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Abstract
Aryl and hetaryl thiochalcones react smoothly with 1,4-quinones in THF solution at 60 °C yielding the corresponding fused

4H-thiopyrans after spontaneous dehydrogenation of the initially formed [4 + 2] cycloadducts. In general, the yields of the isolated

products were high. With 5-chloro-10-hydroxy-1,4-anthraquinone, the thia-Diels–Alder reaction occurred with complete regioselec-

tivity. In the case of the reaction of vitamin K3 (menadione) with diphenylthiochalcone, the initial cycloadduct was isolated in

37% yield.
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Introduction
Hetero-Diels–Alder reactions are considered to be a powerful

methodology widely explored for the synthesis of six-mem-

bered heterocycles [1,2] with numerous applications for the

construction of complex molecules including naturally occur-

ring products [3,4], drugs [5,6], agrochemicals [7], etc. In addi-

tion, asymmetric hetero-Diels–Alder reactions are of current

interest [8-10]. Whereas aza- and oxa-Diels–Alder reactions are

frequently applied, thia-Diels–Alder reactions are rarely re-

ported. However, aryl and hetaryl thioketones are known to

react as ‘superdienophiles’, thereby yielding the corresponding

3,6-dihydro-2H-thiopyrans [11-14].

Despite the fact that thiochalcones exist in solution as mixtures

of dimers [15,16], they enter into cycloaddition reactions not

only as heterodienes [17-19], but also as heterodipolarophiles

[15]. In two recent publications we reported new thia-

Diels–Alder reactions of aryl, hetaryl and ferrocenyl-substi-

tuted thiochalcones with acetylenic dienophiles, which lead to
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Scheme 1: Reactions of aryl/hetarylthiochalcones 1a–d with 1,4-naphthoquinone (2b).

the corresponding 4H-thiopyrans in a regioselective manner

[16,20].

In cycloaddition chemistry, 1,4-quinones are applied widely

both as dipolarophiles and dienophiles. In the case of [3 + 2]

cycloadditions, reactions can occur chemoselectively with either

the C=O or the C=C unit [21-23]. On the other hand, reactions

with diverse 1,3-dienes and heterodienes generally occur at the

C=C group [24-26]. To the best of our knowledge, thia-

Diels–Alder reactions of 1,4-quinones with thiochalcones have

not yet been reported.

In the present study, thia-Diels–Alder reactions of aryl and

hetaryl thiochalcones with selected 1,4-quinones, such as 1,4-

benzoquinone, 1,4-naphthoquinone, and 1,4-anthraquinone

were investigated as a route to novel 4H-thiochromene-5,8-

dione derivatives.

Results and Discussion
Aryl and hetary lthiochalcones 1a–d are easily obtained by

treatment of the corresponding chalcones with Lawesson′s

reagent in THF solution [15]. Along with the commercially

available 1,4-benzoquinone (2a) and 1,4-naphthoquinone (2b),

1,4-anthraquinone (2c) and 5-chloro-10-hydroxy-1,4-

anthraquinone (2d) were prepared from quinizarine according

to known procedures [27,28].

First experiments were performed with 2b and thiochalcones

1a–d in THF solutions at 60 °C by starting with equimolar

amounts of substrates. After 2 h, completion of the reaction was

confirmed by TLC, and, after typical workup, products 4 were

obtained as colored solids in high yields (Scheme 1).

The 1H NMR analysis revealed that the initially formed [4 + 2]

cycloadducts 3 underwent spontaneous oxidation under the

reaction conditions. The structures of type 4 were confirmed by

spectroscopic methods and elemental analysis. For example, the
1H NMR spectrum of 4a showed two doublets at 5.46 and

6.35 ppm with J = 6.4 Hz attributed to H–C(4) and H–C(3), re-

spectively. In the 13C NMR spectrum, the sp3-C(4) atom

absorbs at 40.9 ppm and the signals for the two C=O groups

were found at 180.8 and 181.4 ppm, respectively.

