

# Oxidative hydrolysis of aliphatic bromoalkenes: scope study and reactivity insights

Amol P. Jadhav and Claude Y. Legault\*



# Abstract

We have developed an operationally simple method for the synthesis of dialkyl  $\alpha$ -bromoketones from bromoalkenes by utilizing a hypervalent iodine-catalyzed oxidative hydrolysis reaction. This catalytic process provides both symmetrical and unsymmetrical dialkyl bromoketones with moderate yields across a broad range of bromoalkene substrates. Our studies also reveal the formation of Ritter-type side products by an alternative reaction pathway.

# Introduction

Organic synthesis heavily relies on oxidative transformations to facilitate chemical reactions. One popular method for achieving these transformations is using redox-active metals, inspired by Nature's metalloproteins. However, using toxic and expensive metals is not always practical, making alternative oxidative methodologies more appealing. Enter hypervalent iodine reagents – a leading metal-free choice for oxidation reactions. These robust and low-toxicity reagents have gained popularity due to their commercial availability [1-5] and versatility for phenolic dearomatizations, oxidative annulations, fragmentations, and oxidative rearrangements [6-11]. In particular, iodine(III) reagents have been proven effective for a wide range

of oxidative transformations, cementing their position as a go-to option for organic chemists.

Based on our continued interest in iodine(III)-mediated chemistry, we have explored numerous strategies in oxidative transformations such as direct  $\alpha$ -tosyloxylation of ketones [12-14], and the oxidation of enol esters [15,16], to access  $\alpha$ -functionalized ketones. We recently developed the oxidative contraction of 3,4-dihydropyranones to access polysubstituted  $\gamma$ -butyrolactones [17]. In 2015 we demonstrated that [hydroxy(tosyloxy)iodo]benzene (HTIB) could be used to convert chloro- and bromoalkenes into their corresponding  $\alpha$ -halo ketone products in usually very high yields (Scheme 1a) [18,19]. However, the haloalkenes used in this previous study as  $\alpha$ -substituted ketone precursors were limited to either styryl analogs or stilbene type haloalkenes, with the only exception of 1-bromocycloheptene as fully aliphatic substituted substrate which resulted in a low yield of the desired product. Also, this method involved using a stoichiometric amount of HTIB for the transformation.



α-Haloketones are 1,2-difunctionalized synthons which are very versatile and essential building blocks for their role in the synthesis of heterocyclic compounds [20-22]. Particularly dialkyl bromoketones have been utilized in natural product synthesis [23-25], also as a precursor to reactive oxyallyl cation intermediates [26-28], and for their photochemical reactions [29]. However, the direct halogenation of unsymmetrical ketones for the synthesis of dialkyl bromoketones would result in a mixture of regioisomers given the presence of enolizable protons on each side of the ketone (Scheme 1b). Recently Toy et al. have disclosed the selective synthesis of an  $\alpha$ , $\beta$ -unsaturated ketones using external halide source [30]. We envisioned that dialkyl bromoalkenes **1** could be used as enol analogs with an improvement in reaction conditions in the presence of I(III) reagents to

directly get both symmetrical and unsymmetrical dialkyl bromoketones **2** (Scheme 1c). Recent methods have been reported to access bromoalkenes such as **1** from easily accessible substrates, making the approach even more appealing [31,32].

### Results and Discussion

Given its low volatility, we initiated our studies by testing the reactivity of (E/Z)-1,8-diphenyl-4-bromooct-4-ene (1a) with HTIB (1.1 equiv) and cat. TsOH·H<sub>2</sub>O (0.2 equiv) in acetonitrile. These reaction conditions afforded the desired product 2a in moderate yield (51%), along with 21% mixture of regioisomers 3a and 3a' obtained from Ritter-type reaction of 1a with CH<sub>3</sub>CN in the presence of HTIB (Table 1, entry 1).

