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Abstract
Protein–glycan interactions play pivotal roles in numerous biological processes, ranging from cellular recognition to immune
response modulation. Understanding the intricate details of these interactions is crucial for deciphering the molecular mechanisms
underlying various physiological and pathological conditions. Computational techniques have emerged as powerful tools that can
help in drawing, building and visualising complex biomolecules and provide insights into their dynamic behaviour at atomic and
molecular levels. This review provides an overview of the main computational tools useful for studying biomolecular systems, par-
ticularly glycans, both in free state and in complex with proteins, also with reference to the principles, methodologies, and applica-
tions of all-atom molecular dynamics simulations. Herein, we focused on the programs that are generally employed for preparing
protein and glycan input files to execute molecular dynamics simulations and analyse the corresponding results. The presented
computational toolbox represents a valuable resource for researchers studying protein–glycan interactions and incorporates ad-
vanced computational methods for building, visualising and predicting protein/glycan structures, modelling protein–ligand com-
plexes, and analyse MD outcomes. Moreover, selected case studies have been reported to highlight the importance of computa-
tional tools in studying protein–glycan systems, revealing the capability of these tools to provide valuable insights into the binding
kinetics, energetics, and structural determinants that govern specific molecular interactions.
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Review
Introduction
Carbohydrates also referred to as saccharides, sugars, or
glycans, constitute one of the main building blocks of biomole-
cules, alongside lipids, proteins, and nucleic acids. In humans

and animals, they form the so-called glycocalyx, a protecting
sugar coat decorating the cell surface and modulating a myriad
of cell–cell interactions [1]. It is composed of branched or elon-
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Figure 1: Carbohydrate conformational variability. a) Illustration of Φ, Ψ and ω dihedral angles for a representative trisaccharide coloured according to
the symbol nomenclature for glycans (SNFG). b) On the left: Pseudo-rotational wheel depiction of five-membered ring structures showcasing enve-
lope (E) and twist (T) conformations. On the right: Glove representation illustrating the puckering of six-membered pyranoside ring conformations.
c) Equilibrium between the low-energy solution conformations of the iduronic acid. The exclusive (Nuclear Overhauser Effect) 1H–1H NOE contacts
characteristic of each conformation, 1C4, 4C1 and 2S0, are also depicted.

gated glycan chains covalently linked to proteins or lipids,
hereby constituting glycoproteins or glycolipids, respectively.
Recently, glycan structures exposed on the cellular membrane
have also been found to be associated with tRNA [2]. In other
species, such as prokaryotes, plants or fungi, glycoconjugates
comprise the cell wall, playing critical metabolic, structural and
physical functions [3].

Glycoscience encompasses the comprehensive study of glycans
focusing on their structural, biosynthetic, biological and evolu-
tionary aspects [4], thus playing a central role in the identifica-
tion and characterisation of the glycome’ structure and function,
and in unveiling its interaction with host proteins [5,6]. Notably,
the complexity of the glycome far surpasses that of the genome,
transcriptome, and proteome, not only due to the structural and
conformational diversity of glycans, whose synthesis is not tem-
plate driven, but also due to their dynamic nature [5,6]. Al-
though mammalian glycans rely on a group of “only” 10 mono-
saccharide units, they can be assembled, in linear or branched
chains, through different glycosidic linkages and diverse spatial
orientations, which can also undergo modifications, such as

methylation, sulfation, and phosphorylation, resulting in a
plethora of different and particular structures [7,8]. Additional-
ly, glycans can adopt a wide variety of different shapes; five-
membered ring sugars can exhibit envelope and twist conforma-
tions usually represented on a pseudo-rotational wheel; while
six-membered ring structures can adopt chair (C), boat (B),
skew (S), and half-chair (H) conformations (Figure 1). Among
them, chair’ shapes typically have the lowest energy and are
thus preferred, except few cases in which different conforma-
tions can exist in a dynamic equilibrium, as for the iduronic acid
that can adopt three low-energy solution conformations
(Figure 1): 1C4, 4C1 (chair forms) and an additional skew-
boat shape (2S0) [9]. The glycosidic torsion angles Φ
(H1–C1–Ox–Cx) and Ψ (C1–Ox–Cx–Hx) describe the relative
orientation of two connected monosaccharide units; moreover,
when dealing with monosaccharides containing an exocyclic
hydroxymethyl group, such as in the case of 1-6 linked sugars,
an additional torsion, namely ω (O6–C6–C5–O5), must be
defined and three staggered conformers, denoted as gg/tg/gt (ω
angles of −60°/180°/60°, respectively), should be considered
(Figure 1).
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Figure 2: Monosaccharides diversity in eukaryotes and bacteria. a) Eukaryotic monosaccharides. b) Examples of some peculiar bacterial monosac-
charides, including hexuronic acids, heptoses, or octulosonic acids. The SNFG symbol [11] of each monosaccharide is also reported (if any).

Longer and branched glycans exhibit heightened structural dy-
namics, depending on the values adopted by the torsional angles
around the glycosidic linkages [10].

The high variability of linkages type, branching, stoichiometry,
anomeric configuration (alpha and beta), and conformation con-
tributes to the intricate nature of glycans. The complexity of the
glycome is even higher in bacteria, which are able to use most
of the mammalian sugar units to construct their glycoconju-
gates but, in addition, can also use a wide variety of particular,
and potentially endless, monosaccharides that are instead not
present in eukaryotes (Figure 2).

This huge diversity and complexity, especially in bacterial
glycans, makes the structural and conformational analysis of
glycans extremely difficult, posing a considerable challenge
when employing conventional structural biology methods for
glycan analysis [10,12]. Nevertheless, understanding the three-
dimensional structure of glycans is crucial for comprehending
their roles and biological activities and for correlating their
structural features with their activity [3,13]. Given the plethora
of remarkable biological roles played by complex glycans, this
knowledge is essential for their potential applications in
promoting health benefits for humans, animals and plants, in-
cluding drug design [14,15], vaccine development [15,16] and
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numerous other possibilities in the field of carbohydrate chem-
istry and biology.

