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Abstract
Using an aerobic oxidative coupling, different new imidazo[1,2-a]-N-heterocycles with gem-difluroroalkyl side chains have been

prepared in fair yields by the reaction of gem-difluoroenones with aminopyridines, -pyrimidines and -pyridazines. Condensed

heterocycles of this type play an important role as key core structures of various bioactive compounds. Further, starting with a

chloroimidazopyridazine derivative, Pd-catalyzed coupling reactions as well as nucleophilic substitutions have been performed suc-

cessfully in order to increase the molecular diversity.
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Introduction
Nitrogen-containing heterocyclic compounds are frequently

found in bioactive naturally occurring compounds, as well as in

the synthetic pharmacopeia. Imidazo[1,2-a]pyridine is an im-

portant heterocyclic system present in many molecules

featuring diverse biological activities, such as antiviral, antimi-

crobial, antitumor, anti-inflammatory, antiparasitic, hypnotic,

etc. [1-5]. It is recognized as a key scaffold due to its broad oc-

currence in a number of drug candidates and drugs, such as

zolpidem [6] (1a, used in the treatment of insomnia), and

alpidem [6] (1b, an anxiolytic agent). Some imidazopyridine

derivatives also act as β-amyloid formation inhibitors, GABA

and benzodiazepine receptor agonists, and cardiotonic agents

[7-10]. Further, the biological activities of imidazo[1,2-

a]pyridines proved to be strongly depending upon the nature of

substituents at C2 and C3 positions. For instance, the 3-aroylim-

idazo[1,2-a]pyridines 1c demonstrated also good anticancer
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Scheme 1: Retrosynthetic scheme for the preparation of our target molecules A.

Scheme 2: Synthesis of enones 6 with a gem-difluoroalkyl side chain.

properties [11,12], while imidazo[1,2-a]pyrimidines 2 are also

known for their antituberculosis activity [13], and imidazopyri-

dazine 3 acts as a sirtuin modulator [14].

On the other hand, the incorporation of fluorine or fluorinated

groups into organic molecules has been widely recognized as a

general strategy toward drug development in pharmaceutical

research. This is connected to fluorine's electronegativity, size,

and lipophilicity [15,16], which can strongly improve the bio-

logical properties of molecules through, for instance, increase of

metabolic stability and bioavailability for many drugs and phar-

macological tools. So, the preparation of fluorinated molecules

is a very attractive research area for organic and medicinal

chemists [17-20].

Our research program aims to synthesize new fluorinated mole-

cules based on the easy access and the versatility of fluorinated

propargylic derivatives [21]. Thus, taking into account the

known biological properties of the imidazo-fused N-hetero-

cycles, we became interested in the preparation of new deriva-

tives of this type possessing gem-difluorinated side chains as in-

dicated in Figure 1. Such new fluorinated heterocycles could be

of interest for bioorganic and medicinal chemistry studies.

Several synthetic approaches for imidazopyridines are avail-

able, but only a few examples have been reported to date for the

construction of this scaffold with introduction of fluorine [22],

trifluoromethyl [23] or trifluoroethyl groups [24]. Herein, we

report the synthesis of imidazo[1,2-a]pyridines, imidazo[1,2-

a]pyrimidines, and imidazopyridazines with fluorinated side

chains following an efficient strategy developed by Hajra et al.

[25]. This methodology, developed for the synthesis of

3-aroylimidazopyridines, involves a copper(II) acetate-cata-

lyzed aerobic oxidative amination and it proceeds through a

Figure 1: Representative examples of bioactive imidazo[1,2-
a]pyridines, imidazo[1,2-a]pyrimidines, imidazopyridazines and our
target molecules.

tandem Michael addition followed by an intramolecular oxida-

tive amination. Therefore, our target molecules A could be syn-

thesized by the oxidative coupling of 2-aminopyridines with

α,β-unsaturated ketones B, themselves easily accessible from

gem-difluoropropargylic alcohols C through a base-mediated

isomerization process (Scheme 1) [26,27].

Results and Discussion
The required propargylic alcohols 5a–e (type C, Scheme 1)

were obtained in 27–73% yields by reaction of the lithium salt

of the easily accessible gem-difluoro propargylic derivatives 4

[28] with aromatic aldehydes. Then, the DBU-mediated isomer-

ization afforded the desired enones 6a–e in 21–66% yields

(Scheme 2 and Table 1).
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Table 1: Synthesis of enones 6a–e.

