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A series of imidazo[4,5-¢][1,3]thiazino[2,3-c][1,2,4]triazines was synthesized via a cascade sequence of hydrolysis and skeletal re-

arrangement of imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazin-7(8H)-ylidene)acetic acid esters in methanol upon treatment with excess

KOH. Imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazin-6(7H)-ylidene)acetic acid esters are also suitable substrates for the reaction. In

this case hydrolysis and thiazole ring expansion were accompanied with the change of the thiazolotriazine junction type from thia-

zolo[3,2-b][1,2,4]triazine to thiazino[2,3-c][1,2,4]triazine.

Introduction

Nitrogen- and sulfur-containing heterocyclic compounds are
widely represented in nature and used for the synthesis of bio-
logically active substances. Among the 1,3-thiazine derivatives,
promising compounds as antimicrobial and antiviral drugs
(PD404182) [1-4], sedative [5] and antitumor agents [6-8], as
well as fungicides [9,10] and insecticides [11] have been found
(Figure 1). The 1,3-thiazine heterocyclic system is comprised in
some natural phytoalexins (cyclobrassinin, sinalbins A and B,

rutalexin, and others) [12] and 7-aminocephalosporanic acid

(7-ACA), which is a key fragment of broad-spectrum
cephalosporin antibiotics [13,14].

Condensed 1,2,4-triazines attract attention of researchers due to
their diverse biological activities [15] and also their application
as starting materials for the constructing of new heterocyclic
systems [16,17]. Recent studies of the antitumor activity of
imidazo[4,5-e]thiazolo[2,3-c]-1,2,4-triazines revealed a number

of compounds with a high antiproliferative effect towards a
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Figure 1: Examples of natural and synthetic bioactive 1,3-thiazine and
imidazothiazolotriazine derivatives with high antiproliferative activity.

A) our previous work:

1 1
R 4 O R

NN~
N KOH
X I — X
_ﬂ/IN N/*S N, MeOH =
RZ

o} R2
R1 0 31
KOH N
X I X
= * MeOH =
2

R

B) current work:

Beilstein J. Org. Chem. 2023, 19, 1047-1054.

large number of human cancer cell lines (Figure 1) [18,19].
Therefore, the synthesis of new imidazothiazolotriazines and
closely related hybrid compounds including fragments of 1,3-

thiazine and imidazo-1,2,4-triazine is still highly relevant.

Earlier we have demonstrated that imidazo[4,5-e]thiazolo[3,2-
b]-1,2,4-triazines and their derivatives functionalized at posi-
tion 6 are capable of undergoing skeletal rearrangements and
transformations of the heterocyclic system proceeding by an
ANRORC mechanism under the action of KOH in methanol.
Thus, 6-oxindolylideneimidazo[4,5-e]thiazolo[3,2-b]-1,2,4-
triazines are transformed into substituted 2-oxoquinoline-4-
carboxylates in the presence of excess KOH [20] while their
6-arylmethylidene derivatives undergo rearrangement into
the corresponding isomeric derivatives of imidazo[4,5-¢]thia-
zolo[2,3-c]-1,2,4-triazine [18,21] (Scheme 1A).

In the present study, we report a new base-induced re-
cyclization of functionalized imidazothiazolotriazines 1 and 2
resulting in derivatives of the new heterocyclic system,
namely imidazo[4,5-e][1,3]thiazino[2,3-c][1,2,4]triazines 3
(Scheme 1B).

Results and Discussion
In a continuation of our studies [22] aimed at the synthesis of
functionalized imidazothiazolotriazine derivatives, we

attempted to hydrolyze the ester group of imidazothiazolotri-
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Scheme 1: Base-induced transformations and rearrangements of functionalized imidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine derivatives into new

heterocyclic systems.
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azines 1 and to prepare the corresponding carboxylic acids 4
using an aqueous KOH solution. Heating esters 1a,b in an
aqueous solution of KOH and subsequent addition of hydro-
chloric acid led to the corresponding acids 4a,b as the main
products. Acids 4a,b were isolated from the mixtures in 17 and
38% yield, respectively. However, we also detected by
'H NMR spectroscopy the formation of other minor products,
presumably derivatives of a new heterocyclic system,
imidazo[4,5-e][1,3]thiazino[2,3-c][1,2,4]triazines 5a,b
(Scheme 2).