Notably, the regulation of the host immune response is often
mediated by glycans, particularly through their recognition by a
wide array of glycan-binding proteins (GBP) [17], which have a
unique capability to specifically interact with endogenous and/
or exogenous glycans [18,19]. Thus, disclosing the molecular
basis of protein–glycan interactions has a unique potential to
help modulate a myriad of complex biological events affecting
the health and well-being of living organisms and the natural
environment. Being key participants in the molecular dialogue,
glycan binding proteins emerge as fascinating and critical com-
ponents of molecular events that regulate life at its core. Their
functions span from the catalysis of chemical processes [20,21],
transporting and storing molecules [22], transducing and inte-
grating information [23] providing structural and mechanical
support [24], and generating movement [25], among other func-
tions [26]. To fold and carry out their function properly, pro-
teins often need post-translational modifications, including
glycosylation, in which a carbohydrate chain is directly at-
tached to a specific amino acid to generate glycoproteins and
proteoglycans [27]. Based on the amino acid involved in the
link with the carbohydrates chain, it is possible to classify dif-
ferent types of glycosylation: i) N-glycosylation, where a
N-acetylglucosamine (GlcNAc) is linked to the nitrogen atom of
an asparagine side chain [28]; ii) O-glycosylation, where a
GlcNAc or N-acetylgalactosamine (GalNAc) is linked to the
hydroxy group of a serine or threonine residue [29];
iii) C-glycosylation, where a mannose (Man) directly binds a
tryptophan residue [30]; iv) the covalent attachment to core pro-
tein of glycosaminoglycans (GAGs), anchored to a Ser, or at
lesser extent to Thr or Asn, forms proteoglycans. GAGs are
complex negatively charged polysaccharides composed by
disaccharide repeats of GlcNAc or GalNAc combined with
uronic acid (glucuronic or iduronic acid) or galactose residues,
forming chains which can also be partially sulfated. GAGs
family includes heparan sulphate (HS), dermatan sulphate (DS),
chondroitin sulphate (CS), keratan sulphate (KS), and
hyaluronic acid (HA) [31]. The extraordinary proteins versa-
tility places them at the core of almost every biological event,
including cell–cell communication and regulation of immune
responses. In the majority of cases, these mechanisms are sig-
nificantly influenced by the molecular interactions occurring
between glycans and receptor proteins.

A well-known family of GBPs is constituted by the lectins,
ubiquitous receptors that exhibit the ability to specifically
recognise different carbohydrates through their well-defined
binding pocket and they conserved three-dimensional structure
similarities [32]. On the other hand, GAG-binding proteins,

which are able to recognise carboxylic acid and sulphate groups
along glycosaminoglycan chains using clusters of positively
charged amino acids [33], also mediate a wide variety of
cell–cell and cell–pathogen communication, controlling
immune cell functions, and overseeing cellular trafficking [34].
Another class of GBP is represented by anti-carbohydrate
antibodies, that are generally produced by the host organism
for example against bacterial, fungal, and viral carbohydrates
[35].

Given the wide variety of biological processes influenced by the
protein–glycan interplay, an increasing attention has been
focused in the last decades on the development of new tech-
niques and technologies for the systematic analysis of complex
glycans and the study of their interactions with proteins. A
multidisciplinary approach, spanning from wet laboratory ex-
periments and biophysical techniques to bioinformatics methods
is needed to deeply investigate the multifaceted aspects of pro-
tein–glycan interactions. To date, advanced and versatile NMR,
X-ray crystallography, and MS methods [36-38] above all, have
been developed to reach extensive information on the structural
and conformational features of glycans and proteins. The exper-
imental techniques employed for the analysis of these complex
biomolecules are not discussed here; for a more in-depth under-
standing on this topic, the reader is referred to some compre-
hensive reviews [7,36,39-41]. Here, we focus instead on differ-
ent computational and bioinformatic tools, designed to guide
the structural and conformational elucidation process, and on
the application of molecular dynamic simulations to the study
of proteins and glycans in free and bound states. Detailed proto-
cols and methods for protein and glycan modelling are exten-
sively described and links to web servers and downloadable
software, which can help researchers in designing the workflow
to study a glycan–protein system, are also reported.

Computational tools to study glycans in the
free state
Since the first molecular dynamics simulations performed in the
late 1980s on oligomannose type glycans [42] and in the early
1990s on complex type glycans [43], great steps forward have
been made in the computational analysis of complex carbo-
hydrates. The advancement of computing power, the emer-
gence of GPUs, and specialised processors accelerated MD
simulations making it a key scientific tool to explore complex
systems, including glycans, with ever-increasing accuracy and
efficiency [44].

Tools for building structural models of
carbohydrates
Before going into details of the computational tools that can be
used to dissect the 3D conformational features of glycans, an
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Figure 3: Different glycan representations. The 3’-sialyllactosamine is depicted according to the a) IUPAC nomenclature b) chemical representation
as implemented in ChemDraw suite [46] c) GlycoCT nomenclature d) SNFG and 3D SNFG nomenclature e) VMD 3D-SNFG plugin f) MolStar repre-
sentation.

overview of the most useful web services and software to
build 2D and 3D models of carbohydrate structures is reported
here.

Notably, despite the existence of several encoding formats for
glycans (Figure 3), significant efforts have been made in the
years to enable a simple and standardised glycan representation,
which would simplify the transmission and efficiency of the
communication within the scientific community. This led to the
extensive use of the symbol nomenclature for glycans (SNFG)
representation that is used in all the tools described below
(Figure 3) [11,45].

Numerous computer applications have been developed to
allow manual drawing and sketching of carbohydrates, as
reviewed by Lal et al. [47]. Here, we list free tools useful
not only for sketching and drawing but also for building the
glycan structure of interest (last accessed date: May 2024)
[47,48].

1. doGlycans [49]: Free desktop software package in the python
framework that allows users to prepare carbohydrate structures
for atomistic simulations of complex glycoproteins, glycolipids
and carbohydrate polymers in the GROMACS force field
format (see below). Polysaccharides can be prepared by using
the prepreader.py tool, glycoproteins and glycolipids by using

the doglycans.py tool. (https://bitbucket.org/biophys-uh/dogly-
cans/).

2. Glycam-Web carbohydrate builder [50]: Free online web-
service that gives the possibility to model the 3D structures of
molecules and complexes containing carbohydrates starting
from monosaccharide building blocks, being also able to add
branching points and some sugar derivatisation, including meth-
ylation and acetylation. The user has also the possibility to
choose the ring type and the anomeric configuration of each
monosaccharide. Once the structure is complete, it is possible to
download not only the generated .pdb files of the minimised re-
sulting structures but also files for input to an AMBER simula-
tion (https://glycam.org/). Notably, among the currently avail-
able interfaces for modelling oligosaccharide conformations on
glycam website, one is dedicated to GAG modelling [51]
(https://glycam.org/gag/).

3. CHARMM-GUI [52]: Online free web-service that offers a
great variety of possibilities for reading and modelling .pdb
files. It is a versatile program for atomic-level simulations,
which can be run directly in the webserver. It has a special
focus on macromolecules of biological interest; indeed, this
platform contains a number of different modules designed to
construct complex glycans, glycoconjugates as lipopolysaccha-
rides (LPS), or even building a membrane system or solvating a

https://bitbucket.org/biophys-uh/doglycans/
https://bitbucket.org/biophys-uh/doglycans/
https://bitbucket.org/biophys-uh/doglycans/
https://glycam.org/
https://glycam.org/gag/
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protein. To use all these features, grouped in the Input Gener-
ator tab (https://www.charmm-gui.org/), it is necessary to be
registered to the web site.

4. Azahar [53]: freely available python-based plugin that
permits to visualise, analyse and model glycans and glycoconju-
gates (https://pymolwiki.org/index.php/Azahar).

