)-12

and (3R, 5S)-13 and (3S, 5R)-29 and (3S, 5S)-30 respectively,

each  in  a  ratio  of  10:1  as  shown  in  Scheme  8.  The  12/13

mixture had an optical rotation of ([α]D = +15°) indicating a

similar absolute stereochemistry to that derived from 17, thus

retrospectively establishing the absolute stereochemistry of 17

and consequently 16.
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Conclusion
In this study an alternative method for the stereoselective incor-

poration  of  α-fluoroamides  is  demonstrated.  The  reaction

involves  a  zwitterionic  aza-Claisen  rearrangement  utilising

α-fluorocarboxylic acid chlorides with N-allylmorpholine and

N-allypyrrolidines. The reaction with N-allylmorpholine is effi-

cient,  however  by using homochiral  pyrrolidine  auxiliaries,

successful  asymmetric  reactions were achieved with (R)-N-

allyl-2-(diphenylmethyl)pyrrolidine 15,  but particularly with

(S)-N-allyl-2(methoxymethyl)pyrrolidine 23. Product α-fluoro-

amides  were  prepared  with  very  high  diastereoselectivities

(99%de) and the absolute stereochemistry of these products was

determined by derivatisation and X-ray structure analysis. It is

notable that with this auxilary the fluorine containing substrates

gave higher diastereoselectivities relative to the non-fluorinated

counterpart an observation which may have its origin in elec-

tronic stabilisation of one diastereoselective transition state as a

consequence of the C-F bond. The aza-Claisen products where

then subjected to iodolactonisation to generate α-fluoro-γ-butyr-

olactones,  with  good  diastereoselectivities  (~80–100% de).

These molecules are useful intermediates for further derivatisa-

tion in the area of nucleoside analogue synthesis and the method

is  complementary  to  asymmetric  electrophilic  fluorination

strategies  for  the synthesis  of  α-fluorocarbonyl  compounds.
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