

Enantioselective dioxytosylation of styrenes using lactatebased chiral hypervalent iodine(III)

Morifumi Fujita*, Koki Miura and Takashi Sugimura

Letter	Open Access
Address:	Beilstein J. Org. Chem. 2018, 14, 659–663.
Graduate School of Material Science, University of Hyogo, Kohto, Kaminori, Hyogo 678-1297, Japan	doi:10.3762/bjoc.14.53
Kamigon, Hyogo oro 1207, oupan	Received: 25 December 2017
Email:	Accepted: 06 March 2018
Morifumi Fujita [*] - fuji@sci.u-hyogo.ac.jp	Published: 20 March 2018
* Corresponding author	This article is part of the Thematic Series "Hypervalent iodine chemistry in organic synthesis".
Keywords:	
 1,2-difunctionalization of alkenes; enantioselective synthesis; hypervalent iodine; oxidation 	Guest Editor: T. Wirth
	© 2018 Fujita et al.; licensee Beilstein-Institut.
	License and terms: see end of document.

Abstract

A series of optically active hypervalent iodine(III) reagents prepared from the corresponding (R)-2-(2-iodophenoxy)propanoate derivative was employed for the asymmetric dioxytosylation of styrene and its derivatives. The electrophilic addition of the hypervalent iodine(III) compound toward styrene proceeded with high enantioface selectivity to give 1-aryl-1,2-di(tosyloxy)ethane with an enantiomeric excess of 70–96% of the (S)-isomer.

Findings

Hypervalent aryl- λ^3 -iodanes have been widely used for metalfree oxidation with high selectivity in organic synthesis [1-3]. The reactivity of an aryl- λ^3 -iodane is controlled by the electronic and steric properties of the aryl group and the heteroatomic ligand coordinated to the iodine atom. Optically active hypervalent iodine compounds contain chiral ligands or chiral aryl groups. Several types of optically active hypervalent iodine reagents and catalysts have been developed for highly stereocontrolled oxidative transformations [4-14]. The enantioselective vicinal difunctionalization of alkenes constitutes one type of attractive transformation achieved by chiral hypervalent iodine compounds. As a seminal example in this field, Wirth et al. [15-17] reported the dioxytosylation of styrene (1a, Scheme 1). Chiral hypervalent iodine reagents 2 bearing a 1-methoxyethyl side chain were used for enantiocontrol of the dioxytosylation, and the maximum enantiomeric excess (ee) of the product 3a reached 65%. Despite recent rapid progress in the field of asymmetric oxidation achieved by chiral hypervalent iodine compounds, there has been no subsequent examination of dioxytosylation, which can be used as a standard reaction for comparing the enantiocontrolling ability of chiral hypervalent iodine reagents.

The design of chiral hypervalent iodine reagents using a lactate motif has been employed for several types of oxidation reaction since we first reported this procedure [18]. Enantioselective oxidative transformations include the dearomatization of phenols [19-24], α -functionalization of carbonyl compounds [25-29], and vicinal difunctionalization of alkenes [18,30-50]. Here, the efficiency of the lactate-based chiral hypervalent iodine reagents **4a–e** (Figure 1) was assessed using the dioxytosylation of styrenes as a reference reaction.

A series of lactate-derived aryl- λ^3 -iodanes **4a–e** was used for the oxidation of styrenes **1** in the presence of *p*-toluenesulfonic acid (TsOH) in dichloromethane. The reaction proceeded at -50 °C to give the 1,2-dioxytosylated product **3** and the rearranged product **5**. The yields of **3** and **5** were determined by ¹H NMR using an internal standard. The ee of **3** was determined by chiral HPLC analysis. The results for the yields and ee are summarized in Table 1.

The reaction of styrene (1a) with 4a gave the 1,2-dioxytosylated product 3a with 70% ee of the (S)-isomer (Table 1, entry 1). An ee of equal to or greater than 70% was also achieved in the reactions with the other lactate-based reagents 4b-e(Table 1, entries 2–5). The reaction with the 2,6-bis(lactate)aryl reagent 4e provided a high ee of 92%. The reactions of *p*-chlorostyrene (1b) gave 3b with a similar ee, and the ratios of 3 to 5 (3b to 5b) were higher than those in the reaction of 1a (Table 1, entries 6–8). In the reactions of *o*-methylstyrene (1c), the ee of the 1,2-dioxytosylated product 3c was slightly higher than those of 3a and 3b, but the regioselectivity for 3c over 5c was poor (Table 1, entries 9 and 10).