5. 3D-SNFG: It is a script integrated in the visual molecular
dynamics (VMD) program [54] (see below) that allows a
cartoon representation of glycans according to the symbol
nomenclature for glycans (see Figure 3) (https://glycam.org/
docs/othertoolsservice/downloads/downloads-software/
index.html).

Choosing the most appropriate simulation software
package
With the aim to accurately prepare glycans for MD simulations,
it is fundamental not only to build their 3D structure but
also to choose the appropriate force field, that is a set of
empirical energy functions and parameters used to calculate
the potential energy of a system as a function of the molecular
coordinates. The collection of equations and associated con-
stants designed to reproduce the molecular geometry and
selected properties of a system, as well as the naming and
labelling of the system atoms, vary from one force field to
another; therefore, it is important to ensure compatibility be-
tween the input file of the tested structure and the chosen force
field. The Automated Topology Builder (ATB) and repository
[55] (https://atb.uq.edu.au/) is a free web server providing
topologies and parameters for a wide range of molecules. It
provides access to classical force fields in formats compatible
with different simulation packages, including GROMACS (see
below), even offering a GROMOS to AMBER topology file
converter. In the years, different MD simulation software pack-
ages have been developed and designed to simulate the move-
ments and interactions of atoms and molecules over time; the
three described below are currently widely used in the field of
computational chemistry and biochemistry:

1. AMBER [56]: AMBER (https://ambermd.org/) is the
acronym for "Assisted Model Building with Energy Refine-
ment", and it is an open-source software widely employed for
molecular modelling and simulation. It is known for its
stability, user-friendly interface, and a wide range of analysis
tools for studying complex biomolecular systems. AMBER
provides various force fields, specifically optimised for simu-
lating biological molecules, as lipids (lipids21) [57], proteins
(ff14SB) [58], water molecules (TIP3P) [59], general organic
molecules (gaff2) [60], and sugars (GLYCAM_06j) [61].
Notably, as mentioned above, on the GLYCAM-web site, it is

possible to easily construct glycans with GLYCAM force field
nomenclature; however, it is worth to note that only a few bac-
terial monosaccharides are available in the GLYCAM-web
carbohydrate builder. For most bacterial sugars, the parametri-
sation of each building block is needed and requires the use of
ab initio methodologies, including several steps of charges and
electron density calculations, optimization and minimization,
making the computational study of bacterial glycans difficult
and time-consuming.

2. CHARMM [62]: CHARMM, acronym of "Chemistry at
HARvard Molecular Mechanics", is a free extensively utilised
molecular modelling and simulation software package. Its force
field is at the core of CHARMM's capabilities, which serves as
a comprehensive set of parameters and mathematical functions
to describe the potential energy and interatomic interactions
within a molecular system. The CHARMM force field includes
parameters for various types of atoms, bonds, angles, dihedrals
and non-bonded interactions, encompassing van der Waals
forces and electrostatic interactions. CHARMM19 (united
atom), CHARMM22, CHARMM27, and CHARMM36 (all
atom) are some of the popular force fields available in the
program. (https://www.academiccharmm.org/)

3. GROMACS [63]: GROMACS is the acronym for
"Groningen Machine for Chemical Simulations"; it is a power-
ful open-source software package for molecular dynamics simu-
lations in the field of computational chemistry and bioinfor-
matics. It is extensively used to model and simulate the
dynamic behaviour of various molecular systems, including
proteins, nucleic acids, lipids, and small molecules. GROMACS
provides various tools for system preparation, simulation setup,
and post-simulation analysis. It is possible to use different force
fields that include GROMOS96, GROMOS53A6, and
GROMOS54A7, which are suitable for simulations of biomole-
cules, organic compounds, and a wide range of solvents (https://
www.gromacs.org/index.html).

Despite several carbohydrate-specific force fields have been de-
veloped over the years [64-68], to date, the most widely used
force field for carbohydrates is GLYCAM, which is continuous-
ly updated and improved to accurately describe their peculiar
and complex set of conformational and energetic properties
[61,69]. For specific studies involving unusual ligands, useful
tools can be employed to provide the parameters needed for
running MD simulations. Charge calculations and electron den-
sity computations for glycan units can be performed using tools
like the online RED Server [70]. Although information on force
fields is usually available, modifications can sometimes be re-
quired and can be achieved through ab initio calculations or
programs like for example VFFDT [71].

https://www.charmm-gui.org/
https://pymolwiki.org/index.php/Azahar
https://glycam.org/docs/othertoolsservice/downloads/downloads-software/index.html
https://glycam.org/docs/othertoolsservice/downloads/downloads-software/index.html
https://glycam.org/docs/othertoolsservice/downloads/downloads-software/index.html
https://atb.uq.edu.au/
https://ambermd.org/
https://www.academiccharmm.org/
https://www.gromacs.org/index.html
https://www.gromacs.org/index.html
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Tools for the conformational analysis of glycans in
the free state
The structure and biological functions of glycans are closely
intertwined; the roles they play are influenced not only by their
chemical composition but also by their conformation. As
mentioned above, glycans are characterised by a huge confor-
mational diversity (see Figure 1): even individual furanoid or
pyranoid monosaccharides can assume various shapes and in
longer glycans the relative orientation of the different monosac-
charide building blocks is dictated by the values of different
glycosidic torsion angles.

MM calculations: Investigating the energetically favourable
conformations of carbohydrate disaccharide units composing
the molecule of interest represents a pivotal step for generating
reliable 3D glycan structure. A first analysis of glycan confor-
mational features can be done by means of molecular mechanic
calculations that allow to build the adiabatic energy maps,
represented as a function of Φ and Ψ torsion angles, in which
the energetic minima that can be populated by a specific
disaccharide are reported [72-74]. Currently, different data-
bases, which are described below, collect adiabatic energy maps
facilitating the construction of glycan 3D models by enabling
the selection only of permitted low energy conformations:

1. CSDB [75-77]: Carbohydrate Structure Database is a
publicly accessible platform for multiple glycoinformatic
studies and web tools, which among the other services allows
the users to locate adiabatic maps for specific glycosidic link-
ages. Generally, CSDB offers a wealth of valuable features; it
provides structural, bibliographic, taxonomic, NMR spectros-
copic and other information on glycan and glycoconjugate
structures of prokaryotic, plant and fungal origin. The retrospec-
tive literature analysis is the main source of structural data,
which are then manually curated and approved. Besides struc-
tures, the database includes bibliography, abstracts, keywords,
biological source data up to strains, methods used to elucidate
structures, NMR signal assignment and other information
(http://csdb.glycoscience.ru/database/).

