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Abstract
We have developed an operationally simple method for the synthesis of dialkyl α-bromoketones from bromoalkenes by utilizing a
hypervalent iodine-catalyzed oxidative hydrolysis reaction. This catalytic process provides both symmetrical and unsymmetrical
dialkyl bromoketones with moderate yields across a broad range of bromoalkene substrates. Our studies also reveal the formation of
Ritter-type side products by an alternative reaction pathway.
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Introduction
Organic synthesis heavily relies on oxidative transformations to
facilitate chemical reactions. One popular method for achieving
these transformations is using redox-active metals, inspired by
Nature's metalloproteins. However, using toxic and expensive
metals is not always practical, making alternative oxidative
methodologies more appealing. Enter hypervalent iodine
reagents – a leading metal-free choice for oxidation reactions.
These robust and low-toxicity reagents have gained popularity
due to their commercial availability [1-5] and versatility for
phenolic dearomatizations, oxidative annulations, fragmenta-
tions, and oxidative rearrangements [6-11]. In particular,
iodine(III) reagents have been proven effective for a wide range

of oxidative transformations, cementing their position as a go-to
option for organic chemists.

Based on our continued interest in iodine(III)-mediated chem-
istry, we have explored numerous strategies in oxidative trans-
formations such as direct α-tosyloxylation of ketones [12-14],
and the oxidation of enol esters [15,16], to access α-functionali-
zed ketones. We recently developed the oxidative contraction of
3,4-dihydropyranones to access polysubstituted γ-butyrolac-
tones [17]. In 2015 we demonstrated that [hydroxy(tosyl-
oxy)iodo]benzene (HTIB) could be used to convert chloro- and
bromoalkenes into their corresponding α-halo ketone products
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in usually very high yields (Scheme 1a) [18,19]. However, the
haloalkenes used in this previous study as α-substituted ketone
precursors were limited to either styryl analogs or stilbene type
haloalkenes, with the only exception of 1-bromocycloheptene as
fully aliphatic substituted substrate which resulted in a low
yield of the desired product. Also, this method involved using a
stoichiometric amount of HTIB for the transformation.

Scheme 1: (a) Oxidative hydrolysis of styrene or stilbene type
haloalkenes. (b) Fate of unsymmetrical dialkyl ketones on direct bromi-
nation. (c) This work.

α-Haloketones are 1,2-difunctionalized synthons which are very
versatile and essential building blocks for their role in the syn-
thesis of heterocyclic compounds [20-22]. Particularly dialkyl
bromoketones have been utilized in natural product synthesis
[23-25], also as a precursor to reactive oxyallyl cation interme-
diates [26-28], and for their photochemical reactions [29]. How-
ever, the direct halogenation of unsymmetrical ketones for the
synthesis of dialkyl bromoketones would result in a mixture of
regioisomers given the presence of enolizable protons on each
side of the ketone (Scheme 1b). Recently Toy et al. have
disclosed the selective synthesis of unsymmetrical α-haloke-
tones by reductive halogenation of an α,β-unsaturated ketones
using external halide source [30]. We envisioned that dialkyl
bromoalkenes 1 could be used as enol analogs with an improve-
ment in reaction conditions in the presence of I(III) reagents to

directly get both symmetrical and unsymmetrical dialkyl
bromoketones 2 (Scheme 1c). Recent methods have been re-
ported to access bromoalkenes such as 1 from easily accessible
substrates, making the approach even more appealing [31,32].

Results and Discussion
Given its low volatility, we initiated our studies by testing the
reactivity of (E/Z)-1,8-diphenyl-4-bromooct-4-ene (1a) with
HTIB (1.1 equiv) and cat. TsOH·H2O (0.2 equiv) in acetonitrile.
These reaction conditions afforded the desired product 2a in
moderate yield (51%), along with 21% mixture of regioisomers
3a and 3a’ obtained from Ritter-type reaction of 1a with
CH3CN in the presence of HTIB (Table 1, entry 1).