In the second series of experiments, thiochalcones 1a–d were

subjected to reaction with the symmetrical 1,4-anthraquinone

(2c) and its non-symmetrically substituted derivative 2d. In

analogy to the reactions with 2b, the expected products 4e–h

were isolated in all cases as stable colored solids in high yields

(Scheme 2).

The reactions of thiochalcones 1a–d with 2d require a brief

discussion. In these cases, the formation of two regioisomeric

cycloadducts could be expected, but the 1H NMR analysis of

the crude products showed that only one product was present in

each case and, therefore, the studied [4 + 2] cycloaddition reac-

tions occurred with complete regioselectivity. Based on the

assumption that the nucleophilic S-atom of the thiochalcone

attacks the more electrophilic C-atom, we postulate that com-

pounds 4i–l and not their isomers 5a–d are formed in these

reactions. This assumption is supported by the intramolecular

H-bonding, which enhances the electrophilicity of C(3) in the

dienophile 2d. Finally, the structure of 4k was established by

X-ray crystallography (Figure 1). Remarkably, the presence of

OH and Cl substituents in products 4i–l results in a batho-

chromic shift of UV–vis absorptions.
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Scheme 2: Reactions of thiochalcones 1a–d with 1,4-anthraquinones 2c and 2d.

Figure 1: ORTEP plot [29] of the molecular structure of 4k showing the major conformation of the disordered thiophene ring (50% probability ellip-
soids; arbitrary numbering of the atoms).

The crystal structure of 4k is that of the regioisomer proposed

on the basis of reactivity considerations. Since the space group

is centrosymmetric, the compound in the crystal is racemic. The

S-atom of the thiophene ring is disordered over two unequally

occupied positions as a result of slight but opposite directions of

envelope puckering of the ring. The hydroxy group forms an

intramolecular hydrogen bond with the adjacent quinoid

O-atom.

In addition to anthraquinones 2b and 2c, the simple 1,4-benzo-

quinone (2a) was also tested in the reaction with thiochalcones

1. The reactions performed with 1a and 1b delivered the ex-

pected 4H-thiochromene-5,8-diones 4m,n, which were isolated

in good yields using flash chromatography, but underwent de-

composition under ambient conditions, and none of them could

be obtained in analytically pure form (Figure 2).

Vitamin K3 (2e, menadione), which is an important representa-

tive of 1,4-naphtoquinones, was also involved in the present

study and tested in the reaction with diphenylthiochalcone (1a).

In that case, however, a longer reaction time was required, and

substantial amounts of decomposition products were formed.

The chromatographic workup led to a brownish fraction, con-

taining a single product, which was identified as the [4 + 2]
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Figure 2: Products of the reactions of thiochalcones 1a and 1b with
1,4-benzoquinone (2a) and of 1a with menadione (2e).

cycloadduct 6 (Figure 2). Its structure was elucidated by
1H NMR spectroscopy, which evidenced the presence of two

doublets at 3.76 (J = 4.8 Hz) and 6.50 ppm (J = 4.3 Hz) and a

triplet-like signal at 4.18 ppm with J ≈ 4.5 Hz. These signals

were attributed to HC(4a), HC(3) and HC(4), respectively. All

attempts to prepare an analytically pure sample were unsuccess-

ful. In contrast to all other initially formed cycloadducts, further

oxidative conversion to the quinone structure was not possible

in this case.

Conclusion
The present study demonstrates that 1,4-quinones are prone

dienophiles in reactions with aryl/hetarylthiochalcones. These

thia-Diels–Alder reactions led to a new class of 4H-thiopyran

derivatives. The presence of a quinone system is an important

structural aspect of this class as it is common in many naturally

occurring compounds, e.g., dyes such as alizarin, carminic acid,

and isoprenoid dyes, as well as drugs such as doxorubicin. In

addition, the presence of thiophenyl substituents may be of

importance for their applications in materials chemistry.

