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A convenient synthetic procedure for the construction of novel dispirooxindole motifs was successfully developed by base-

promoted three-component reaction of ammonium acetate, isatins and in situ-generated 3-isatyl-1,4-dicarbonyl compounds. The pi-

peridine-promoted three-component reaction of ammonium acetate, isatins and the in situ-generated dimedone adducts of 3-ethoxy-

carbonylmethyleneoxindoles afforded mutlifunctionalized dispiro[indoline-3,2'-quinoline-3',3"-indoline] derivatives in good yields

and with high diastereoselectivity. On the other hand, a similar reaction of the dimedone adducts of 3-phenacylideneoxindoles

afforded unique dispiro[indoline-3,2'-pyrrole-3',3"-indoline] derivatives with a cyclohexanedione substituent. A plausible reaction

mechanism is proposed to explain the formation of the different spirooxindoles.

Introduction

Spirooxindole is one important privileged structural skeleton
and is found in many bioactive natural and synthetic com-
pounds [1-3]. It is known that many spirooxindole derivatives
show important biological activities [4-6]. On the other hand, a
wide range of differently substituted spirooxindoles exist [7-9].
Therefore, the development of efficient synthetic methodolo-
gies for diverse spirooxindoles have become one of the hottest
research fields in organic and pharmaceutical chemistry [10,11].
In order to synthesize diverse spirooxindole derivatives, com-

mercially available isatins and easily obtainable 3-methylene-

oxindolines were the most employed building blocks [12-15].
On the other hand, Morita—Baylis—Hillman (MBH) carbonates
of isatins, which could be easily prepared by the MBH reac-
tions of isatins with acrylonitrile or alkyl acrylates also became
valuable synthons [16-25]. The active 3-methyleneoxindoles
could act as Michael acceptors, 1,3-dipolarophiles, 1,4-dieno-
philes and other multiple substrates. They have been widely em-
ployed as key component to finish many multicomponent and
domino reactions [26-35]. Recently, the Michael adduct of

3-methyleneoxindoles with various nucleophiles, especially
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active methylene compounds, have attracted much attentions
[36-41]. This kind of Michael adduct has more than one reac-
tive site and could proceed domino reactions with various elec-
trophiles [42-49]. In this respect, several elegant domino or
multicomponent reactions have been successfully developed to
construct multifunctionalized or polycyclic spirooxindoles. For
example, Zhang successfully developed a recyclable bifunc-
tional cinchona/thiourea-catalyzed four-component Michael/
Mannich cyclization sequence for the asymmetric synthesis of
spirooxindoles, in which the in situ-generated Michael adduct
of 3-ethoxycarbonylmethyleneoxindole underwent a Mannich
reaction and annulation reaction with in situ-generated
aldimines (reaction 1 in Scheme 1) [50,51]. Tanaka reported
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reactions of nitrostyrenes with previously prepared oxindole-
functionalized dihydrobenzofuranones (reaction 2 in Scheme 1)
[52]. We reported a piperidine-promoted domino reaction of
thiophenols and two molecules of 3-phenacylideneoxindoles to
give multifunctionalized dispirocyclopentanebisoxindoles (reac-
tion 3 in Scheme 1), in which the in situ-generated adduct of
thiophenol and 3-phenacylideneoxindole was believed to be the
key intermediate [53-55]. Inspired by these elegant synthetic
protocols and in continuation of our aim to develop convenient
reactions for the synthesis of diverse spiro compounds [56-62],
we investigated the base-promoted annulation reaction of dime-
done adducts of 3-methyleneoxindoles, with isatin and ammoni-
um acetate. It was unexpectedly found that novel dispiro[indo-

line-3,2'-quinoline-3',3"-indoline] and dispiro[indoline-3,2'-
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Scheme 1: Representative cascade reactions of Michael adducts of 3-methyleneoxindoles.
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pyrrole-3',3"-indoline] were selectively produced by using dif-
ferently substituted 3-methyleneoxindoles (reaction 4 in

Scheme 1). Herein, we wish to report these interesting results.