Entry R Ar 5: yield (%) 6: yield (%)

1 Ph Ph 5a (73%) 6a (62%)
2 Ph o-PhBr 5b (70%) 6b (60%)
3 Ph 2-naphthaldehyde 5c (71%) 6c (50%)
4 Ph p-anisaldehyde 5d (27%) 6d (21%)
5 CH2OBn Ph 5e (65%) 6e (66%)

Scheme 3: Synthesis of 7a.

Table 2: Preparation of different imidazo[1,2-a]-N-heterocyclic derivatives.

Entry Product Ar R R1 X Y Time Yield (%)

1 7a Ph Ph H CH CH 25 h 62
2 7b Ph Ph 7-Me CH CH 20 h 60
3 7c Ph Ph 6-Br CH CH 46 h 60
4 7d Ph Ph H CH N 30 h 57
5 7e Ph Ph 6-Cl N CH 24 h 53
6 7f Ph -CH2OBn H CH CH 33 h 55
7 7g Ph -CH2OBn H CH N 29 h 36
8 7h o-BrPh Ph H CH CH 4 h 65
9 7i 2-naphthaldehyde Ph H CH CH 3.5 h 59

10 7j p-MeOPh Ph H CH CH 6 h 32

For the synthesis of the desired nitrogen heterocycles, we

started our study by reacting 6a with 2-aminopyridine in the

presence of AlCl3 and I2 under an O2 atmosphere [29]. Howev-

er, only a poor yield was obtained (20%, Scheme 3).

Then, we found that Cu(OAc)2·H2O (10 mol %) and 1,10-

phenanthroline (10 mol %) in chlorobenzene at 160 °C under an

O2 atmosphere, following the conditions recently reported by

Hajra et al. [25], gave 7a in 62% yield (Table 2, entry 1).

Having these optimized conditions in hand, and to explore the

substrate scope, different substituted 2-aminopyridines were

successfully employed to afford the tandem oxidative cycliza-

tion products 7 in 32–65% yields. On the other hand, enones 6

with two different R groups (Table 2, entries 1, 2, 3, 6, 8, and 9)
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Figure 2: Structures of 7a and 7e by X-ray crystallography analysis.

Scheme 4: One-pot synthesis of 7a.

were well tolerated under the optimized conditions affording

the tandem products 7 in fair to moderate yields, although

lower yields were obtained in the cases of 7j and 7g (32%

and 36%, respectively). Moreover, two other important hetero-

cyclic frameworks, imidazo[1,2-a]pyrimidines 7d and

imidazo[1,2-b]pyridazines 7e, have been synthesized by the

same method albeit in slightly decreased yields (Table 2, entries

4 and 5).

The structures of molecules 7 are in full agreement with their

spectroscopical (NMR) and analytical data (HRMS). For the

imidazopyridines, the structure of 7a was confirmed by X-ray

analysis (Figure 2) [30] and the other derivatives were pro-

posed by analogy. In the same way as for the imidazopyri-

dazines, the structure of 7e was established by X-ray analysis

[30] and this was extended to the other derivatives. These

results unambiguously demonstrate the regiochemistry of the

reaction. These cascade reactions proceed first through a

Michael addition of the primary amine on the enone, followed

by an intramolecular cyclization by the pyridine/pyrimidine

nucleus. Unfortunately, no crystal structure could be obtained

for the imidazopyrimidines and therefore the corresponding

structures 7d and 7g were proposed by analogy.

These oxidative coupling conditions appeared compatible with

the first isomerization step, therefore, the possibility of a "one-

pot" reaction was considered. Indeed, by heating alcohol 5a

(Table 1, entry 1) with 2-aminopyridine and DBU (1,8-diazabi-

cycloundec-7-ene) under the same conditions as mentioned

above, the desired imidazopyridine derivative 7a was isolated in

33% yield (Scheme 4). This one-pot process gives an overall

yield very close to the two-step reaction (38%).

Further, the halogen-substituted substrate 7e appeared as an

attractive precursor to increase the molecular diversity around

this scaffold. In order to explore this possibility, we performed

two Suzuki–Miyaura reactions, as representative examples of

Pd-catalyzed coupling processes (Table 3). They gave the target

molecules 8 and 9 in 46% and 53% yields, respectively. On the

other hand, two nucleophilic substitution reactions using phenol
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Table 3: Coupling and substitution reactions.