Scheme 2 illustrates possible reaction pathways that lead to 3 and the achiral byproduct 5. The treatment of (diacetoxyiodo)benzene with TsOH readily gives Koser's reagent [PhI(OH)OTs] [51], which has a higher electrophilicity toward the carbon-carbon double bond in 1. The dioxytosylation of alkenes with Koser's reagent was found to proceed via an $S_N 2$ reaction of a cyclic intermediate such as I_1 , judging from the syn selectivity of the dioxytosylation [52,53]. The attack of the tosylate ion on I_1 possibly takes place at the benzylic position or at the methylene carbon atom. The positive charge of I_1 may be stabilized by the aryl group and localized at the benzylic position. This may allow the preferential formation of I_3 from I_1 . If I_2 was the major intermediate in the pathway leading to 3, the stereochemical purity of 3 would have decreased owing to the facile elimination of the iodonium group [54] at the benzylic position of I_2 (S_N1). The high enantiomeric ratio of 3 can be rationalized via a preference for the $I_1 \rightarrow I_3 \rightarrow 3$ pathway over the $I_1 \rightarrow I_2 \rightarrow 3$ pathway. The product ratio of 3 to 5 was affected by the ring substituent in styrenes 1: the electron-withdrawing chloro substituent in 1b increased the amount of 3, whereas the electron-donating methyl substituent in 1c decreased the amount of 3. An electron-donating aryl group increases the rate of participation of the aryl group $(I_3 \rightarrow I_4)$. In other words, a reaction pathway that bifurcates from I_3 to 3 and 5 agrees well with the regioselectivity for 3 over 5 observed for the substituted styrenes. The phenonium cation intermediate I_4 contains two reaction sites on the ethylene bridge. Electron donation due to the lone pair on the oxygen atom of the internal tosyloxy group may weaken the bond between the tosyloxybonded carbon and the quaternary carbon in I_4 .

The reaction of styrene with 4a-e preferentially gave (S)-3, which forms via an electrophilic addition of the iodane toward the Si face of styrene, followed by an S_N2 reaction with the

^aThe reaction was carried out at -50 °C in dichloromethane containing **4** (47 mM), TsOH (86 mM), and **1** (43 mM) for 4 h. ^bThe yield was determined by ¹H NMR using an internal standard. ^cThe ee was determined by chiral HPLC using a Daicel CHIRALPAK AD column (\emptyset 4.6 mm × 250 mm). ^dPreferential configuration of product **3**. The absolute stereochemistry of **3b** and **3c** was not determined. ^eThe reaction was carried out for 20 h.

tosylate ion. If an $S_N 1$ mechanism were involved in the oxytosylation of I_1 , the enantiomeric ratio of **3** would decrease owing to the planar structure of the benzylic cation. Thus, the tosylate ion may act as an effective nucleophile for the $S_N 2$ reaction of I_1 . The stereoface-differentiation in the dioxytosylation reaction using the lactate-derived aryl- λ^3 -iodanes is similar to that in preceding reactions [14], which include the diacetoxylation [38,39,50] and diamination [30,49] of styrene.

In summary, the reaction of styrenes with lactate-derived aryl- λ^3 -iodanes gave the dioxytosylated product with an ee of 70–96%.

Supporting Information

Supporting Information File 1

Experimental procedures, characterization data, and copies of ¹H and ¹³C NMR spectra are available. [https://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-14-53-S1.pdf]

Acknowledgements

Financial support from University of Hyogo is gratefully acknowledged.