To prepare the new compounds 5, the solvent, amount of KOH,
reaction time, and temperature were varied. Increasing the

amount of KOH and reaction time led to an increase in the yield

1) 1.5 equiv KOH,
H,0, reflux 30 min

R H
NNy
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of the potassium salts 3a,b even at room temperature. It was
found that stirring esters 1la—i in methanol in the presence of
2.5 equivalents of an aqueous solution of KOH provided
selective formation of imidazo[4,5-¢][1,3]thiazino[2,3-
c][1,2,4]triazines 3a—i as a result of ester group hydrolysis and
thiazolidine ring expansion to the corresponding thiazine
(Scheme 3). The potassium salts 3a,b were isolated in 81 and
63% yield, respectively. Compounds 3c—i were used in further

transformations without isolation.

'H NMR reaction monitoring showed that compound 1d under
conditions of excess of KOH in methanol undergoes alkaline
hydrolysis along with transesterification of the ester group to

give the ring-opened form 6d (Scheme 4), the maximum con-
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Scheme 2: Alkaline hydrolysis of esters 1a,b. 2Determined by 'H NMR spectroscopy; Pisolated yields.
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Scheme 3: Synthesis of potassium imidazo[4,5-¢][1,3]thiazino[2,3-c][1,2,4]triazine-7-carboxylates.
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Scheme 4: Plausible rearrangement mechanism of imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine 1d into imidazo[4,5-e][1,3]thiazino[2,3-c][1,2,4]triazine

3d.
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centration of which was observed approximately 30 minutes
after the start of the reaction. After an hour, the signals of the
starting imidazothiazolotriazine 1d disappeared, and after
2—-4 hours of reaction, only signals of the target product 3d were
observed in the "H NMR spectrum (Figure 2).

Compounds 3a-d,j were prepared from imidazo[4,5-
elthiazolo[3,2-b]-1,2,4-triazines 2a-d,j of linear structure under
similar conditions (Scheme 5). The isolated yield of the potas-
sium salt 3b (65%) corresponded to the yield of the product ob-
tained from the isomeric structure 1b of the angular type (63%),
while the yield of compound 3a (67%) in the analogous reac-
tion was inferior to that of the transformation of structure 1a
(81%). Salt 3j was isolated in 44% yield. The absence of signals
of the starting or intermediate compounds in the 'H NMR spec-
trum of the reaction mixture (for 3c,d) also indicates the com-
plete conversion of esters 2¢,d to the potassium salts 3c¢,d after
4 hours of reaction.

A one-pot method for the synthesis of 1,3-dimethylimidazo[4,5-

e][1,3]thiazino[2,3-c][1,2,4]triazine 3a was exemplified by
successive reactions of imidazo[4,5-¢][1,2,4]triazine 7 with

Bl

diethyl acetylenedicarboxylate and excess KOH.

Jhs

(a) B
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Acidification of aqueous solutions of potassium salts 3a,b,j or
the reaction masses containing potassium salts 3c—i in metha-
nol (obtained from 1c—i) with hydrochloric acid led to the for-
mation of the corresponding 1,3-dialkyl-2,9-dioxoimidazo[4,5-
e][1,3]thiazino[2,3-c][1,2,4]triazine-7-carboxylic acids 5a—j in
47-96% yields (Scheme 6).

The developed method is also applicable to substrates 8a—c [23]
substituted in the methylidene fragment. Thus, compounds 8a—c
were converted into the corresponding potassium salts 3k—m
under the same conditions (MeOH, room temperature, 1-24 h)
(Scheme 7). However, acidification of aqueous solutions of the
salts 3k—m with excess hydrochloric acid and further evapora-
tion of the solvent at 40 °C led to decomposition products, two
of which were isolated and characterized by NMR spectrosco-
py including 2D experiments and HRMS data. The target acids
5k,m were obtained using equivalent amounts of HCI at room
temperature. however, acid 51 underwent partial transformat-
ions even under these conditions and was not isolated as indi-

vidual substance.