2. Disac3DB: free annotated database that contains the 3D
structural information of about 120 entries of disaccharides. For
each disaccharide, an exhaustive search was performed using
the MM3 molecular mechanics force field [66], giving a com-
plete sampling of the conformational space and yielding the
construction of relaxed adiabatic energy maps (https://
glyco3d.cermav.cnrs.fr/disac3db/). It is worth to note that the
presence of additional residues in the neighborhood of the
studied glycosidic linkage may cause shifts in the values of the
favored torsional angles. Thus, to evaluate if the presence of
further residues results in limitations of the possible conforma-

tions of an individual glycosidic linkage, and/or if the adiabatic
map of interest is not present in the aforementioned databases,
the Schrodinger Suite of programs through the Maestro graphi-
cal interface can be exploited to generate the maps by using the
MM3 force field [66]. The Schrodinger platform (https://
www.schrodinger.com/) offers several services for molecular
design and discovery providing access to physics-based molec-
ular modelling tools and machine learning technologies from a
single modelling environment, however, it is not free-acces-
sible.

Further valuable insights into the structure and conformation of
saccharides, determined by experiment and simulation, are
available on the Stenutz's website (https://www.stenutz.eu). In
particular, information on the preferred conformation of glyco-
sidic linkages and the favoured dihedral angles for the OH
group at position 6 in hexoses are reported. This website also
provides a compilation of standardised procedures, providing
practical guidelines for carbohydrate structural analysis, span-
ning from the purification to the structural analysis of polysac-
charides.

MD simulations: Once the 3D glycan structure is built, taking
into account the energetically favourable conformations of each
constituent disaccharide unit, and the appropriate force field/
simulation package is chosen, molecular dynamics simulations
can be performed to gain insights into the glycan conformation-
al behaviour. MD simulation generates an ensemble of confor-
mations by applying the laws of motion to the atoms of the mol-
ecule [48], allowing to: i) sample the glycan conformational
space; ii) investigate how the glycan behaves in a solution (if
the MD is performed in explicit solvent), describing carbo-
hydrate–water interactions; iii) monitoring the intramolecular
interactions. Usually, this information has to be further vali-
dated by performing experimental studies (primarily nuclear
Overhauser effect (NOE) and residual dipolar coupling-based
experiments) to get accurate information on the glycan confor-
mational behaviour and eventually apply some experimentally
derived constraints.

The calculation and analysis of MD simulations of glycans in
the free state can be performed with the same tools described
below in the protein–ligand interactions section.

Computational tools to study proteins in the
free state
Knowledge on the three-dimensional structure of a protein is
essential for understanding the functions and the dynamics of
protein interactions. Several experimental techniques, including
NMR, X-ray crystallography and Cryo-EM, can provide criti-
cal information for the characterisation of protein structure and

http://csdb.glycoscience.ru/database/
https://glyco3d.cermav.cnrs.fr/disac3db/
https://glyco3d.cermav.cnrs.fr/disac3db/
https://www.schrodinger.com/
https://www.schrodinger.com/
https://www.stenutz.eu
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conformation. Their widespread and wisely use permitted to ex-
perimentally determine the structures of around 200,000 pro-
teins [78], all organized in the Protein Data Bank (PDB), that is
a freely and publicly available central archive of macromolecu-
lar structural data, established in 1971. However, the three-
dimensional shape of billions of known protein sequences is not
available yet. In this scenario, bioinformatic tools can come to
the aid of predicting protein three-dimensional structure with
high accuracy, as outlined below [79-85]. Notably, generated
models have also occasionally helped solve protein structures
[86], further highlighting the great potential of the integrated
use of bioinformatic tools and experimental data.

Tools for protein structure prediction
Due to the vast conformational space and a complex energy
function, protein structure prediction (PSP) is a computation-
ally challenging task. Homology modelling is a template-based
PSP that may be used to predict the 3D structure of a protein
based on its amino acid sequence and the structure of a related
protein that is already known. However, also template-free PSP
has obtained significant progress recently via machine learning
and search-based optimisation approaches [87]. There are
several software programs and tools available for homology
modelling, and some of the most popular include:

1. AlphaFold2 [88]: It is an open-access protein structure
prediction system based on artificial intelligence and machine
learning. It is based on a neural network that can predict the 3D
protein structure at a high accuracy level. The AlphaFold solu-
tion is composed of two steps. First, given a protein sequence, it
generates multiple alignments with sequences from all the
species, including evolutionary profiles from different sources.
In the second step, a model refinement is generated based
on structural refinement (where the network optimises the
torsion angles, bond length and bond angles), distance
constraints (according to laws of physics) and gives an output
with the structure with the minimised energy (https://
alphafold.ebi.ac.uk/).

2. I-TASSER [89]: Iterative Threading ASSEmbly Refinement
is a free online server that combines ab initio protein structure
prediction with template-based modelling. It is known for its
ability to predict both the structure and function of a protein. It
is based on identifying structural templates from the PDB by
several threading methodologies with full-length atomic models
(https://zhanggroup.org/I-TASSER/).

3. Modeller [90]: It is an open-access program used for
homology or comparative modelling of proteins. The user
inputs an alignment of a sequence to be modelled with known
related structures, and the computer generates a model of all

non-hydrogen atoms. It can do de-novo modelling of protein
loops and apply spatial constraints (https://salilab.org/
modeller/).

4. Rosetta [91]: It was developed for de novo protein structure
prediction in a free version. Homology modelling is also
applied in this instance by using several protein templates that
hybridise the most homologous sections of various templates
into a single model while modelling missing residues de novo.
Advances in the scoring function, which is a mix of physics-
based and knowledge-based potentials fitted against known
structures and thermodynamic observables, have increased the
accuracy of predictions. Incorporating experimental data into
models has been made more accessible. The same research
group also developed RoseTTAFold, which uses deep learning
to quickly and accurately predict protein structures based on
limited information [92]. However, very accurate structures for
complex proteins are yet to be achieved at a level suitable for
effective drug design. Moreover, ab initio prediction of a pro-
tein's structure only from its amino acid sequence remains
unsolved. Accessing Rosetta molecular modelling software
tools (https://www.rosettacommons.org/software) has tradition-
ally required expertise in the Unix command line environment,
limiting their use. A web server called ROSIE [93] was created
to provide a more accessible environment for selected Rosetta
protocols. Academic users can access ROSIE freely (https://
rosie.rosettacommons.org/).

5. SWISS-MODEL [94]: It is a web-based integrated free
service dedicated to protein structure homology modelling. It
guides the user in building protein homology models at differ-
ent levels of complexity. This program builds a homology
model by employing four main steps: (i) identification of
structural template(s), (ii) alignment of target sequence and
template structure(s), (iii) model-building, (iv) model quality
evaluation. Each of the above processes may be repeated inter-
actively until a satisfactory model is produced (https://swiss-
model.expasy.org/).

6. UniLectin [95]: It is an interactive, publicly accessible plat-
form that provides curated and predicted lectin data, not only
including structural information on lectins and their interac-
tions with carbohydrate ligands, but also predicting the occur-
rence of lectins in genomes. UniLectin3d is one of the modules
integrated in UniLectin, which provides curated information on
3D structures of lectins [94-96] a classification system based on
both taxonomic origin and structural  fold (https:/ /
unilectin.unige.ch/) .