Results and Discussion

At first, 3-isatyl-1,4-dicarbonyl compound 1 was prepared by
DBU-catalyzed Michael addition reaction of dimedone and
ethyl 2-(2-oxoindolin-3-ylidene)acetate in toluene according to
the published method [52]. Then, the reaction conditions of the
three-component reaction of isatyl adduct 1a (0.20 mmol),
isatin 2a (0.20 mmol) and ammonium acetate (0.5 mmol) were
examined according to Zhang and co-workers reported reaction
(reaction 1 in Scheme 1) [12]. In the presence of piperidine, the
reaction in methanol at room temperature did not yield the prod-
uct (Table 1, entry 1). However, the reaction in methanol at
elevated temperature gave the expected spiro compound 3a in
51% and 48% yields, respectively (Table 1, entries 2 and 3).
The reaction in other solvents such as acetonitrile, toluene and
ethyl acetate at 50 °C gave the desired product 3a in very low
yields (Table 1, entries 4-6). When the reaction was carried out
in a mixture of toluene and methanol (v/v = 2:1) in the pres-
ence of piperidine, the yield of 3a increased to 60% (Table 1,
entry 7). When DABCO or DBU was employed as base, the

Table 1: Optimizing reaction conditions.?

Entry Base Solvent

1 piperidine MeOH

2 piperidine MeOH

3 piperidine MeOH

4 piperidine CH3CN

5 piperidine toluene

6 piperidine EtOAc

7 piperidine toluene/MeOH
8 DABCO toluene/MeOH
9 DBU toluene/MeOH
10 piperidine® toluene/MeOH
11 piperidined toluene/MeOH
12 piperidine® toluene/MeOH
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yield of 3a decreased to 36% and 29% yield, respectively
(Table 1, entries 8 and 9). When the loading of ammonium
acetate was increased to 0.8 mmol and 1.0 mmol, the yield of
3a increased to 85% and 82% (Table 1, entries 10 and 11).
Prolonging the reaction time did not increase the yield of prod-
uct 3a (Table 1, entry 12). Therefore, the optimized reaction
conditions found for this three-component reaction are the use
of a mixture of methanol and toluene at 50 °C for seven hours

in the presence of piperidine.

With the optimized reaction conditions in hand, the scope of the
reaction was investigated by using various substrates. The
results are summarized in Table 2. All reactions proceeded
smoothly to give the desired dispiro compounds 3a—m in satis-
factory yields. Various isatins with different substituents can be
successfully used in the reaction. The substituents showed
marginal effects on the yields. On the other hand, the dimedone
adducts of alkyl 2-(2-oxoindolin-3-ylidene)acetate with various
substituents were also successfully employed in the reaction to
give the desired products. It can be seen that the dimedone
adducts of alkyl 2-(2-oxoindolin-3-ylidene)acetate with
5-chloro and 5-fluoro substituent gave the spiro compounds
3a-k in satisfactory yields. However, the dimedone adducts of

base
NH4OAc
solvent

T(°C) Time (h) Yield (%)°
25 7 nr
50 7 51
60 7 48
50 7 20
50 7 32
50 7 26
50 7 60
50 7 36
50 7 29
50 7 85
50 7 82
50 12 84

@Reaction conditions: 3-isatyl-1,4-dicarbonyl compound 1 (0.20 mmol), isatin 2 (0.20 mmol), NH4OAc (0.50 mmol), base (0.30 mmol), solvent
(4.0 mL). Psolated yields. °NH4OAc (0.8 mmol) was used; INH4OAc (1.0 mmol) was used.
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Table 2: Synthesis of the dispirooxindoles 3a-m.2

Beilstein J. Org. Chem. 2023, 19, 1234-1242.