Entry Product R Conditions Yield (%)

1 8 Ph PhB(OH)2
Na2CO3, PdCl2(dppf)2

EtOH/H2O, 16 h

46

2 9 p-MeOPh methoxyphenylboronic acid, Na2CO3, PdCl2(dppf)2
EtOH/H2O, 16 h

53

3 10 PhO
K2CO3, DMF, 120 °C, 5 h

73

4 11
NEt3, EtOH, reflux, 2 days

23

and morpholine gave the expected heterocycles 10 and 11 in

73% and 23% yields, respectively.

Conclusion
In summary, we developed a short and completely regioselec-

tive method for the synthesis of imidazo[1,2-a]-N-heterocycles

with gem-fluorinated side chains starting from easily accessible

propargylic fluorides. Although the yields are only moderate to

fair, this short (1–2 steps) method offers significant flexibility to

prepare focused libraries of molecules with this core structure.

Such new fluorine-containing heteroaromatic frameworks

would be of much interest for biological studies in different

areas of life sciences.

Experimental
Representative procedure for the synthesis of
imidazopyridine 7a
The syntheses of propargylic fluorides 5 and enones 6 were per-

formed in a similar way as described before [26].

Synthesis of 4,4-difluoro-1,6-diphenylhex-2-
yn-1-ol (5a)
To a solution of gem-difluoro intermediate 4 [28] (500 mg,

2.77 mmol, 1 equiv) in anhydrous THF (6 mL) cooled at

−80 °C was added dropwise under nitrogen a 2.5 M solution of

n-BuLi in hexanes (1.3 mL, 3.30 mmol, 1.2 equiv). The mix-

ture was stirred for 1 h at a temperature below −80 °C before

dropwise addition of the aldehyde (0.35 mL, 3.33 mmol,

1.2 equiv) in anhydrous THF (4 mL). The reaction mixture was

stirred for additional 45 min at t < −80 °C and then allowed to

warm to rt for 2 h. The mixture was then treated with a satu-

rated ammonium chloride solution and extracted with ethyl

acetate. The combined organic phases were washed with water,

dried over Na2SO4 and concentrated in vacuo. The crude prod-

uct was purified by chromatography on silica gel, using a mix-

ture of petroleum ether/ethyl acetate as eluent. After purifica-

tion by chromatography on silica gel, propargylic alcohol 5a

was obtained as a colorless oil (580 g, 73% yield); Rf 0.46

(petroleum ether/AcOEt 8:2); 1H NMR (CDCl3, 300 MHz) δ

7.59–7.25 (m, 10H), 5.54 (t, JHF = 3.9 Hz, 1H), 2.99–2.93 (m,

2H), 2.54–2.38 (m, 2H), 2.83 (br s, 1H); 13C NMR (CDCl3, 75

MHz) δ 139.7, 138.9 (t, 4J = 1.1 Hz), 128.8, 128.7 (2C), 128.5

(2C), 128.3 (2C), 126.5, 126.3, 125.9, 114.1 (t, 1J = 233.4 Hz),

87.0 (t, 3J = 6.8 Hz), 79.1 (t, 2J = 40.9 Hz), 64.0 (t, 4J = 1.8

Hz), 40.8 (t, 2J = 26.1 Hz), 28.9 (t, 3J = 4.0 Hz); 19F NMR

(CDCl3, 282 MHz) δ −83.45 (td, JFH = 14.6, 3.9 Hz); HRMS

(ESI) m/z [M + Na]+: calcd. for C18H16OF2Na, 309.10614;

found, 309.1060 (0 ppm); m/z [M – HF + Na]+: calcd. for

C18H15OFNa, 289.09991; found, 289.0992 (2 ppm).

Synthesis of (E)-4,4-difluoro-1,6-diphenylhex-
2-en-1-one (6a)
The previous difluoropropargylic alcohol 5a (540 mg,

1.88 mmol, 1 equiv) was dissolved in THF (4 mL), then DBU

(0.42 mL, 2.82 mmol, 1.5 equiv) was added and the reaction

mixture was stirred at room temperature. After 2 h, 19F NMR



Beilstein J. Org. Chem. 2017, 13, 2115–2121.

