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Lewis acid-promoted direct synthesis of isoxazole derivatives
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Abstract
Isoxazole derivatives were synthesized via a one-pot method utilizing 2-methylquinoline derivatives as template substrates, sodium
nitrite as a nitrogen-oxygen source, and solely using aluminum trichloride as the additive. This approach circumvents the need for
costly or highly toxic transition metals and presents a novel pathway for the synthesis of isoxazole derivatives.
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Introduction
The isoxazole derivatives not only exist in many natural prod-
ucts [1-3] and pharmaceutical intermediates [4-7], but also have
great application values in organic synthesis [8,9] (Figure 1). In
the past decades, many methods have been developed to prepare
isoxazole derivatives [10-13]. However, most of the starting
materials for these methods are oximes and hydroximinoyl
chlorides [4,13-15]. Recently, the sp3 C–H bond functional
group transformation of 2-methylquinoline derivatives into
isoxazole derivatives has been reported [16]. In 2015, Yang’s
group [10,17] reported the copper-catalyzed conversion of
methylarenes into isoxazole derivatives with KNO3 as the
source of nitrile oxide (Scheme 1, reaction 1). In 2019, Deng’s
group [18] developed a three-component synthesis method of
isoxazole derivatives using TBN as nitrogen source (Scheme 1,
reaction 2). In 2017, Xu and co-workers [19] developed a
copper-mediated annulation reaction to synthesize isoxazoles

from two different alkynes. In fact, most methods mostly used
highly toxic transition-metal catalysts such as copper metals. In
order to develop cheaper and more environmentally friendly
catalysts, our laboratory recently developed an alternative ap-
proach to the synthesis of isooxazoles starting from 2-methyl-
quinoline and alkynes mediated by Brønsted acids in good
yields (Scheme 1, reaction 3) [20].

The utilization of main element metal aluminum salts in organic
synthesis holds significant potential due to their cost-effective-
ness as compared to heavy metals. This renders them highly
valuable for various applications in the field. Herein, we suc-
cessfully developed a method that uses sodium nitrite as the
source of nitrile oxide, and only applies aluminium trichloride
as the Lewis acid to realize the sp3 C–H-bond activation of
nitrogen heterocycles to synthesize isoxazole derivatives.
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Figure 1: Natural products and drug molecules containing isoxazole moieties.

Scheme 1: Traditional methods for the synthesis of isoxazoles and the current approach.

Results and Discussion
At the outset of this study, we chose the reaction of 2-methyl-
quinoline (2a) with phenylacetylene (1a) in the presence of
AlCl3 (3 equiv) and sodium nitrite (10 equiv) in DMAc at 90 °C
under a nitrogen atmosphere. The desired isoxazole product 3a
was isolated in 92% yield (Table 1, entry 1). It was found that
no product was formed in the absence of AlCl3 and 64% yield

were obtained when the reaction was performed using 2 equiv
AlCl3 (Table 1, entries 2 and 3). When 5 equiv sodium nitrite
were used, the corresponding yield was also decreased (Table 1,
entry 4). Other Lewis acids employed in the reaction were less
effective than AlCl3 (Table 1, entries 5–7). Furthermore, sol-
vent screening showed that DMAc was the best reaction medi-
um for this cycloaddition compared with DMSO and DMF
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Table 1: Optimization of reaction conditions for the synthesis of isoxazolesa.

Entry Variation from standard conditions Yield (%)b

1 none 92
2 without AlCl3 n.r.
3 2 equiv of AlCl3 64
4 5 equiv of NaNO2 77
5 FeCl3 instead of AlCl3 55
6 TiCl4 instead of AlCl3 67
7 BF3 instead of AlCl3 n.r.
8 DMF instead of DMAc 72
9 DMSO instead of DMAc n.r.
10 at 140 °C 21
11 under air 26

aStandard reaction conditions: 1a (0.1 mmol, 1 equiv), 2a (0.2 mmol, 2 equiv), AlCl3 (0.3 mmol, 3 equiv), NaNO2 (1 mmol, 10.0 equiv), DMAc
(1.0 mL), N2 atmosphere, 90 °C, 24 h. bIsolated yield; n.r., no reaction.

Scheme 2: Reaction scope of alkynes. Conditions: 1 (0.1 mmol, 1 equiv), 2a (0.2 mmol, 2 equiv), AlCl3 (0.3 mmol, 3 equiv), NaNO2 (1 mmol,
10.0 equiv), DMAc (1.0 mL), N2 atmosphere, 90 °C, 24 h.

(Table 1, entries 8 and 9). The reaction yield was decreased to
21% when increasing the temperature to 140 °C under standard
conditions (Table 1, entry 10). Finally, the nitrogen atmosphere
was essential since the yield substantially decreased under air
atmosphere (Table 1, entry 11).