We assumed the following mechanism for the formation of
products 9 (Scheme 8). Redistribution of the electron density in
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Figure 2: TH NMR spectra of the starting compound 1d (a) and the reaction mixture after 1.5 (b) and 4 (c) hours in DMSO-dj (the colored signals cor-

respond to the protons shown in red in Scheme 4).
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Scheme 5: Synthetic approaches to imidazo[4,5-e][1,3]thiazino[2,3-c][1,2,4]triazines 3a—d,j.
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the acid molecule 5 after protonation of the carbonyl group in
the thiazine ring leads to the cleavage of the triazine C—N bond.
Further proton transfer gives product 9.

The structures of the synthesized compounds 3a,b,j and Sa—k,m
were confirmed by IR, 'H and !3C NMR spectroscopy, and
high-resolution mass spectrometry. the potassium salts 3c—i,k,m

were characterized by their 'H and '3C NMR spectra.

In the 'H NMR spectra, the doublets of the bridging hydrogen
atom C(9a)H in compound 4 and C(10a)H in compound 5 are
characteristic signals which allow to attribute the synthesized
compounds to one of the two heterocyclic systems, i.e.,
imidazo[4,5-¢]thiazolo[2,3-c][1,2,4]triazine and imidazo[4,5-
e][1,3]thiazino[2,3-c][1,2,4]triazine. Thus, the signals of the

©

corresponding protons for isomeric acids 4a and 5a appeared at
0 5.59 and 6.23 ppm, respectively, that is obviously due to a
deshielding effect of the carbonyl group of the products 4a and
5a as well as its closer location in structures 5 (Figure 3).

In the downfield region of the 13C NMR spectra registered
without proton decoupling for isomeric acids 4a and 5a, the car-
bon atom doublets of the carboxyl groups, carbonyl groups of
thiazole (for 4a) or thiazine (for 5a) cycles, as well as multi-
plets of carbonyl groups of the urea fragment are observed
(Figure 4). Values of spin—spin interaction constants >Jcy equal
to 5.3-6.0 Hz indicate the cis-orientation of the vinyl proton and
the carbonyl (for 4a, blue) or the carboxyl group (for 5a, red)
relative to the double bond [24-26]. The values of spin—spin
interaction constants of other doublets (/¢ = 1.3—1.5 Hz) indi-
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NTIPNT g N7I™NT s
Me H N Me H 1
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C(10a)-H
I - L
8‘5 8.0 7‘.5 7‘0 6.5 6.0 5‘.5 5‘0 4‘.5 opm

Figure 3: 'H NMR spectra of compounds 4a and 5a in DMSO-dg in the region of 4.3-9.0 ppm.
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Figure 4: 13C NMR GATED spectra of compounds 4a and 5a in DMSO-dg in the region of 156.0—168.0 ppm.

cate the position of the carboxyl (for 4a, red) or carbonyl (for
5a, blue) groups through two bonds relative to the olefinic
proton.

The structure of compound 5a was additionally confirmed by

X-ray structural analysis data (Figure 5).

)
AN
@’% \P{\\,\@»

4N Y

T~

Figure 5: General view of 5a in the crystal in thermal ellipsoid repre-
sentation (p = 80%).

Conclusion

In summary, routes for the selective formation of various deriv-
atives of the new heterocyclic system, imidazo[4,5-
e][1,3]thiazino[2,3-c][1,2,4]triazine, were found during the
cascade processes of alkaline hydrolysis of the ester group in
functionalized derivatives of imidazo[4,5-¢]thiazolo[3,2-
b][1,2,4]triazine or imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine

and the expansion of the thiazolidine ring to a thiazine core. The
methodology proved to be effective for the preparation of a
series of target compounds with different substituents in the

tricyclic fragment.
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