We explored the influence of different variables to counteract
the formation of 3a and 3a’. We first envisioned that the use of
the more hindered, mesityl-derived Koser’s reagent, could dras-
tically influence the formation of the side-products. Unfortu-
nately, its use resulted in a drop of the yield for the desired
α-bromoketone (Table 1, entry 2). In situ generation of Koser-
like reagent by addition of excess TsOH·H2O (2.0 equiv) to
either PIDA or p-OMe-PIDA did not further improve the yield
for α-bromoketone (Table 1, entries 3 and 4). We envisioned
that altering the iodonium intermediate counterion by replacing
TsOH with either MsOH or HNTf2 as an acid additive (2.0
equiv) could influence the formation of 3a/3a’. The use of these
acids in the presence of PIDA did not show any significantly
altering reaction outcome (Table 1, entries 5 and 6). We then
replaced acetonitrile with dichloromethane to completely
prevent the formation of 3a/3a’. Unfortunately, while it elimi-
nated the side products, it further limited the yield for
α-bromoketone, whereas no reactivity was seen when EtOAc
and DMA were used as solvents (Table 1, entries 7–9). The use
of HFIP led to complete conversion of 1a, but no observation of
the desired product 2a (Table 1, entry 10).

We then explored catalytic conditions for the generation of the
iodine(III) reagent. Remarkably, when catalytic PhI (0.2 equiv)
was employed for in situ generation of Koser’s reagent by using
m-CPBA (1.2 equiv) as an oxidant, almost similar results were
obtained (Table 2, entry 1) with those obtained by stoichio-
metric use of HTIB. Attempt to perform the reaction using a
catalytic amount of 2-iodobenzoic acid (0.2) under similar
oxidizing conditions resulted in slightly diminished yield for the
desired α-bromoketone (Table 2, entry 2). Notably, the direct
use of HTIB as the catalyst, with a catalytic amount of
TsOH·H2O (0.2 equiv each), in the presence of m-CPBA
(1.2 equiv) proved to be the most superior conditions (59%
NMR yield, Table 2, entry 3). To rule out the possibility of
direct involvement of m-CPBA in the oxidative hydrolysis reac-
tion, 1a was reacted in the absence of any hypervalent iodine
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Table 1: Conditions screening (without oxidant)a.

Entry Solvent HVI source (equiv) Additive (equiv) 2a [%]b 3a + 3a' [%]b,c

1 CH3CN HTIB (1.1) TsOH·H2O (0.2) 51 21
2 CH3CN Mes-Koser's (1.1) TsOH·H2O (0.2) 36 18
3 CH3CN PIDA (1.1) TsOH·H2O (2.0) 42 28
4 CH3CN p-OMe-PIDA (1.1) TsOH·H2O (2.0) 50 18
5d CH3CN PIDA (1.1) MsOH (2.0) 46 28
6d CH3CN PIDA (1.1) HNTf2 (2.0) 35 trace
7 CH2Cl2 HTIB (1.1) TsOH·H2O (0.2) 25 na
8 EtOAc HTIB (1.1) TsOH·H2O (0.2) NR na
9 DMA HTIB (1.1) TsOH·H2O (0.2) NR na
10 HFIP HTIB (1.1) TsOH·H2O (1.1) 0 na

aUnless otherwise stated 0.1 mmol of 1a was used with 0.1 M conc. of solvent. bNMR yield determined by 1H NMR of the crude reaction mixture
using an internal standard. cCombined yield of regioisomers. d5.0 equiv H2O were added to the reaction.

Table 2: Conditions screening (with oxidant)a.

Entry Solvent Catalyst (equiv) Additive (equiv) Oxidant (equiv) 2a [%]b 3a + 3a' [%]b,c

1 CH3CN PhI (0.2) TsOH·H2O (0.2) m-CPBA (1.2) 51 23
2 CH3CN 2-I-PhCO2H (0.2) TsOH·H2O (0.2) m-CPBA (1.2) 41 22
3 CH3CN HTIB (0.2) TsOH·H2O (0.2) m-CPBA (1.2) 59 24
4 CH3CN none none m-CPBA (1.2) 5 20
5 CH3CN none TsOH·H2O (1.1) m-CPBA (1.2) 13 15
6d CH3CN HTIB (0.2) TsOH·H2O (0.2) m-CPBA (1.2) na na

aUnless otherwise stated 0.1 mmol of 1a was used with 0.1 M conc. of solvent. bNMR yield determined by 1H NMR of the crude reaction mixture
using an internal standard. cCombined yield of regioisomers. dX = Cl and the reaction was carried out both with or without addition of 5.0 equiv of
H2O.
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Scheme 2: Substrate scope. Unless otherwise stated 0.2 mmol of 1 was used and the isolated yields are given.

source, which resulted in a significant decrease in the yield of
2a (Table 2, entries 4 and 5). Importantly, when analogous
chloroalkene (E/Z)-1,8-diphenyl-4-chlorooct-4-ene (1a’) was
tested as a substrate under optimal conditions (without H2O or
with 5 equiv H2O), no reactivity was seen at all, presumably
due to the stronger inductive effect of the chlorine (Table 2,
entry 6).