2120

showed 100% conversion and the reaction mixture was neutral-

ized with a saturated solution of NH4Cl. After extraction with

ethyl acetate, the organic phases were washed with water, dried

(Na2SO4) and concentrated in vacuo. The crude product was

purified by chromatography on silica gel, using a mixture of

petroleum ether/ethyl acetate as eluent. Enone 6a was isolated

as a colorless oil (335 mg, 62% yield); Rf 0.43 (petroleum ether/

AcOEt 9:1); 1H NMR (CDCl3, 500 MHz) δ 8.04 (m, 2H),

7.66–7.64 (m, 1H), 7.57–7.52 (m, 2H), 7.35–7.28 (m, 6H), 6.97

(m, 1H), 2.93–2.92 (m, 2H), 2.41–2.35 (m, 2H); 13C NMR

(CDCl3, 125 MHz) δ 188.93, 139.8, 138.3 (t, 2J = 27.1 Hz),

136.7, 133.5, 128.7 (2C), 128.6 (2C), 128.5 (2C), 128.1 (2C),

127.6 (t, 3J = 7.5 Hz), 126.3, 120.6 (t, 1J = 240.4 Hz), 38.9 (t, 2J

= 25.9 Hz), 28.2 (t, 3J = 4.3 Hz); 19F NMR (CDCl3, 282 MHz)

δ −98.84 (m); HRMS (ESI) m/z [M + Na]+: calcd. for

C18H16OF2Na, 309.10614; found, 309.1059 (1 ppm).

Synthesis of (2-(1,1-difluoro-3-phenyl-
propyl)imidazo[1,2-a]pyridin-3-
yl)(phenyl)methanone (7a)
A mixture of 2-aminopyridine (20 mg, 0.21 mmol, 1.2 equiv),

enone 6a (51 mg, 0.17 mmol, 1 equiv), Cu(OAc)2·H2O (3.6 mg,

0.02 mmol, 10 mol %), and 1,10-phenanthroline (2.5 μL,

0.02 mmol, 10 mol %) in chlorobenzene (1 mL) was stirred in a

reaction tube at 160 °C under an O2 atmosphere. After 25 h,
19F NMR monitoring indicated complete consumption of the

starting material. The reaction mixture was cooled to room tem-

perature, filtered and extracted with dichloromethane. The

filtrate was concentrated and the crude product was purified by

column chromatography on silica gel, using petroleum ether/

ethyl acetate as eluent. 7a was isolated as white crystals (32 mg,

62% yield); Rf 0.46 (petroleum ether/EtOAc 7:3); Mp: 117 °C;
1H NMR (CDCl3, 300 MHz) δ 8.76 (d, J = 6.9 Hz, 1H), 7.89 (s,

1H), 7.86 (s, 1H), 7.75 (d, J = 9.0 Hz, 1H), 7.64 (t, J = 7.3 Hz,

1H), 7.53–7.43 (m, 3H), 7.26–7.13 (m, 5H), 7.02 (t, J = 6.7 Hz,

1H), 2.72–2.65 (m, 4H); 13C NMR (CDCl3, 75 MHz) δ 187.9,

146.1, 145.1, 140.4, 139.5 (t, 3J = 2.1 Hz), 133.3 (2C), 129.5,

128.4 (2C), 128.3 (3C), 128.2 (2C), 127.3, 126.0, 120.6, 120.3

(t, 1J = 239.8 Hz), 118.2, 114.7, 39.3 (t, 2J = 25.1 Hz), 28.3 (t,
3J = 4.4 Hz); 19F NMR (CDCl3, 282 MHz) δ −90.93 (t, J = 15.7

Hz); HRMS (ESI) m/z [M + Na]+: calcd. for C23H18N2OF2Na,

399.12794; found, 399.1279 (0 ppm); m/z [M + H]+: calcd. for

C23H19N2OF2, 377.14599; found, 377.1454 (2 ppm); m/z [M –

HF + Na]+: calcd. for C23H17N2OFNa, 379.12171; found,

379.1216 (0 ppm).

One pot synthesis of (2-(1,1-difluoro-3-
phenylpropyl)imidazo[1,2-a]pyridin-3-
yl)(phenyl)methanone (7a)
A mixture of 2-aminopyridine (25 mg, 0.26 mmol, 2.5 equiv),

alcohol 5a (30 mg, 0.10 mmol, 1 equiv), DBU (0.03 mL,

0.20 mmol, 2 equiv), Cu(OAc)2·H2O (2.1 mg, 0.01 mmol,

10 mol %), and 1,10-phenanthroline (1.4 μL, 0.01 mmol,

10 mol %) in chlorobenzene (1 mL) was stirred in a reaction

tube at 160 °C under an O2 atmosphere. After 4 h monitoring by
19F NMR indicated the disappearance of the starting material.

Thus the mixture was cooled to room temperature, filtered,

washed and extracted with dichloromethane. The organic phase

was concentrated and the crude product was purified by column

chromatography on silica gel, using petroleum ether/ethyl

acetate as eluent. Imidazopyridine 7a was isolated in 33% yield.

Supporting Information
Supporting Information File 1
Experimental details and characterization data of new
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