ORCID[®] iDs

Morifumi Fujita - https://orcid.org/0000-0003-1006-1416

References

- Zhdankin, V. V. Hypervalent lodine Chemistry; John Wiley & Sons: Chichester, U.K., 2014.
- Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328–3435. doi:10.1021/acs.chemrev.5b00547
- Wirth, T., Ed. Hypervalent lodine Chemistry; Springer: Basel, Switzerland, 2016. doi:10.1007/978-3-319-33733-3
- Ngatimin, M.; Lupton, D. W. Aust. J. Chem. 2010, 63, 653–658. doi:10.1071/CH09625
- Liang, H.; Ciufolini, M. A. Angew. Chem., Int. Ed. 2011, 50, 11849–11851. doi:10.1002/anie.201106127 Angew. Chem. 2011, 123, 12051–12053. doi:10.1002/ange.201106127
- Uyanik, M.; Ishihara, K. J. Synth. Org. Chem., Jpn. 2012, 70, 1116–1122. doi:10.5059/yukigoseikyokaishi.70.1116
- Parra, A.; Reboredo, S. Chem. Eur. J. 2013, 19, 17244–17260. doi:10.1002/chem.201302220
- Singh, F. V.; Wirth, T. Chem. Asian J. 2014, 9, 950–971. doi:10.1002/asia.201301582
- Romero, R. M.; Wöste, T. H.; Muñiz, K. Chem. Asian J. 2014, 9, 972–983. doi:10.1002/asia.201301637
- Harned, A. M. Tetrahedron Lett. 2014, 55, 4681–4689. doi:10.1016/j.tetlet.2014.06.051
- Zheng, Z. S.; Zhang-Negrerie, D.; Du, Y. F.; Zhao, K. Sci. China: Chem. 2014, 57, 189–214. doi:10.1007/s11426-013-5043-1
- 12. Berthiol, F. Synthesis 2015, 47, 587-603. doi:10.1055/s-0034-1379892
- Basdevant, B.; Guilbault, A.-A.; Beaulieu, S.; Lauriers, A. J.-D.; Legault, C. Y. Pure Appl. Chem. 2017, 89, 781–789. doi:10.1515/pac-2016-1212
- 14. Fujita, M. *Tetrahedron Lett.* **2017**, *58*, 4409–4419. doi:10.1016/j.tetlet.2017.10.019
- 15. Wirth, T.; Hirt, U. H. *Tetrahedron: Asymmetry* **1997**, *8*, 23–26. doi:10.1016/S0957-4166(96)00469-7
- Hirt, U. H.; Spingler, B.; Wirth, T. J. Org. Chem. 1998, 63, 7674–7679. doi:10.1021/jo980475x
- 17. Hirt, U. H.; Schuster, M. F. H.; French, A. N.; Wiest, O. G.; Wirth, T. *Eur. J. Org. Chem.* 2001, 1569–1579. doi:10.1002/1099-0690(200104)2001:8<1569::AID-EJOC1569>3.0.CO;2-T
- Fujita, M.; Okuno, S.; Lee, H. J.; Sugimura, T.; Okuyama, T. Tetrahedron Lett. 2007, 48, 8691–8694. doi:10.1016/j.tetlet.2007.10.015

- Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175–2177. doi:10.1002/anie.200907352
 - Angew. Chem. 2010, 122, 2221-2223. doi:10.1002/ange.200907352
- Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2013, 52, 9215–9218. doi:10.1002/anie.201303559
 Angew. Chem. 2013, 125, 9385–9388. doi:10.1002/ange.201303559
- Zhang, D.-Y.; Xu, L.; Wu, H.; Gong, L.-Z. Chem. Eur. J. 2015, 21, 10314–10317. doi:10.1002/chem.201501583
- Yoshida, Y.; Magara, A.; Mino, T.; Sakamoto, M. *Tetrahedron Lett.* 2016, 57, 5103–5107. doi:10.1016/j.tetlet.2016.10.016
- 23. Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. ACS Catal. 2017, 7, 872–876. doi:10.1021/acscatal.6b03380
- 24. Jain, N.; Xu, S.; Ciufolini, M. A. Chem. Eur. J. 2017, 23, 4542–4546. doi:10.1002/chem.201700667
- 25. Mizar, P.; Wirth, T. Angew. Chem., Int. Ed. **2014**, *53*, 5993–5997. doi:10.1002/anie.201400405
- *Angew. Chem.* **2014**, *126*, 6103–6107. doi:10.1002/ange.201400405 26. Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z.
- Angew. Chem., Int. Ed. 2014, 53, 3466–3469.
 doi:10.1002/anie.201309967
 Angew. Chem. 2014, 126, 3534–3537. doi:10.1002/ange.201309967
 27. Basdevant, B.; Legault, C. Y. Org. Lett. 2015, 17, 4918–4921.
- doi:10.1021/acs.orglett.5b02501
 28. Feng, Y.; Huang, R.; Hu, L.; Xiong, Y.; Coeffard, V. Synthesis 2016,
- 28. Feng, Y.; Huang, R.; Hu, L.; Xiong, Y.; Coeffard, V. Synthesis 2016, 48, 2637–2644. doi:10.1055/s-0035-1561442
- Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2016, 18, 5580–5583. doi:10.1021/acs.orglett.6b02816
- Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354–4357. doi:10.1021/jacs.7b01443
- Gelis, C.; Dumoulin, A.; Bekkaye, M.; Neuville, L.; Masson, G. Org. Lett. 2017, 19, 278–281. doi:10.1021/acs.orglett.6b03631
- Qurban, J.; Elsherbini, M.; Wirth, T. J. Org. Chem. 2017, 82, 11872–11876. doi:10.1021/acs.joc.7b01571
- 33. Shimogaki, M.; Fujita, M.; Sugimura, T. J. Org. Chem. 2017, 82, 11836–11840. doi:10.1021/acs.joc.7b01141
- 34. Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51–54. doi:10.1126/science.aaf8078
- Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000–5003. doi:10.1021/jacs.6b02391
- Woerly, E.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858–13861. doi:10.1021/jacs.6b09499
- 37. Ahmad, A.; Silva, L. F., Jr. J. Org. Chem. 2016, 81, 2174–2181. doi:10.1021/acs.joc.5b02803
- Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem., Int. Ed. 2016, 55, 413–417. doi:10.1002/anie.201507180
- Angew. Chem. 2016, 128, 422–426. doi:10.1002/ange.201507180
- 39. Wöste, T. H.; Muñiz, K. Synthesis 2016, 48, 816–827. doi:10.1055/s-0035-1561313
- Mizar, P.; Niebuhr, R.; Hutchings, M.; Farooq, U.; Wirth, T. *Chem. – Eur. J.* 2016, 22, 1614–1617. doi:10.1002/chem.201504636
- 41. Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. *Chem. Eur. J.* **2016**, *22*, 4030–4035. doi:10.1002/chem.201504844
- Shimogaki, M.; Fujita, M.; Sugimura, T. Angew. Chem., Int. Ed. 2016, 55, 15797–15801. doi:10.1002/anie.201609110 Angew. Chem. 2016, 128, 16029–16033. doi:10.1002/ange.201609110
- 43. Alhalib, A.; Kamouka, S.; Moran, W. J. *Org. Lett.* **2015**, *17*, 1453–1456. doi:10.1021/acs.orglett.5b00333
- Takesue, T.; Fujita, M.; Sugimura, T.; Akutsu, H. Org. Lett. 2014, 16, 4634–4637. doi:10.1021/ol502225p

- 45. Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed.
 2013, 52, 2469–2473. doi:10.1002/anie.201208471
 Angew. Chem. 2013, 125, 2529–2533. doi:10.1002/ange.201208471
- Farid, U.; Malmedy, F.; Claveau, R.; Albers, L.; Wirth, T. Angew. Chem., Int. Ed. 2013, 52, 7018–7022. doi:10.1002/anie.201302358 Angew. Chem. 2013, 125, 7156–7160. doi:10.1002/ange.201302358
- 47. Fujita, M.; Mori, K.; Shimogaki, M.; Sugimura, T. *RSC Adv.* **2013**, *3*, 17717–17725. doi:10.1039/c3ra43230k
- Farid, U.; Wirth, T. Angew. Chem., Int. Ed. 2012, 51, 3462–3465. doi:10.1002/anie.201107703
 Angew. Chem. 2012, 124, 3518–3522. doi:10.1002/ange.201107703
- Köben, C.; Souto, J. A.; González, Y.; Lishchynskyi, A.; Muñiz, K. Angew. Chem., Int. Ed. 2011, 50, 9478–9482. doi:10.1002/anie.201103077
- Angew. Chem. 2011, 123, 9650–9654. doi:10.1002/ange.201103077
- 50. Fujita, M.; Wakita, M.; Sugimura, T. *Chem. Commun.* **2011,** *47,* 3983–3985. doi:10.1039/c1cc10129c
- 51. Koser, G. F.; Wettach, R. H. J. Org. Chem. 1977, 42, 1476–1478. doi:10.1021/jo00428a052
- 52. Koser, G. F.; Rebrovic, L.; Wettach, R. H. J. Org. Chem. 1981, 46, 4324–4326. doi:10.1021/jo00334a057
- 53. Rebrovic, L.; Koser, G. F. *J. Org. Chem.* **1984**, *49*, 2462–2472. doi:10.1021/jo00187a032
- 54. Okuyama, T.; Takino, T.; Sueda, T.; Ochiai, M. *J. Am. Chem. Soc.* **1995**, *117*, 3360–3367. doi:10.1021/ja00117a006

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.14.53