7. GlycoShape3D [97]: It is a freely available database for aca-
demic user that enriches the landscape of glycobiology

https://alphafold.ebi.ac.uk/
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resources. It offers structural insights into glycoproteins,
addressing challenges posed by glycan complexity, flexibility,
and heterogeneity. In particular, the Re-glyco tool allows the
user to restore the missing glycosylation on glycoproteins
deposited in the RCSB PDB or in the EBI-EMBL AlphaFold
protein structure database (https://glycoshape.org/).

The quality of the generated protein model is contingent on ele-
ments such as the chosen template structure (if any), the se-
quence alignment, and the choice of the modelling algorithm.
To ensure a high accuracy of the predicted model, which should
be at least comparable to that of experimental structures, several
programs can be employed for model validation and refinement.
Among them, PROCHEK [98] is an open-source program that
permits to check the quality of the protein structure by
analysing the Ramachandran plots, the planarity of peptide
bonds, the bad non-bonded interactions, the distortions of the
geometry around the Cα atoms, the energies of hydrogen bonds,
and the departure of the side chain χ torsion angles from ex-
pected values. Improvement and/or validation of modelled or
experimentally solved structures can be also obtained by using
CASP (critical assessment of protein structure prediction) [99],
which consists of a free platform established in 1994 to help
advance the methods of identifying protein structure from se-
quence. The Protein Structure Prediction Center (https://
www.predictioncenter.org/) has been organized to allow
researchers to objectively test their structure prediction
methods. Some of the best performing methods (including
among the others AlphaFold, RosettaFold and I-TASSER) are
implemented as fully automated servers, which can be used by
public for protein structure modelling.

MD simulations: Generating an accurate protein model or
choosing the appropriate published 3D structure of a protein is
essential to obtain reliable and precise results from MD simula-
tion. It is also worth to note that, to generate the input files for
MD, some modifications on the .pdb file of the protein are re-
quired. For instance, capping the protein termini with non-
charged groups and replacing original hydrogens to guarantee
compatibility with the selected force field is required before
running MD simulations. Other modifications can include
adding a disulfide bond between specific cysteines and filling
the missing side chains and missing loops (if any) to restore the
integrity of the protein. Here, we list a series of software tools
and packages which are commonly employed to generate the
protein input files for MD:

1. Molprobity [100]: It is a widely used web-based software
suite for evaluating and enhancing the quality of protein struc-
tures, especially those intended for molecular dynamics simula-
tions, available in a free version. Specifically, it is possible to

check the H atoms, the quality of the structure, evaluate some
steric clashes and visualise in a friendly manner the full struc-
ture (http://molprobity.biochem.duke.edu/).

2. PDBtools [101]: It is a freely accessible software that allows
the manipulation and modification of a PDB file. Different tools
are available, such as deleting atoms, renaming the polypeptide
chain, calculating disulphide bonds, adding missing atoms and
mutating residues (https://wenmr.science.uu.nl/pdbtools/
submit).

3. ProteinPrepare [102]: This application enables users to
modify PDB files and create input files for molecular dynamics
by adding missing atoms, removing H atoms, and analysing the
proton state of amino acids. The registration of the user to the
web-site is  required to access these tools (https:/ /
playmolecule.com/proteinPrepare/) .

Several MD simulation packages, including CHARMM-GUI
[52], AMBER [56], and GROMACS [63], offer built-in utili-
ties for preparing input files. These tools also provide extensive
documentation and tutorials to help users effectively create MD
input files for proteins. Once the protein input files are gener-
ated, MD simulations can be run.

Computational tools to study protein–ligand
complexes
Detailed investigations of protein–ligand interactions, combin-
ing experimental and computational methods, provide an indis-
pensable basis to depict holistic pictures of molecular com-
plexes allowing to modulate them at will. The computational
approach involves i) predicting/building the protein and the
ligand in their optimal conformation (as discussed above), ii)
predicting the protein binding site; iii) modelling the ligand into
the protein binding site, iv) assessing binding affinity through
sampling and scoring, as discussed in the following paragraphs
[103].

Prediction of the protein binding site
Over the years, structure-, sequence-, and homology/template-
based methods have been employed to identify and predict
carbohydrate-binding sites starting from the protein structure
[104]. Recently, thanks to the fast development of machine
learning techniques, new computational tools have been de-
veloped to facilitate the prediction of protein binding sites.

We report here only the applications related to the protein inter-
action with glycans:

1. PeSTo-Carbs [105]: it is an extension of Protein Structure
Transformer (PeSTo) [106], a deep learning method to

https://glycoshape.org/
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predict protein interaction interfaces with other proteins,
nucleic acids, lipids, small molecules, and ions, starting
from a protein structure. PeSTo-Carbs is specifically
trained to predict carbohydrate and cyclodextrin binding inter-
faces on proteins. Two different modules are available: a
general model PS-G for a wide range of carbohydrates, their de-
rivatives and cyclodextrins, and a specific model PS-S for im-
portant carbohydrate monomers. All of these features are avail-
able for free without registration as online tools (https://
pesto.epfl.ch/).

2. GlyNet [107]: it is a free deep learning algorithm, based on
neural networks (NN), that allows the user to predict protein-
glycan binding. Taking a glycan structure as input, this model is
able to predict the strength of the interaction based on the rela-
tive fluorescence units (RFUs) measured in the Consortium for
Functional Glycomics glycan arrays and extrapolating these to
RFUs from untested glycans (https://github.com/shauseth/
glynet).

3. LectinOracle [108]: it is a freely available deep learning-
based model that combines transformer-based representations
for proteins and graph convolutional neural networks for
glycans to predict their interaction (https://github.com/
BojarLab/LectinOracle).

4. CAPSIF [109]: CArbohydrate-Protein Site IdentiFier is a
convolutional neural network able to predict protein–carbo-
hydrate binding interface from a protein structure. In contrast to
other DN algorithms, as GlyNet and LectinOracle, which
predict lectin-carbohydrate binding on a protein level, it
provides residue-level information for non-covalently bound
carbohydrates either from an experimental or generated-model
protein structure. It includes two modules: CAPSIF-Voxel that
predicts the protein binding residues and CAPCIF-Graph that
predicts which residues bind sugars. It is freely available for
use, and the code for CAPSIF can be accessed on GitHub
(https://github.com/Graylab/CAPSIF).

To identify potential binding sites on the protein's surface,
docking calculations can also be performed (see below).

Docking calculation tools for interaction studies
Molecular docking plays a crucial role in computer-aided drug
development, allowing systematic evaluation of compound
libraries to identify high-affinity lead compounds for specific
targets. Bio-algorithms enable modelling protein tertiary struc-
tures, predicting ligand binding pockets, and supporting drug
discovery through molecular docking [110]. Advances in infor-
mation technology and improved computational efficiency have
made computational methods integral to modern biological

research, and large-scale structure-based docking screens have
become common, facilitating the exploration of vast chemical
spaces and identifying potential target hits from extensive com-
pound libraries [103]. While docking programs and servers may
exhibit variations in their operational methods, they generally
adhere to a common workflow comprising two primary phases.
The first phase involves a conformational search aimed at
predicting potential ligand conformations. This is followed by
the second phase, which focuses on scoring the binding poses
obtained during the conformational search. In this phase, the
generated ligand–receptor complexes are assessed and ranked
based on their binding energy thanks to the use of scoring func-
tions [111].