With the optimal reaction conditions in hand, various alkynes
were examined as dipolarophiles (Scheme 2). A range of func-
tional groups were tolerated in this reaction, such as alkyl, me-
thoxy, halo, and heterocycles. It was found that electron-defi-
cient groups in the phenyl ring (3g–i) were more beneficial to
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Scheme 3: Reaction substrate scope of quinolines. Conditions: 1a (0.1 mmol, 1 equiv), 2 (0.2 mmol, 2 equiv), AlCl3 (0.3 mmol, 3 equiv), NaNO2
(1 mmol, 10.0 equiv), DMAc (1.0 mL), N2 atmosphere, 90 °C, 24 h.

the reaction outcome than electron-rich groups in the phenyl
ring (3a–f). The crystal structure of product 3i is shown in
Figure 2. Also, substituents in different positions of the phenyl
ring in acetylene 1 smoothly reacted with NaNO2 under the
reaction conditions affording the products in good to excellent
yields, which showed that the steric hindrance has little effect
on the reaction (3j–n). Furthermore, some heteroaromatic and
aliphatic alkynes were also utilized, and the corresponding
products 3o and 3p were isolated in good yields. We also tried
1,2-diphenylethyne as sustrate, which is an internal alkyne
instead of a terminal alkyne, but no desired product was ob-
tained.

Figure 2: Crystal structure of 3i.

Next, we explored the substrate scope of 2-methylquinolines
under the standard conditions. 2-Methylquinoline bearing dif-
ferent substituents at various positions gave the corresponding
products with moderate to good yields (Scheme 3). It was ob-
served that 2-methylquinoline with electron-deficient func-
tional groups afforded the corresponding products in excellent
yields of up to 92% (4a–c). Likewise, 2-methylquinoline substi-
tuted with electron-rich functional groups were suitable sub-
strates and achieved good results (4d and 4e). Fortunately,
various functional groups in different positions were also toler-
ated in the reaction (4f–k). Moreover, this reaction could be
carried out with 1-methylisoquinoline as substrate, which
afforded product 4l in 93% yield. Besides, we also tried
2-methylpyridine and 4-methylquinoline as substrates, but no
reaction was detected under the standard conditions (4m and
4n). In addition, there was no product formed when 2-formyl-
quinoline was used as the substrate.

To further demonstrate the synthetic versatility of this de-
veloped method, we carried out the reaction in a gram scale. It
was found that the desired product could be obtained in 87%
yield (Scheme 4).
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Scheme 4: Gram scale reaction.

Scheme 5: Control experiments and possible reaction mechanism.

Next, some control experiments were carried out to study the
reaction mechanism. We found that the reaction of compound
3a could not be inhibited by TEMPO and BHT under the stan-
dard conditions. Therefore, it is assumed that the reaction is not
a free radical reaction.

Based on the control experiments and previous literature [21],
we propose the following possible mechanism, which is shown
in Scheme 5. Aluminum trichloride reacts with sodium nitrite to
form an intermediate aluminum complex A, which is further
complexed with the starting material 2a to generate intermedi-
ate B and HONO [22]. Then, the intermediate B conjugates
with HONO to generate intermediate C [22]. Next, the interme-

diate D is produced by the same progress. The intermediate D
then undergoes elimination of nitroxylic acid to produce nitrile
oxide E [23], which can be converted to the desired isoxazole
with 1a through a 1,3-dipolar cycloaddition.

Conclusion
In conclusion, we have developed an efficient and concise syn-
thesis of isoxazole nitrogen heterocycles by direct C–H-bond
activation of methyl heteroaromatics. The method avoids using
toxic transition metals and provides a new way to synthesize
isoxazole molecules. Further related transformations of prod-
ucts and application of this method are currently developed in
our laboratory.
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Experimental
Representative procedure for the synthesis of compound 3a. To
a flame-dried 15 mL Schlenk tube filled with nitrogen,
2-methylquinoline (2a, 28.6 mg, 0.2 mmol), phenylacetylene
(1a, 10.2 mg, 0.1 mmol), AlCl3 (40.0 mg, 0.3 mmol), sodium
nitrite (35.0 mg, 1.0 mmol), and absolute dry DMAc (1.0 mL)
were added under nitrogen. The formed mixture was stirred at
90 °C under nitrogen for 24 h with TLC monitoring. Upon
completion, the solution was cooled to room temperature and
the solvent was removed under vacuum directly. The crude
residue was purified by column chromatography on silica gel
(ethyl acetate/petroleum ether 40:1) to afford product 3a with
87% yield.
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