Experimental
General information: Solvents and chemicals were purchased

and used as received without further purification. Products were

purified by standard column chromatography on silica gel

(230–400 mesh, Merck). Unless stated otherwise, yields refer to

analytically pure samples. NMR spectra were recorded with a

Bruker Avance III 600 MHz instrument (1H NMR: 600 MHz;
13C NMR: 151 MHz). Chemical shifts are reported relative to

solvent residual peaks (1H NMR: δ = 7.26 ppm [CHCl3];
13C NMR: δ = 77.0 ppm [CDCl3]). IR spectra were registered

with a FTIR NEXUS spectrometer (as film or KBr pellets).

UV–vis spectra were recorded using a UV–vis JASCO V-630

spectrophotometer. Melting points were determined in capil-

laries with a Stuart SMP30 apparatus with automatic tempera-

ture monitoring.

Starting materials: 1,4-Benzoquinone (2a) and 1,4-naphtho-

quinone (2b) were commercial reagents and used without

further purification. 1,4-Anthraquinone (2c) was prepared from

commercial quinizarine by treatment with sodium borohydride

according to a literature procedure [27]. 5-Chloro-10-hydroxy-

1,4-anthraquinone (2d) was obtained by treatment of

quinizarine with thionyl chloride according to the protocol de-

scribed in [27]. Thiochalcones 1a–d were prepared according to

our protocol reported in an earlier publication [16].

General procedure: A solution of 1 mmol of the correspond-

ing thiochalcone 1 and 1 mmol of the 1,4-quinone 2 in 1 mL of

dry THF was placed in a thick-walled glass tube, which was

closed with a screw cap. The mixtures were heated at 60 °C for

2 h (for 4a–n) or 48 h (for 6). In the last case, progress of the

reaction was monitored by TLC, and an additional amount of

thiochalcone 1a was added in small portions until menadione

(2e) was completely consumed. The solvent was evaporated in

vacuo and the crude mixtures were analyzed by 1H NMR first

and subsequently purified by flash chromatography using

dichloromethane (for 4a–n) or a mixture of petroleum ether and

dichloromethane 1:1 (for 6) as the eluents. For products 4a–l,

analytically pure samples were obtained by crystallization from

petroleum ether with a small amount of dichloromethane. All

attempts to obtain analytically pure samples for 4m, 4n and 6

were unsuccessful and the purification procedure led to forma-

tion of some decomposition products.

2,4-Diphenyl-4H-benzo[g]thiochromene-5,10-dione (4a):

Yield: 340 mg (89%). Red-orange crystals; mp 165 °C (dec.);
1H NMR δ 5.46 (d, JH,H = 6.4 Hz, Ph-CH), 6.35 (d,

JH,H = 6.4 Hz, C=CH), 7.24–7.25 (m, 1CHarom), 7.32–7.34 (m,

2CHarom), 7.41–7.43 (m, 3CHarom), 7.52–7.54 (m, 2CHarom),

7.61–7.62 (m, 2CHarom), 7.70–7.74 (m, 2CHarom), 8.10 (dd,

JH,H  = 7.4 Hz, JH,H  = 1.2 Hz, 1CHarom), 8.13 (dd,

JH,H = 7.4 Hz, JH,H = 1.2 Hz, 1CHarom) ppm; 13C NMR δ 40.9

(Ph-CH), 121.0, 126.6, 126.7, 127.0, 127.5, 128.4, 128.8, 128.9,

129.0, 133.4, 134.3 (14CHarom, C=CH), 131.7, 132.0, 132.2,

136.4, 137.4, 142.3, 144.54 (6Carom, C=CH), 180.8, 181.4

(2C=O) ppm; IR ν: 3060 (w), 3028 (w), 1653 (vs, 2C=O), 1591

(s), 1562 (m), 1489 (m), 1451 (m), 1334 (m), 1288 (vs), 1152

(m), 1106 (w), 1030 (m), 913 (m), 834 (m), 710 (s), 694 (s)

cm−1; UV–vis (CH2Cl2) λmax/nm (lg ε): 243 (4.49), 332 (3.57),

478 (328); anal. calcd for C25H16O2S (380.46): C, 78.92; H,

4.24; S, 8.43; found: C, 78.87; H, 4.24; S, 8.37.