Docking calculations can be conducted in two distinct ways:
blind dockings, which explore the entire protein surface [112],
and directed docking, typically employed when prior know-
ledge of the binding pocket exists and performed within a
predefined box. Blind dockings are performed using cavity
detection programs and online servers, as follows:

1. CB-Dock2 [113]: Cavity-detection guided Blind Docking 2
(https://cadd.labshare.cn/cb-dock2/index.php) is an online pro-
tein–ligand docking program designed to perform blind docking
at predicted sites instead of the entire surface of a protein. Thus
CB-Dock automatically recognises putative binding sites to de-
termine their centre and size, with the aim to adjust the
docking box to suit specific query ligands. Finally, molecular
docking calculations are performed with Autodock Vina (see
below).

2. Fpocket [114]: It is an open-source pocket detection package
based on Voronoi tessellation and alpha spheres. It consists of
three main programs: Fpocket for pocket identification, Tpocket
for benchmarking pocket detection, and Dpocket for collecting
pocket descriptor values. Written in C, Fpocket is well-suited
for developing new scoring functions and extracting various
pocket descriptors on a large scale. Fpocket 1.0 outperforms
industry standards by detecting a high percentage of pockets
within the best-ranked ones and offers a fast, open-source solu-
tion for protein pocket detection (https://github.com/Discngine/
fpocket).

3. GRID [115]: It is a computational tool used to identify ener-
getically favourable binding sites, known as molecular interac-
tion fields (MIFs), on molecules with known structures. GRID
has various applications, including ADME prediction, site of
metabolism prediction, ligand-based and structure-based design,
pharmacophore elucidation, water network prediction, and
3D-QSAR. GRID 2021 introduced a new interface aimed at
structure-based design. It enables users to explore binding sites
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using classic GRID MIFs, encompassing 74 different chemical
types. Additionally, it offers a new molecular probe for gener-
ating MIFs specific to fragments of interest. GRID 2021
includes a 3D sketcher for visualising ligand modifications, and
its Designer mode assists in finding optimal chemical moieties
for specific sites (https://www.moldiscovery.com/software/
grid/#:~:text=GRID%202021%20is%20a%20new,MIFs%20for
%20fragments%20of%20interest).

When there is prior knowledge of the protein binding pocket, it
is time saving to define an optimal docking search space or box
and study specific binding pockets, improving docking accu-
racy and efficiency. Customising the box size for individual
ligands, based on their size and the relationship with the search
space, can be done by comparing the target protein to related
proteins or those co-crystallised with ligands [103] and manu-
ally superimposing the new ligand to the reference structure.
Some payment software like Glide [116,117], GOLD [118] and
Molecular Operating Environment (MOE) dock [119] can be
used for this purpose, although here are listed free docking
tools:

1. Autodock [120,121]: It is a suite of advanced docking tools
used for predicting how small molecules, such as drug candi-
dates or substrates, interact with known 3D protein structures. It
offers two generations of software, namely AutoDock 4 and
AutoDock Vina, and a user-friendly graphical interface called
AutoDockTools (ADT) to assist in configuring ligand rotatable
bonds and analysing docking results. Additionally, the acceler-
ated AutoDock-GPU is designed for faster performance,
surpassing the original single-CPU docking code by hundreds
of times. AutoDock 4 comprises two main programs: autodock
handles ligand docking by aligning it with precomputed protein
grids, while autogrid generates these grids. The grids can also
assist organic chemists in designing better binding molecules
(https://autodock.scripps.edu/).

2. Autodock Vina [122]: It is the open-source improved
successor of Autodock. Vina is improved in terms of accuracy
and performance as simplifies the process by instantly
calculating grids internally, eliminating the need for manual
grid map selection and atom type assignments (https://
vina.scripps.edu/#).

3. FlexAID [123]: It is a molecular docking software capable of
setting small molecules and peptides as ligands, and proteins
and nucleic acids serve as docking targets. Notably, FlexAID
shows support for full ligand flexibility and the flexibility of
side chains in the target. It achieves this by employing a soft
scoring function that assesses the complementarity between the
surfaces of the ligand and the target. Thus, FlexAID has demon-

strated superior performance compared to well-established soft-
ware like AutoDock Vina, particularly when target flexibility
plays a pivotal role, as is often the case when working with
homology models  (ht tp: / /biophys.umontreal .ca/nrg/
resources.html) .

4. HADDOCK [124]: High Ambiguity Driven protein–protein
DOCKing is an advanced computational approach used for
modelling interactions in biomolecular complexes. Noteworthy,
HADDOCK incorporates information from known or predicted
protein interfaces into the docking process through ambiguous
interaction restraints and allows the specification of precise dis-
tance restraints (e.g., based on MS cross-links). It also supports
a range of experimental data, including NMR residual dipolar
couplings, pseudo contact shifts, and cryo-EM maps, posi-
tioning HADDOCK as a versatile tool capable of handling
various modelling scenarios, such as protein–protein,
protein–nucleic acids, and protein–ligand interactions.

The majority of existing docking software was originally de-
signed for small, rigid, drug-like molecules, therefore, limiting
their effectiveness in studying protein–carbohydrate interac-
tions [125,126]. The development of specialized programs has
been crucial in enhancing the accuracy of docking calculations
[125,126]. We here listed a series of programs for running
docking calculations with a special focus on those specifically
designed to address the unique challenges posed by glycans
[127,128].

1. Vina-Carb [129,130]: Vina-Carb is a module of AutoDock
Vina (downloadable with a free version at https://glycam.org/
docs/othertoolsservice/downloads/downloads-software/
index.html), proven to be a valuable tool for studying carbo-
hydrates. It incorporates carbohydrate intrinsic (CHI) energy
functions and explicit water to better handle glycosidic link-
ages and improve docking accuracy. When Vina-Carb was
applied to antibodies, lectins, and carbohydrate binding
modules (CBM), the success rates in predicting accurate
binding modes reached 86%, 50%, and 42%, respectively, com-
pared to 70%, 50%, and 0% for AutoDock Vina. Although
Vina-Carb generally performed slightly better over AutoDock
Vina when docking glycans to proteins, it does not always rank
the best docking pose as the top scoring pose.

2. BALLDock/SLICK [131]: It is a molecular docking method
specifically designed to accommodate carbohydrate-like com-
pounds, employing a genetic algorithm that allows for ligand
and receptor side-chain flexibility. Designed specifically for
protein–carbohydrate interactions, SLICK includes terms that
consider CH–π interactions, hydrogen bonds, smoothed van der
Waals interactions, and electrostatic interactions. The SLICK
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scoring function, tailored for carbohydrates, enhances the accu-
racy of predicting binding modes and free binding energies.
Compared to other programs such as AutoDock and FlexX (see
below), BALLDock/SLICK demonstrates superior perfor-
mance in structural and energetic precision. This method is par-
ticularly valuable in drug design involving protein–carbo-
hydrate interactions, addressing weaknesses such as the CH–π
interactions that are challenging for other programs like Vina-
Carb.