We explored the influence of different variables to counteract the formation of 3a and 3a'. We first envisioned that the use of the more hindered, mesityl-derived Koser's reagent, could drastically influence the formation of the side-products. Unfortunately, its use resulted in a drop of the yield for the desired α-bromoketone (Table 1, entry 2). In situ generation of Koserlike reagent by addition of excess TsOH·H<sub>2</sub>O (2.0 equiv) to either PIDA or p-OMe-PIDA did not further improve the yield for  $\alpha$ -bromoketone (Table 1, entries 3 and 4). We envisioned that altering the iodonium intermediate counterion by replacing TsOH with either MsOH or HNTf<sub>2</sub> as an acid additive (2.0 equiv) could influence the formation of 3a/3a'. The use of these acids in the presence of PIDA did not show any significantly altering reaction outcome (Table 1, entries 5 and 6). We then replaced acetonitrile with dichloromethane to completely prevent the formation of 3a/3a'. Unfortunately, while it eliminated the side products, it further limited the yield for  $\alpha$ -bromoketone, whereas no reactivity was seen when EtOAc and DMA were used as solvents (Table 1, entries 7-9). The use of HFIP led to complete conversion of 1a, but no observation of the desired product 2a (Table 1, entry 10).

We then explored catalytic conditions for the generation of the iodine(III) reagent. Remarkably, when catalytic PhI (0.2 equiv) was employed for in situ generation of Koser's reagent by using *m*-CPBA (1.2 equiv) as an oxidant, almost similar results were obtained (Table 2, entry 1) with those obtained by stoichiometric use of HTIB. Attempt to perform the reaction using a catalytic amount of 2-iodobenzoic acid (0.2) under similar oxidizing conditions resulted in slightly diminished yield for the desired *a*-bromoketone (Table 2, entry 2). Notably, the direct use of HTIB as the catalyst, with a catalytic amount of TsOH·H<sub>2</sub>O (0.2 equiv each), in the presence of *m*-CPBA (1.2 equiv) proved to be the most superior conditions (59% NMR yield, Table 2, entry 3). To rule out the possibility of direct involvement of *m*-CPBA in the oxidative hydrolysis reaction, **1a** was reacted in the absence of any hypervalent iodine

| Table 1: (     | Conditions screening            | (without oxidant) <sup>a</sup> .                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       |                                                                                 |
|----------------|---------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                | Ph<br>2<br>1a<br>HO             | -I-OTs<br>Ph<br>HO-I-OTs<br>HO-I-OTs<br>Me<br>Ph<br>Me<br>Me<br>Me<br>Mes-Koser's | $\xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Q} \xrightarrow{Ph} \xrightarrow{2} \xrightarrow{Ph} \xrightarrow{2} \xrightarrow{Ph} \xrightarrow{2} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{P} \xrightarrow{O} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{O} \xrightarrow{P} \xrightarrow{O} \xrightarrow{P} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{P} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{O} \xrightarrow{P} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow{P} \xrightarrow{O} \xrightarrow{Ph} \xrightarrow$ | $Ph + Ph \begin{pmatrix} 2 \\ 2 \end{pmatrix}$<br>$Ph \begin{pmatrix} 2 \\ 2 \end{pmatrix}$<br>$Ph \begin{pmatrix} 2 \\ 2 \end{pmatrix}$<br>(mixture) | Br<br>2 Ph<br>2 Ph<br>1HAc<br>+<br>2 Ph<br>1HAc<br>3a + 3a'<br>re of regiomers) |
| Entry          | Solvent                         | HVI source (equiv)                                                                | Additive (equiv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>2a</b> [%] <sup>b</sup>                                                                                                                            | 3a + 3a' [%] <sup>b,c</sup>                                                     |
| 1              | CH <sub>3</sub> CN              | HTIB (1.1)                                                                        | TsOH·H <sub>2</sub> O (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51                                                                                                                                                    | 21                                                                              |
| 2              | CH <sub>3</sub> CN              | Mes-Koser's (1.1)                                                                 | TsOH·H <sub>2</sub> O (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36                                                                                                                                                    | 18                                                                              |
| 3              | CH <sub>3</sub> CN              | PIDA (1.1)                                                                        | TsOH·H <sub>2</sub> O (2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42                                                                                                                                                    | 28                                                                              |
| 4              | CH <sub>3</sub> CN              | p-OMe-PIDA (1.1)                                                                  | TsOH·H <sub>2</sub> O (2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                                                                                                                                    | 18                                                                              |
| 5 <sup>d</sup> | CH <sub>3</sub> CN              | PIDA (1.1)                                                                        | MsOH (2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46                                                                                                                                                    | 28                                                                              |
| 6 <sup>d</sup> | CH <sub>3</sub> CN              | PIDA (1.1)                                                                        | HNTf <sub>2</sub> (2.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                                                                                                    | trace                                                                           |
| 7              | CH <sub>2</sub> Cl <sub>2</sub> | HTIB (1.1)                                                                        | TsOH·H <sub>2</sub> O (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25                                                                                                                                                    | na                                                                              |
| •              | EtOAc                           | HTIB (1 1)                                                                        | TsOH·H <sub>2</sub> O (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NR                                                                                                                                                    | na                                                                              |
| 8              | LIOAU                           |                                                                                   | <i>E</i> \ <i>/</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |                                                                                 |
| 8<br>9         | DMA                             | HTIB (1.1)                                                                        | TsOH·H <sub>2</sub> O (0.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NR                                                                                                                                                    | na                                                                              |