)
e}
” R“\@E@: piperidine
+ O + NH4OAc
N toluene/MeOH
N, hs 50°C,7h
R2
Entry Compd R? R3 R2 R4 RS Yield (%)°
1 3a Cl CoHs Bn CH3 Bn 85
2 3b Cl CoHs Bn Cl Bn 78
3 3c Cl CoHs Bn Cl n-Bu 82
4 3d Cl CoHs Bn CHs n-Bu 81
5 3e Cl CQH5 Bn H H 69
6 3f Cl CQH5 Bn CH3 H 70
7 3g Cl CoHs Bn of H 72
8 3h Cl CoHs Bn F H 70
9 3i Cl CoHs H CH3 Bn 68
10 3j Cl CHs Bn CH3 Bn 72
11 3k F CHg Bn CHz Bn 69
12 3l H CoHs Bn of Bn 42
13 3m CHz CoHs Bn of Bn 48

@Reaction conditions: 3-isatyl-1,4-dicarbonyl compound 1 (0.20 mmol), isatin 2 (0.20 mmol), NH4OAc (0.80 mmol), piperidine (0.30 mmol), toluene

(2.0 mL), MeOH (2.0 mL), 50 °C, 7 h. PIsolated yields.

ethyl 2-(2-oxoindolin-3-ylidene)acetate itself and its deriva-
tives with 5-methyl group gave the products 31 and 3m in mod-
erate yields. The chemical structures of the obtained dispiro
compounds 3a—m were fully characterized by IR, HRMS, 'H
and 13C NMR spectroscopy. Because of the three chiral carbon
atoms in the product, several diastereomers might be formed in
the reaction. However, TLC monitoring and 'H NMR spectra of
the crude products clearly indicated that only one diastereoiso-
mer was predominately produced in the reaction, while the
other possible diastereomers were not detected. This result
shows that this reaction has a high diastereoselectivity due to
the large steric effect of two oxindole scaffolds and the thermo-
dynamically controlling effect. The single crystal structure of
compound 3a was determined by X-ray crystallographic
diffraction (Figure 1). From Figure 1 it can be seen that the two
scaffolds of oxindole at neighboring positions are in trans-con-
figuration. The ethoxycarbonyl group is also in trans-position to
the carbonyl group in the neighboring oxindole scaffold. There-
fore, it can be concluded that the obtained dispiro compounds
3a-m have this kind of relative configuration on the basis of
'H NMR spectra and crystal structure determination. It should

be pointed out that ammonium acetate was employed as

Figure 1: Crystal structure of dispiro compound 3a.

nitrogen source in this three-component reaction. For investigat-
ing the scope of this reaction, aniline was also used in the reac-
tion, but in this case no expected dispirooxindoles could be ob-

tained.
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In order to investigate the scope of this reaction, similar dime-
done adducts of 3-phenacylideneoxindoles were used in the
three-component reaction. To our surprise, instead of the above
mentioned dispiro[indoline-3,2'-quinoline-3',3"-indolines]
3a—m, the novel dispiro[indoline-3,2'-pyrrole-3',3"-indoline] de-
rivatives 4a—i were obtained in high yields. The results are sum-
marized in Table 3. The structural analysis showed that the car-
bonyl group of the dimedone does not take part in the further
cyclization reaction, while the carbonyl group of the benzoyl
group participated in the annulation reaction to give the
pyrrolidyl ring. This result clearly indicated that the adducts of
3-phenacylideneoxindoles showed different reactivity to that of
the adducts of 3-ethoxycarbonylmethyleneoxindoles. For
confirming the chemical structures of dispirooxindoles 4a—i, the
single crystal structure of compound 4a was determined by
X-ray diffraction (Figure 2). In Figure 2, the two oxindole scaf-
folds are in trans-position. The dimedone moiety is also in
trans-position to the carbonyl group in the neighboring oxin-

Table 3: Synthesis of dispirooxindoles 4a—p.2

Beilstein J. Org. Chem. 2023, 19, 1234-1242.

dole scaffold. To demonstrate the synthetic value of this three-
component reaction, 3-phenacylideneoxindole adducts of 1,3-

cyclohexanedione were also employed in the reaction. In the

Figure 2: Crystal structure of compound 4a.