3. FlexX [132,133]: It is a molecular docking software (unfortu-
nately not free) designed to predict the conformations of small
molecules in protein binding sites, thus facilitating the
discovery of new drugs. Within SeeSAR, its functionality
allows ligands to be placed in binding sites using an incre-
mental construction algorithm that splits ligands into fragments,
places, and scores them quickly in the binding site. The best
fragments are then assembled to form the complete ligand, opti-
mizing the generated conformations. FlexX's strengths include
rapid and efficient exploration of the conformational space,
handling ligand flexibility, a precise scoring function, and
smooth integration with other molecular modelling programs.
Additionally, FlexX excels in processing large libraries at high
speed and is user-friendly, requiring no prior receptor prepara-
tion.

4. ROSETTA [134]: The development of GlycanDock [134], a
protein−glycoligand docking refinement algorithm integrated in
the RosettaCarbohydrate framework [135], allowed the use of
Rosetta macromolecular modelling and design software suite to
perform docking calculations on glycans bound to proteins with
a higher accuracy with respect to previous Rosetta’s
protein−small molecule docking algorithms. Unlike other
docking programs such as AutoDock, AutoDock Vina, DOCK,
FlexX, Glide, and GOLD, which are primarily designed for
small, rigid ligands, GlycanDock is specifically optimized to
address the flexibility and complex structural features of
glycans. The carbohydrate chains are treated as flexible
oligomers, allowing extensive conformational sampling of the
glycoligand while maintaining glycosidic linkages within
predetermined, energetically favorable minima to ensure
biophysically realistic carbohydrate structures. GlycanDock
handles the flexibility and complexity of glycans better than
other docking programs and can be downloaded as part of the
Rosetta package from the Rosetta Commons (https://
www.rosettacommons.org).

5. GlycoTorch Vina [136]: GTV is a free molecular docking
tool specifically designed for GAGs. Based on Vina-Carb, it
enhances the accuracy of modeling these carbohydrates by in-
cluding parameters for sugars in the 2SO conformation and

glycosidic linkages specific to GAGs. GlycoTorch Vina also
allows the integration of experimental data, such as NMR,
and considers water-mediated interactions, providing more
accurate predictions in the formation of GAG-protein com-
plexes.

6. DOCK [137]: It is a molecular docking program (free for
academic research) that predicts the orientation and conforma-
tion of ligands within the binding site of proteins or nucleic
acids. It uses an incremental construction approach ("anchor-
and-grow") to handle ligand flexibility and employs a scoring
function based on the AMBER force field to evaluate the
stability of the complex. DOCK is particularly useful for GAGs
due to its ability to accurately model conformational flexibility
and enhance sampling, allowing for more precise predictions of
ligand–receptor interactions.

7. ATTRACT [138]: It is a docking (not free) program that
models interactions between proteins and other biomolecules
such as DNA, RNA, and small ligands. Originally designed for
protein docking, it has been successfully adapted for GAGs due
to its coarse-grained force field approach, which allows for pro-
tein flexibility and the simultaneous handling of multiple pro-
tein bodies [139]. This adaptability makes it particularly useful
for large and dynamic complexes. Although not initially
intended for GAGs, researchers have modified its protocols to
account for the unique features of these molecules, such as their
high flexibility and electrostatic charge. This has enabled
ATTRACT to effectively predict binding poses and rank GAG-
protein complexes, demonstrating its utility and versatility in
advanced biological interaction studies.

The key distinctions among various docking programs stem
from the specific computational search algorithms they employ
and the characteristics of the scoring functions utilised to order
the docked poses. Over the years a plethora of different scoring
functions have been developed, in particular thanks to the
evolution of machine learning and collection of high-resolution
structural information [140-142]. Recently, some of them have
been also optimised for evaluating the binding affinities be-
tween proteins and carbohydrates [143,144]. Among them, the
CSM (cutoff scanning matrix)-carbohydrate outperforms
previous methods and scoring functions, also providing a freely
accessible and user-friendly web interface and an application
programming interface (API) (http://biosig.unimelb.edu.au/
csm_carbohydrate/).

Unravelling complex molecular interactions: tools for
molecular dynamics studies
Once the conformational space accessible to the ligand has been
studied, the protein binding pocket has been identified, and a
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model of protein–ligand complex has been obtained, MD simu-
lations can be performed with the aim to accurately describe the
conformational and dynamic properties of the bound state. All-
atom MD simulations involve 4 steps: i) energy minimisation,
ii) heating, iii) equilibration and iv) production. MD simula-
tions are often run by using explicit solvent box to account for
molecular interactions, and if needed, Cl− or Na+ ions are added
to neutralise the system. Although different programs for
running MD simulations, including CP2K [145], DESMOND
[146], LAMMPS [147], TINKER [148], YASARA [149], and
NAMD [150] are available, the most widely used packages to
run all-atom MD simulations on protein glycan complexes are
the already described AMBER [56], CHARM-GUI [52] and
GROMACS [63].

Tools for the analysis of computational data
Once the protein in the apo-form has been analysed, the ligand
in the free-state has been studied, and the protein–ligand com-
plex has been extensively subjected to MD simulations,
in-depth insights into the structural and conformational features
governing the molecular interactions can be achieved by
analysing and visualising the obtained data. The critical step of
post-processing analysis involves examining the binding poses
of the ligands, evaluating the stability and dynamics of the com-
plexes, investigating the electronic structure and interactions
and calculating binding energies or free energy profiles within
the system, thus helping in understanding the energetics and
thermodynamics of the interactions [151]. To facilitate these
tasks, various software tools have been developed; generally,
the simulation packages used to run all-atom MD simulations
offer built-in utilities and scripts for post-processing the MD
data. For example, AmberTools, released within the AMBER
suite of biomolecular simulation programs, includes cpptraj and
ptraj codes for analysing structure and dynamics in trajectories
[152]. Additionally, other programs as VMD (see below) and
PLUMED [153], an open-source library compatible with
popular MD engines like Amber and GROMACS. (https://
www.plumed.org/), can support data analysis for molecular dy-
namics simulations.

Moreover, several custom scripts have been developed within
computational chemistry laboratories (see for example: https://
github.com/roviralab/utils) enabling the tracking of glycan con-
formational changes throughout the dynamics, monitoring dihe-
dral angles, distances, and other parameters. Additional
programs allow for the combination and comparison of experi-
mental and theoretical data, enhancing the reliability and accu-
racy of the simulations. As example, the software package
MD2NOE [154] permits to properly simulate NOE effects also
of flexible molecules sampling multiple conformational states
directly from molecular dynamics (MD) trajectories. With the

advent of GPU-based simulation code, indeed, MD simulations
have been extended into the microsecond regime, allowing to
sample glycan conformational space sufficiently and enabling
the computation of key NMR properties [154].