<sup>a</sup>Unless otherwise stated 0.1 mmol of **1a** was used with 0.1 M conc. of solvent. <sup>b</sup>NMR yield determined by <sup>1</sup>H NMR of the crude reaction mixture using an internal standard. <sup>c</sup>Combined yield of regioisomers. <sup>d</sup>5.0 equiv H<sub>2</sub>O were added to the reaction.

| Table 2: Conditions screening (with oxidant) <sup>a</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                               |                             |                      |                            |                                    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|-----------------------------|----------------------|----------------------------|------------------------------------|--|--|--|--|
| $Ph \xrightarrow{x}_{2} Ph \xrightarrow{l(III) reagent}_{rt, 24 h} Ph \xrightarrow{y}_{2} Ph \xrightarrow{h}_{rt, 24 h} Ph \xrightarrow{y}_{2} Ph \xrightarrow{h}_{2} P$ |                    |                               |                             |                      |                            |                                    |  |  |  |  |
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Solvent            | Catalyst (equiv)              | Additive (equiv)            | Oxidant (equiv)      | <b>2a</b> [%] <sup>b</sup> | <b>3a + 3a'</b> [%] <sup>b,c</sup> |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> CN | PhI (0.2)                     | TsOH·H <sub>2</sub> O (0.2) | <i>m</i> -CPBA (1.2) | 51                         | 23                                 |  |  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> CN | 2-I-PhCO <sub>2</sub> H (0.2) | TsOH·H <sub>2</sub> O (0.2) | <i>m</i> -CPBA (1.2) | 41                         | 22                                 |  |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> CN | HTIB (0.2)                    | TsOH·H <sub>2</sub> O (0.2) | <i>m</i> -CPBA (1.2) | 59                         | 24                                 |  |  |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> CN | none                          | none                        | <i>m</i> -CPBA (1.2) | 5                          | 20                                 |  |  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CH <sub>3</sub> CN | none                          | TsOH·H <sub>2</sub> O (1.1) | <i>m</i> -CPBA (1.2) | 13                         | 15                                 |  |  |  |  |
| 6d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CH <sub>2</sub> CN | HTIB (0.2)                    | $T_{S}OH \cdot H_{2}O(0.2)$ | m-CPBA (1.2)         | na                         | na                                 |  |  |  |  |