It was unfortunately not possible to prevent formation of side
products 3a/3a' using modifications of the reaction conditions.
We thus next turned our attention to exploring the scope of the
developed protocols, focusing both on symmetrical as well as
unsymmetrical dialkyl bromoalkenes, in order to determine if
the nature of the substrate could influence the reaction outcome.
As shown in Scheme 2, the (E/Z) symmetrical dialkyl
bromoalkenes reacted well with catalytic HTIB, irrespective of
the chain length, affording the corresponding α-bromoketones
(2a,b) in 49–54% isolated yields by oxidative transposition of
the bromine atom in the reaction process. We then extended this
scope by synthesizing unsymmetrical dialkyl bromoalkenes
(1c–g) bearing side chains of varied length and steric character.
The incorporation of n-pentyl or isobutyl groups at the distal
side of bromoalkene was readily tolerated and yielded the prod-
ucts (2c,d) with consistent yields. Demonstrating additional
generalizability, substrates bearing sterically demanding cyclo-
hexyl or isopropyl groups as the near side chain of bromoalkene
afforded the corresponding α-bromoketones (2e,f) with unaf-

fected reactivity or yields. Notably, 15–20% Ritter-type side
products were obtained with all these substrates as a mixture of
regioisomers. Surprisingly, even substrate 2g did not provide a
higher yield of the desired α-bromoketone product, despite the
absence of hydrogens on the allylic position (see Scheme 3 for
explanations).

Our mechanistic understanding of the oxidative hydrolysis of
styrene haloalkene analogs [19] lets us hypothesize an external
bromide attack as the main reaction pathway for this catalytic
oxidative transposition of dialkyl bromoalkenes (Scheme 3). No
α-tosyloxy ketone products were observed in the crude reaction
mixtures, either with catalytic or stoichiometric use of
TsOH·H2O, even when the reactions were incomplete. These
observations ruled out the possibility of double SN2 attack by
tosylate followed by bromide.

TsOH·H2O accelerates the formation of the phenyl tosyloxy
iodonium intermediate A from catalytic HTIB. Dialkyl
bromoalkene 1 then associates with A followed by attack of
tosyloxy or water, delivering iodonium intermediate B. Being a
better leaving group, the bromide anion is then expelled, which
becomes a counterion for the iodonium intermediate C. Libera-
tion of PhI serves as the driving force for subsequent SN2 attack
by the bromide anion to give the dialkyl α-bromoketone 2.
m-CPBA then regenerates the hypervalent iodine (HTIB) cata-
lyst by oxidizing PhI in the presence of TsOH·H2O. The forma-
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Scheme 3: Proposed catalytic cycle.

tion of the Ritter-type side products is proposed through path b
(Scheme 3). The elimination of α-proton on the side chain of
dialkyl bromoalkenes results in iodonium intermediate D, which
on the expulsion of PhI gives a mixture of the allylic carbocat-
ion E, which ultimately gets trapped by MeCN in the presence
of H2O, giving the regioisomeric mixture of Ritter-type amida-
tion side products 3.

Conclusion
In summary we have developed a hypervalent iodine-catalyzed
synthetic method for the oxidative hydrolysis of diverse dialkyl
bromoalkenes. The current approach can tolerate both symmet-
rical as well as unsymmetrical dialkyl bromoalkenes as sub-
strates delivering dialkyl α-bromoketones which are highly
sought-after synthons in heterocycle synthesis and medicinal
chemistry, thus overcoming the limitations of previous
methods. The reaction accommodates sterically hindered
bromoalkenes as substrates, leading to the corresponding
α-bromoketone derivatives. While we could not further mini-

mize the formation of Ritter-type side products (≈4:1 ratio of
α-bromoketone vs Ritter-type side products), noticing these side
products from common phenyl tosyloxy iodonium intermediate
suggest that hypervalent iodine reagents could be utilized in the
future for the α-acetamidation of dialkyl bromoalkenes. The
present work provides an operationally simple catalytic method
to access a diverse range of α-bromoketones, which are versa-
tile building blocks for synthesizing various important hetero
aromatics.

Supporting Information
Supporting Information File 1
Experimental procedures for reactions, and relevant spectra
of all new compounds.
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