(0]
Rm piperidine
+ 0O + NH4O0Ac
N toluene/MeOH
R5 50°C,7h
4a-p

Entry Compd R! R2 Ar R3 R4 R Yield (%)P
1 4a Cl Bn p-CH3CgHy CH3 CH3 Bn 85
2 4b Cl Bn p-CH3CgH4 CH3 Cl Bn 68
3 4c Cl Bn p-CH3CgH4 CH3 H Bn 75
4 4d Cl Bn p-CH3CgH4 CH3 CH3 n-Bu 72
5 4e Cl Bn p-ClCgHg4 CHs CHs Bn 63
6 4f CH3 Bn p-CICgHg4 CH3 CH3 Bn 51
7 49 Cl Bn p-CH306H4 CH3 H H 34
8 4h Cl n-Bu p-CH30CgH4 CH3 CH3 Bn 65
9 4i Cl H p-CH30CgH4 CH3 CH3 Bn 62
10 4j Cl Bn p-CH3CgH4 H CH3 Bn 71
11 4k Cl Bn p-CH3CgH4 H Cl Bn 68
12 4 Cl Bn p-CH3CgH4 H H Bn 64
13 4m Cl Bn p-CH3CgHy H Cl n-Bu 65
14 4n Cl Bn p-CH3CgH4 H CH3 H 52
15 40 Cl Bn p-CH3CgH4 H CH3 n-Bu 63
16 4p Cl Bn p-CICgH4 H CH3 Bn 73

@Reaction conditions: 3-isatyl-1,4-dicarbonyl compound 1 (0.20 mmol), isatin 2 (0.20 mmol), NH4OAc (0.80 mmol), piperidine (0.30 mmol), toluene

(2.0 mL), MeOH (2.0 mL), 50 °C, 7 h. PIsolated yields.
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presence of piperidine, the three-component reaction proceeded
smoothly at room temperature in twelve hours to give the ex-
pected dispiro[indoline-3,2'-pyrrole-3',3"-indoline] derivatives
4j-p in satisfactory yields. The 1,3-cyclohexanedione moiety
does not take part in the further cyclization process. These
results show that this reaction is largely general. The 'H NMR
spectra of the obtained compounds 4j—p clearly show similar
chemical shifts of the characteristic groups as the spiro com-
pounds 4a—i. Therefore, it can be concluded that the spiro com-
pounds 4j—p have the same relative configuration as the spiro
compounds 4a-i.

In order to explain the formation of different cyclic compounds,
a plausible reaction mechanism was proposed in Scheme 2 on
the basis of the present experiments and the previous works [51-
53]. Firstly, 3-isatyl-1,4-dicarbonyl compound 1 was converted
to a carbanion in the presence of base. In the meantime, the con-
densation of isatin 2 with ammonium acetate gave the
3-iminoisatin intermediate A. Secondly, Michael addition of the

Scheme 2: Proposed reaction mechanism.

Beilstein J. Org. Chem. 2023, 19, 1234-1242.

in situ-generated carbanion of the 3-isatyl-1,4-dicarbonyl com-
pound 1 to 3- iminoisatin A gave intermediate B. In the case of
intermediate B1 with an ethoxycarbonyl group, the nucleo-
philic addition of the amino anion to the carbonyl group in the
of 1,3-cyclohexanedione scaffold resulted in cyclic intermedi-
ate C. Thirdly, the elimination of water from intermediate C
gave the isolated product 3. In the case of the intermediate B2
with a benzoyl group, there are two kinds of reactive carbonyl
groups in intermediate B2, one carbonyl group is in the benzoyl
moiety and another carbonyl group is in the 1,3-cyclohexane-
dione part. In this case the amino group selectively attacked the
benzoyl group to give cyclic intermediate D, while the two car-
bonyl groups in the 1,3-cyclohexanedione moiety remained
unreacted. Then, the final product 4 was formed by elimination
of water. Thus, the spiro compounds 3 and 4 were selectively
produced due to the different reaction process. Thus, the
3-isatyl-1,4-dicarbonyl compounds derived from 3-ethoxycar-
bonylmethyloxindoles and 3-phenacylideneoxindoles resulted
in the two different novel dispirooxindole skeletons.
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Conclusion