<sup>a</sup>Unless otherwise stated 0.1 mmol of **1a** was used with 0.1 M conc. of solvent. <sup>b</sup>NMR yield determined by <sup>1</sup>H NMR of the crude reaction mixture using an internal standard. <sup>c</sup>Combined yield of regioisomers. <sup>d</sup>X = Cl and the reaction was carried out both with or without addition of 5.0 equiv of H<sub>2</sub>O.

source, which resulted in a significant decrease in the yield of **2a** (Table 2, entries 4 and 5). Importantly, when analogous chloroalkene (E/Z)-1,8-diphenyl-4-chlorooct-4-ene (**1a**') was tested as a substrate under optimal conditions (without H<sub>2</sub>O or with 5 equiv H<sub>2</sub>O), no reactivity was seen at all, presumably due to the stronger inductive effect of the chlorine (Table 2, entry 6).

It was unfortunately not possible to prevent formation of side products 3a/3a' using modifications of the reaction conditions. We thus next turned our attention to exploring the scope of the developed protocols, focusing both on symmetrical as well as unsymmetrical dialkyl bromoalkenes, in order to determine if the nature of the substrate could influence the reaction outcome. As shown in Scheme 2, the (E/Z) symmetrical dialkyl bromoalkenes reacted well with catalytic HTIB, irrespective of the chain length, affording the corresponding  $\alpha$ -bromoketones (2a,b) in 49–54% isolated yields by oxidative transposition of the bromine atom in the reaction process. We then extended this scope by synthesizing unsymmetrical dialkyl bromoalkenes (1c-g) bearing side chains of varied length and steric character. The incorporation of *n*-pentyl or isobutyl groups at the distal side of bromoalkene was readily tolerated and yielded the products (2c,d) with consistent yields. Demonstrating additional generalizability, substrates bearing sterically demanding cyclohexyl or isopropyl groups as the near side chain of bromoalkene afforded the corresponding  $\alpha$ -bromoketones (2e,f) with unaffected reactivity or yields. Notably, 15–20% Ritter-type side products were obtained with all these substrates as a mixture of regioisomers. Surprisingly, even substrate **2g** did not provide a higher yield of the desired  $\alpha$ -bromoketone product, despite the absence of hydrogens on the allylic position (see Scheme 3 for explanations).

Our mechanistic understanding of the oxidative hydrolysis of styrene haloalkene analogs [19] lets us hypothesize an external bromide attack as the main reaction pathway for this catalytic oxidative transposition of dialkyl bromoalkenes (Scheme 3). No  $\alpha$ -tosyloxy ketone products were observed in the crude reaction mixtures, either with catalytic or stoichiometric use of TsOH·H<sub>2</sub>O, even when the reactions were incomplete. These observations ruled out the possibility of double S<sub>N</sub>2 attack by tosylate followed by bromide.

TsOH·H<sub>2</sub>O accelerates the formation of the phenyl tosyloxy iodonium intermediate **A** from catalytic HTIB. Dialkyl bromoalkene **1** then associates with **A** followed by attack of tosyloxy or water, delivering iodonium intermediate **B**. Being a better leaving group, the bromide anion is then expelled, which becomes a counterion for the iodonium intermediate **C**. Liberation of PhI serves as the driving force for subsequent S<sub>N</sub>2 attack by the bromide anion to give the dialkyl  $\alpha$ -bromoketone **2**. *m*-CPBA then regenerates the hypervalent iodine (HTIB) catalyst by oxidizing PhI in the presence of TsOH·H<sub>2</sub>O. The forma-



Scheme 2: Substrate scope. Unless otherwise stated 0.2 mmol of 1 was used and the isolated yields are given.



tion of the Ritter-type side products is proposed through path b (Scheme 3). The elimination of  $\alpha$ -proton on the side chain of dialkyl bromoalkenes results in iodonium intermediate **D**, which on the expulsion of PhI gives a mixture of the allylic carbocation **E**, which ultimately gets trapped by MeCN in the presence of H<sub>2</sub>O, giving the regioisomeric mixture of Ritter-type amidation side products **3**.