2-Phenyl-4-(thiophen-2-yl)-4H-benzo[g]thiochromene-5,10-

dione (4b): Yield: 365 mg (94%). Red-orange crystals;

mp 168 °C (dec.); 1H NMR δ 5.80 (d, JH,H = 6.7 Hz, thiophen-

2-yl-CH), 6.40 (d, JH,H = 6.7 Hz, C=CH), 6.95 (dd,

JH,H = 5.0 Hz, JH,H = 3.7 Hz, 1CHarom), 7.06 (d, JH,H = 3.5 Hz,

1CHarom), 7.19 (dd, JH,H = 5.0 Hz, JH,H = 1.0 Hz, 1CHarom),

7.42–7.46 (m, 3CHarom), 7.63–7.65 (m, 2CHarom), 7.71–7.78

(m, 2CHarom), 8.13 (dd, JH,H = 7.6 Hz, JH,H = 1.1 Hz,



Beilstein J. Org. Chem. 2018, 14, 1834–1839.

1838

1CHarom), 8.18 (dd, JH,H = 7.6 Hz, JH,H = 1.1 Hz, 1CHarom)

ppm; 13C NMR δ 35.2 (thiophen-2-yl-CH), 119.9, 125.3, 125.6,

126.7, 127.0, 127.1, 127.2, 128.8, 129.2, 133.5, 134.4

(12CHarom, C=CH), 128.5, 131.8, 132.1, 135.3, 137.2, 144.2,

144.3 (6Carom, C=CH), 180.6, 181.4 (2C=O) ppm; IR ν: 3075

(w), 3031 (w), 1652 (vs, 2C=O), 1589 (s), 1571 (s), 1489 (m),

1442 (m), 1420 (w), 1331 (m), 1289 (vs), 1220 (m), 1151 (m),

1103 (w), 1033 (w), 919 (w), 831 (m), 767 (m), 704 (s),

695 (s) cm−1; UV–vis (CH2Cl2) λmax/nm (lg ε): 244 (4.50), 338

(3.59), 463 (3.34); anal. calcd for C23H14O2S2 (386.49): C,

71.48; H, 3.65; S, 16.59; found: C, 71.48; H, 3.65; S 16.59.

4-Phenyl-2-(thiophen-2-yl)-4H-benzo[g]thiochromene-5,10-

dione (4c): Yield: 355 mg (92%). Red-orange crystals;

mp 158 °C (dec.); 1H NMR δ 5.42 (d, JH,H = 6.5 Hz, Ph-CH),

6.41 (d, JH,H = 6.5 Hz, C=CH), 7.01 (dd, JH,H = 5.2 Hz,

JH,H = 3.4 Hz, 1CHarom), 7.23–7.25 (m, 1CHarom), 7.28–7.33

(m, 3CHarom), 7.36 (dd, JH,H = 3.4 Hz, JH,H = 1.0 Hz,

1CHarom), 7.50–7.51 (m, 2CHarom), 7.69–7.75 (m, 2CHarom),

8.09 (dd, JH,H = 7.4 Hz, JH,H = 1.3 Hz, 1CHarom), 8.14 (dd,

JH,H = 7.4 Hz, JH,H = 1.2 Hz, 1CHarom) ppm; 13C NMR δ 40.6

(Ph-CH), 119.9, 125.3, 125.7, 126.6, 127.0, 127.6, 127.7, 128.4,

129.0, 133.4, 134.2 (12CHarom, C=CH), 125.9, 131.7, 132.1,

136.8, 140.3, 141.8, 143.9 (6Carom, C=CH), 180.6, 181.3

(2C=O) ppm; IR ν: 3085 (w), 3063 (w), 1652 (vs, 2C=O), 1590

(s), 1573 (s), 1490 (m), 1453 (m), 1347 (m), 1335 (m), 1289

(vs), 1230 (m), 1150 (m), 1111 (w), 1074 (m), 839 (m), 880

(m), 815 (m), 710 (s), 696 (s) cm−1; UV–vis (CH2Cl2) λmax/nm

(lg ε): 269 (4.42), 473 (3.12); anal. calcd for C23H14O2S2

(386.49): C, 71.48; H, 3.65; S, 16.59; found: C, 71.48; H, 3.70;

S, 16.58.