In summary, we have investigated the base-promoted multicom-
ponent reaction of 3-methyleneoxindoles, dimedone, isatins and
ammonium acetate. The reaction showed very interesting mo-
lecular diversity and diastereoselectivity. This reaction provi-
ded efficient synthetic protocols for the synthesis of
dispiro[indoline-3,2'-quinoline-3',3"-indoline] and dispiro[indo-
line-3,2'-pyrrole-3',3"-indoline] derivatives. A plausible reac-
tion mechanism was proposed to explain the selective forma-
tion of the different polycyclic compounds. This reaction has
the advantages of using readily available materials, simple
reaction conditions, satisfactory yields, high diastereoselectiv-
ity and atomic economy, which enable this reaction potential
synthetic applications in heterocyclic chemistry and medicinal

chemistry.

Experimental
General procedure for the preparation of

compounds 3a—m

To a round flask was added 3-isatyl-1,4-dicarbonyl compound 1
(0.20 mmol), isatin 2 (0.20 mmol), ammonium acetate
(0.80 mmol), piperidine (0.30 mmol), toluene (2.0 mL) and
methanol (2.0 mL). The mixture was heated at 50 °C for seven
hours. After removing the solvent by rotatory evaporation at
reduced pressure, the residue was subjected to column chroma-
tography (silicon gel, 300-400 mesh) with petroleum ether
and ethyl acetate (v/v = 1:1) to give the pure product for analy-

sis.

Ethyl rel-(3R,3'S,4'R)-1,1''-dibenzyl-5,5""-dichloro-7',7'-
dimethyl-2,2"",5'-trioxo-1',4',5',6',7',8'-hexahydrodi-
spiro[indoline-3,2'-quinoline-3',3''-indoline]-4'-carboxylate
(3a): White solid, 78%, mp 280-282 °C; 'H NMR (400 MHz,
CDCl3) 8 7.43 (d, J = 2.0 Hz, 1H, ArH), 7.34-7.28 (m, 6H,
ArH), 7.51 (s, 1H, ArH), 7.24 (s, 2H, ArH), 7.23 (s, 1H, ArH),
7.20-7.17 (m, 3H, ArH), 7.11-7.09 (m, 1H, ArH), 7.0-6.98 (m,
1H, ArH), 6.40 (d, J = 8.4 Hz, 1H, ArH), 6.26 (d, J = 8.4 Hz,
1H, ArH), 5.01 (d,J = 16.4, 1H, CH,), 4.89 (d, J = 15.6 Hz, 1H,
CH,), 4.78 (d, J = 15.6 Hz, 1H, CH>), 4.76 (s, 1H, NH), 4.74 (s,
1H, CH), 4.66 (d, J = 16.4 Hz, 1H, CH,), 3.94-3.87 (m, 1H,
CH,), 3.84-3.77 (m, 1H, CHy), 2.46 (d, J = 16.0 Hz, 1H, CH>),
2.39 (d, J = 16.0 Hz, 1H, CH>), 2.37-2.34 (m, 2H, CH,), 1.30
(s, 3H, CH3), 1.15 (s, 3H, CHj3), 0.76 (t, J = 7.2 Hz, 3H, CHj3)
ppm; 13C NMR (101 MHz, CDCl3) & 193.0, 173.8, 171.9,
171.2, 155.6, 142.0, 141.8, 134.8, 134.1, 131.0, 129.3, 129.1,
128.8, 128.7, 128.6, 127.9, 127.5, 127.5, 127.1, 127.1, 127.0,
126.2, 125.9, 125.6, 124.9, 110.9, 110.3, 102.3, 62.3, 60.3, 50.0,
49.4, 44.4, 442, 42.5, 42.4, 32.9, 29.0, 27.6, 13.5 ppm; IR
(KBr) v: 3504, 3024, 3010, 2995, 2985, 1847, 1711, 1603,
1517, 1400, 1299, 1250, 1053, 953, 841 cm™!'; HRMS (ESI-

Beilstein J. Org. Chem. 2023, 19, 1234-1242.