## Conclusion

In summary we have developed a hypervalent iodine-catalyzed synthetic method for the oxidative hydrolysis of diverse dialkyl bromoalkenes. The current approach can tolerate both symmetrical as well as unsymmetrical dialkyl bromoalkenes as substrates delivering dialkyl  $\alpha$ -bromoketones which are highly sought-after synthons in heterocycle synthesis and medicinal chemistry, thus overcoming the limitations of previous methods. The reaction accommodates sterically hindered bromoalkenes as substrates, leading to the corresponding  $\alpha$ -bromoketone derivatives. While we could not further mini-

mize the formation of Ritter-type side products ( $\approx$ 4:1 ratio of  $\alpha$ -bromoketone vs Ritter-type side products), noticing these side products from common phenyl tosyloxy iodonium intermediate suggest that hypervalent iodine reagents could be utilized in the future for the  $\alpha$ -acetamidation of dialkyl bromoalkenes. The present work provides an operationally simple catalytic method to access a diverse range of  $\alpha$ -bromoketones, which are versatile building blocks for synthesizing various important hetero aromatics.

# Supporting Information

#### Supporting Information File 1

Experimental procedures for reactions, and relevant spectra of all new compounds. [https://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-20-111-S1.pdf]

## Funding

This work was supported by the National Science and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation (CFI), the FRQNT Centre in Green Chemistry and Catalysis (CGCC), and the Université de Sherbrooke.

# ORCID<sup>®</sup> iDs

Amol P. Jadhav - https://orcid.org/0000-0003-3962-6169 Claude Y. Legault - https://orcid.org/0000-0002-0730-0263

# Data Availability Statement

All data that supports the findings of this study is available in the published article and/or the supporting information to this article.

## References

- Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328–3435. doi:10.1021/acs.chemrev.5b00547
- Brown, M.; Farid, U.; Wirth, T. Synlett 2013, 24, 424–431. doi:10.1055/s-0032-1318103
- Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656–3665. doi:10.1002/anie.200500115
- Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523–2584. doi:10.1021/cr010003+
- 5. Varvoglis, A. *Hypervalent lodine in Organic Synthesis;* Academic Press: San Diego, CA, USA, 1997.
- Puthanveedu, M.; Antonchick, A. P. Aromatic C–H Functionalization. *Iodine Catalysis in Organic Synthesis;* Wiley-VCH: Weinheim, Germany, 2022; pp 151–184. doi:10.1002/9783527829569.ch6
- Shetgaonkar, S. E.; Krishnan, M.; Singh, F. V. *Mini-Rev. Org. Chem.* 2021, 18, 138–158. doi:10.2174/1570193x17999200727204349
- Zhang, B.; Li, X.; Guo, B.; Du, Y. Chem. Commun. 2020, 56, 14119–14136. doi:10.1039/d0cc05354f
- Wu, W.-T.; Zhang, L.; You, S.-L. Chem. Soc. Rev. 2016, 45, 1570–1580. doi:10.1039/c5cs00356c
- Roche, S. P.; Porco, J. A., Jr. Angew. Chem., Int. Ed. 2011, 50, 4068–4093. doi:10.1002/anie.201006017
- 11. Pouységu, L.; Deffieux, D.; Quideau, S. *Tetrahedron* **2010**, *66*, 2235–2261. doi:10.1016/j.tet.2009.12.046
- 12. Thérien, M.-È.; Guilbault, A.-A.; Legault, C. Y. *Tetrahedron: Asymmetry* **2013**, *24*, 1193–1197. doi:10.1016/j.tetasy.2013.08.002
- 13. Guilbault, A.-A.; Legault, C. Y. *ACS Catal.* **2012**, *2*, 219–222. doi:10.1021/cs200612s
- 14. Guilbault, A.-A.; Basdevant, B.; Wanie, V.; Legault, C. Y. J. Org. Chem. 2012, 77, 11283–11295. doi:10.1021/jo302393u
- 15. Jobin-Des Lauriers, A.; Legault, C. Y. Asian J. Org. Chem. 2016, 5, 1078–1099. doi:10.1002/ajoc.201600246
- Basdevant, B.; Legault, C. Y. J. Org. Chem. 2015, 80, 6897–6902. doi:10.1021/acs.joc.5b00948
- 17. Dagenais, R.; Lussier, T.; Legault, C. Y. *Org. Lett.* **2019**, *21*, 5290–5294. doi:10.1021/acs.orglett.9b01893
- Dagenais, R.; Jobin-Des Lauriers, A.; Legault, C. Synthesis 2017, 49, 2928–2932. doi:10.1055/s-0036-1588439
- 19. Jobin-Des Lauriers, A.; Legault, C. Y. *Org. Lett.* **2016**, *18*, 108–111. doi:10.1021/acs.orglett.5b03345
- 20. Ali, S. H.; Sayed, A. R. *Synth. Commun.* **2021**, *51*, 670–700. doi:10.1080/00397911.2020.1854787