11-Chloro-6-hydroxy-4-phenyl-2-(thiophen-2-yl)-4H-

naphtho[2,3-g]thiochromene-5,12-dione (4k): Yield: 285 mg

(59%). Dark red crystals; mp 162 °C (dec.); 1H NMR δ 5.78 (d,

JH,H = 6.7 Hz, thiophen-2-yl-CH), 6.48 (d, JH,H = 6.8 Hz,

C=CH), 6.96 (dd, JH,H = 4.9 Hz, JH,H = 3.8 Hz, 1CHarom),

7.01–7.11 (m, 2CHarom) ,  7.21 (dd, JH,H  = 4.9 Hz,

JH,H  = 1.0 Hz, 1CHarom), 7.35 (dd, JH,H  = 4.9 Hz,

JH,H  = 1.0 Hz, 1CHarom), 7.40 (dd, JH,H  = 4.9 Hz,

JH,H = 1.0 Hz, 1CHarom), 7.76–7.80 (m, 1CHarom), 7.87–7.89

(m, 1CHarom), 8.59 (d, JH,H = 8.2 Hz, 1CHarom), 8.63 (d,

JH,H = 8.2 Hz, 1CHarom), 14.98 (s, OH) ppm; 13C NMR δ 34.5

(thiophen-2-yl-CH), 118.7, 125.0, 125.5, 125.7, 125.8, 126.2,

127.2, 127.5, 127.8, 130.1, 132.2 (10CHarom, C=CH), 108.8,

122.5, 127.6, 128.5, 134.8, 135.2, 139.9, 143.5, 142.1, 147.4,

162.6 (10Carom, C=CH), 179.0, 184.0 (2C=O) ppm; IR ν: 3022

(w), 2953 (s), 2923 (w), 1655 (s, 2C=O), 1601 (s), 1584 (s),

1565 (s), 1491 (m), 1427 (s), 1397 (s), 1360 (s), 1360 (m), 1333

(m), 1242 (vs), 1170 (m), 902 (s), 852 (m), 832 (m), 758 (m),

699 (vs) cm−1; UV–vis (CH2Cl2) λmax/nm (lg ε): 245 (4.69),

294 (4.32), 487 (3.91); anal. calcd for C27H15ClO3S2 (486.99):

C, 66.59; H, 3.10; S, 13.17; found: C, 66.39; H, 3.07; S, 13.06.

(4aSR,10aRS)-10a-Methyl-2,4-diphenyl-4H-benzo[g]thio-

chromene-5,10-(4aH,10aH)-dione (6): Yield: 145 mg (37%).

Yellow-brown viscous oil; 1H NMR δ 1.94 (s, CH3), 3.76 (d,

JH,H = 4.8 Hz, 1CH), 4.18 (t, JH,H = 4.5 Hz, 1CH), 6.50 (d,

JH,H = 4.3 Hz, 1CH), 7.08–7.12 (m, 1CH), 7.16–7.19 (m, 2CH),

7.30–7.38 (m, 5CH), 7.54–7.57 (m, 2CH), 7.58–7.61 (m, 2CH),

7.79–7.82 (m, 1CH), 7.91–7.93 (m, 1CH) ppm; 13C NMR

δ 26.4 (CH3), 42.7 (CH-Ph), 55.9 (Cq), 58.0 (CH-S), 120.0,

126.3, 126.8, 126.9, 127.3, 128.0, 128.5, 128.6, 129.5, 133.8,

134.2 (14CHarom, C=CH), 132.4, 134.4, 134.6, 138.9, 139.6

(4Carom, C=CH), 193.9, 194.2 (2C=O) ppm; IR ν: 3062 (w),

3034 (w), 2957 (w), 1696 (vs) and 1691 (s, 2C=O), 1614 (s),

1489 (m), 1451 (m), 1266 (s), 1013 (m), 979 (m), 761 (s), 692

(s) cm–1; ESIMS (for C26H20O2S): 395 (100, [M − 1]−).
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