TOF): [M + Na]* caled. for C4,H37C1,N305, 756.2002; found,
756.1989.

General procedure for the preparation of

compounds 4a—p

To a round flask was added 3-isatyl-1,4-dicarbonyl compound 1
(0.20 mmol), isatin 2 (0.20 mmol), ammonium acetate
(0.80 mmol), piperidine (0.30 mmol), toluene (2.0 mL) and
methanol (2.0 mL). The mixture was heated at 50 °C for seven
hours. After removing the solvent by rotatory evaporation at
reduced pressure, the residue was subjected to column chroma-
tography (silicon gel, 300—400 mesh) with petroleum ether and
ethyl acetate (v/v = 4:1) to give the pure product for analysis.

rel-(3R,3'S,4'R)-1,1''-Dibenzyl-5'"-chloro-4'-(2-hydroxy-4,4-
dimethyl-6-oxocyclohex-1-en-1-yl)-5-methyl-5'-(p-tolyl)-4'H-
dispiro[indoline-3,2'-pyrrole-3',3"'-indoline]-2,2''-dione (4a):
White solid, 60%, mp 250-251 °C; '"H NMR (400 MHz,
CDCl3) 8 10.86 (s, 1H, OH), 7.80 (d, J = 8.0 Hz, 2H, ArH),
7.51 (s, 1H, ArH), 7.21 (d, J = 8.4 Hz, 2H, ArH), 7.18-7.11 (m,
4H, ArH), 7.10-7.05 (m, 3H, ArH), 7.00-6.97 (m, 2H, ArH),
6.76 (d, J = 7.2 Hz, 2H, ArH), 6.65 (d, J = 7.6 Hz, 2H, ArH),
6.46 (d, J = 8.0 Hz, 1H, ArH), 6.28 (d, J = 8.4 Hz, 1H, ArH),
5.65 (s, 1H, CH), 5.18 (d, J = 16.4 Hz, 1H, CH,), 5.09 (d, J =
16.0, 1H, CHy), 4.47 (d, J = 4.8 Hz, 1H, CH)), 4.43 (d, J =
5.2 Hz, 1H, CH,), 2.41 (d, J = 26.8 Hz, 1H, CH>), 2.40 (s, 3H,
CHj3), 2.21 (d, J = 18.4 Hz, 1H, CHy), 2.10 (s, 1H, CHj3), 2.05
(s, 1H, CHy), 1.87 (d, J = 16.0 Hz, 1H, CH,), 1.00 (s, 3H, CH3),
0.99 (s, 3H, CHz) ppm; '3C NMR (101 MHz, CDCl3) 5 197.5,
181.6, 177.4, 177.2, 173.0, 142.8, 142.2, 140.6, 134.7, 134.3,
133.9, 130.2, 130.0, 129.1, 128.8, 128.7, 128.5, 128.4, 127.5,
127.3, 127.1, 127.0, 126.4, 126.2, 126.1, 126.0, 112.1, 109.8,
109.7, 87.2, 61.8, 53.7, 50.0, 44.5, 44.4, 43.6, 30.7, 29.9, 26.3,
21.6, 20.9 ppm; IR (KBr) v: 3756, 3056, 3023, 2984, 2988,
1832, 1792, 1526, 1545, 1368, 1285, 1145, 1025, 956, 882
cm™!; HRMS (ESI-TOF): [M + H]* calcd. for C4gH44CIN3Os,
760.2937; found, 760.2921.

Supporting Information

The crystallographic data of compounds 3a (CCDC
2223538) and 4a (CCDC 2223539) have been deposited at
the Cambridge Crystallographic Database Center

(http://www.ccdc.cam.ac.uk).

Supporting Information File 1

Characterization data, |H NMR, B¢ NMR, and HRMS
spectra of the compounds.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-19-91-S1.pdf]
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