- 21. Fülöpová, V.; Soural, M. *Synthesis* **2016**, *48*, 3684–3695. doi:10.1055/s-0035-1562519
- 22. Erian, A. W.; Sherif, S. M.; Gaber, H. M. *Molecules* 2003, *8*, 793–865. doi:10.3390/81100793
- 23. Grenet, E.; Géant, P.-Y.; Salom-Roig, X. J. Org. Lett. 2021, 23, 8539–8542. doi:10.1021/acs.orglett.1c03237
- 24. Zhang, X.; Cai, X.; Huang, B.; Guo, L.; Gao, Z.; Jia, Y. Angew. Chem., Int. Ed. 2019, 58, 13380–13384. doi:10.1002/anie.201907523
- 25. Song, Y.-Y.; Kinami, K.; Kato, A.; Jia, Y.-M.; Li, Y.-X.; Fleet, G. W. J.; Yu, C.-Y. *Org. Biomol. Chem.* **2016**, *14*, 5157–5174. doi:10.1039/c6ob00720a
- 26. Pirovano, V.; Brambilla, E.; Moretti, A.; Rizzato, S.; Abbiati, G.; Nava, D.; Rossi, E. *J. Org. Chem.* **2020**, *85*, 3265–3276. doi:10.1021/acs.joc.9b03117
- 27. Li, H.; Wu, J. Synthesis 2014, 47, 22-33. doi:10.1055/s-0034-1378918
- 28. Tang, Q.; Chen, X.; Tiwari, B.; Chi, Y. R. Org. Lett. 2012, 14, 1922–1925. doi:10.1021/ol300591z
- García-Santos, W. H.; Mateus-Ruiz, J. B.; Cordero-Vargas, A. Org. Lett. 2019, 21, 4092–4096. doi:10.1021/acs.orglett.9b01275
- 30. Lao, Z.; Zhang, H.; Toy, P. H. Org. Lett. 2019, 21, 8149–8152. doi:10.1021/acs.orglett.9b02324
- Coombs, J. R.; Zhang, L.; Morken, J. P. Org. Lett. 2015, 17, 1708–1711. doi:10.1021/acs.orglett.5b00480
- 32. Yu, P.; Bismuto, A.; Morandi, B. Angew. Chem., Int. Ed. 2020, 59, 2904–2910. doi:10.1002/anie.201912803

## License and Terms

This is an open access article licensed under the terms of the Beilstein-Institut Open Access License Agreement (https://www.beilstein-journals.org/bjoc/terms), which is identical to the Creative Commons Attribution 4.0 International License

(<u>https://creativecommons.org/licenses/by/4.0</u>). The reuse of material under this license requires that the author(s), source and license are credited. Third-party material in this article could be subject to other licenses (typically indicated in the credit line), and in this case, users are required to obtain permission from the license holder to reuse the material.

The definitive version of this article is the electronic one which can be found at:

https://doi.org/10.3762/bjoc.20.111