Different visualisation programs, as those described below, play
a crucial role in rendering complex 3D structures, visualising
molecular interactions, and generating high-quality images for
publications or presentations (Figure 4). These user-friendly
tools are indispensable for researchers in the fields of structural
biology, biochemistry, and computational chemistry, making it
easier to comprehend and communicate the results of sophisti-
cated simulations.

1. VMD [54]: Visual Molecular Dynamics is a popular and
freely accessible molecular modelling program designed to
display, animate, and analyse biomolecular systems using 3D
graphics and built-in scripting. It provides tools for simulation
preparation, visualisation, and analysis of molecular dynamics.
(https://www.ks.uiuc.edu/Research/vmd/).

2. PyMOL [157]: It is an open-source molecular visualisation
system developed by Schrödinger. It is one of the most used
programs for the visualisation of the 3D structure of the protein
alone or in a complex with a ligand. Several tools are available
to create, manipulate and visualise the 3D structures. Other
tools consent to generate the surface of a protein and highlight
the electrostatic potentials or hydrophobicity. PyMOL is used
for various applications, such as protein structure analysis, mo-
lecular docking studies, and drug design.

3. UCSF Chimera [158]: It is a highly versatile and widely used
free molecular visualisation and analysis program developed by
the University of California, San Francisco (UCSF). It is a pow-
erful software tool for visualising and analysing the 3D struc-
tures of biological macromolecules, such as proteins, nucleic
acids, and other complex molecular assemblies. UCSF Chimera
provides a user-friendly interface for exploring and manipu-
lating molecular structures, offering a wide range of features for
tasks like molecular modelling, molecular dynamics analysis,
structural biology, and more. UCSF Chimera is commonly used
to gain insights into the structure and function of biomolecules.
It supports various file formats, offers diverse visualisation
options, and allows for the creation of stunning images and
animations of molecular structures, making it an invaluable
resource (https://www.cgl.ucsf.edu/chimera/).

4. BIOVIA Discovery Studio [159]: It is a freely downloadable
suite of science applications designed for life sciences discovery
research, which includes addressing multiple optimisation
objectives in drug discovery. This comprehensive software
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Figure 4: Visualisation programs. Different representation of a protein–ligand complex by using the most used visualisation programs reported in this
review. The previously published complex [155] between the Ca2+ dependant C-type lectin, DC-SIGN (PDB: 1SL4) [156], and a tetrasaccharide
composed of mannose and rhamnose residues, has been used to highlight the main advantages of each visualisation program applied to
protein–glycan complexes.

suite, built on BIOVIA Pipeline Pilot, provides a wide range of
validated applications. It offers a scalable and collaborative
research environment, making it a valuable tool for life sciences
discovery research (https://discover.3ds.com/discovery-studio-
visualizer-download).

5. Schrödinger Maestro [160]: It is a comprehensive molecular
modelling and computational chemistry software suite de-
signed for researcher fields like drug discovery, materials
science, and structural biology. Schrödinger Maestro provides
tools for molecular visualisation, ligand-receptor docking (with

Glide [117]), molecular dynamics simulations, quantum
mechanics calculations, and more. It is widely used in the phar-
maceutical and biotechnology industries for drug design and
discovery, as well as in academic research and other scientific
applications that involve the study of molecular structures
and interactions (https://www.schrodinger.com/products/
maestro).

6. SAMSON [161]: Software for Adaptive Modelling and
Simulation Of Nanosystems is a computer software platform for
molecular design, unfortunately not freely avaiable. Its modular
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architecture enables a wide range of tasks, including model
creation, calculations, interactive or offline simulations, and
result visualisation and interpretation. Notably, SAMSON
offers modules related to glycans and glycans visual models,
facilitating the use of the SNFG nomenclature for ligand design
and visualisation (https://www.samson-connect.net/).

All the computational tools here reported, summarised in
Figure 5, constitute a unique kit for the analysis of
protein–glycan interactions.

Computational tools applied to the study of
glycans in the free state
In the years, the architectural and conformational features of
different mammalian glycans, including oligomannose [162]
and complex-type N-glycans, have been unravelled by employ-
ing computational approaches. As example, the work con-
ducted by A. M. Harbison et al. [163] reported the molecular
dynamics of complex biantennary IgG Fc N-glycans and their
implications for the structural integrity and functionality of
human immunoglobulins G (IgGs).

MD methods have also been employed, in combination with ex-
perimental methods, as NMR, to explore the three-dimensional
features of bacterial glycoconjugates, as the exopolysaccha-
rides [164], and the rough-type lipopolysaccharide [165] isolat-
ed from Methylobacterium extorquens or the lipopolysaccha-
ride isolated from Herbaspirillum Root189 [164]. In these
studies, once built the parameters for non-standard bacterial
monosaccharides, which were not included in the GLYCAM-
website, the overall conformation and properties of the saccha-
ride chain has been accurately described and compared to the
experimental NOE data. The tight integration between computa-
tional and experimental results allowed to highlight how modi-
fications of the saccharidic backbone, as example with
O-methyl and O-acetyl groups, can affect the polysaccharide
biophysical properties tuning its ability to interact with other
polymers and/or receptor proteins.

Another example of the application of simulation methods to
the analysis of complex glycans is presented by Makshakova et
al., who analysed the three-dimensional structure of the
exopolysaccharide isolated from Alteromonas infernus GY785
[166]. The main chain of the so-called “Infernan” polysaccha-
ride includes glucose, galacturonic acid and galactose, with
branches composed of uronic acids and sulphate groups that
contribute to modulate its unique properties. Specifically, the
authors used molecular mechanics and dynamics calculations to
describe the helical structure of the polysaccharide chain and
the role of its side chains in the creation of Ca2+ chelating sites
in the region of the polysaccharide branching points.

A further application of computational tools to the analysis of
complex glycans is the study of the conformational behaviour
of the naturally cationic polysaccharide, carboxymethyl
chitosan (CMCS), reported by Zhang et al. [167]. Due to its
non-toxic, biodegradable, biocompatible, and versatile features,
chitosan has been widely used in various fields such as biomed-
icine, cosmetics, agriculture and food. However, its insolubility
in neutral or alkaline pH conditions largely limits chitosan's ap-
plications. MD simulations were thus employed to mimic the
behaviour of CMCS in water under different pH values and dif-
ferent degrees of deacetylation and substitutions in order to
study its aggregation pattern.

Computational tools applied to the study of
proteins in the free state
Understanding the dynamics of proteins in their free state is key
to investigate how they can interact with other biomolecules.
MD simulations can be used to study the conformational
changes that occur in proteins as they move from one state to
another, which is important for understanding their function;
additionally, MD simulations can also be used to study the ther-
modynamics of protein folding, which is important for under-
standing how proteins fold into their native state.

Recently, extensive MD studies have been performed to investi-
gate the structural and functional features of the SARS-CoV-2
spike glycoprotein, allowing to reveal the critical role of
glycans attached to the viral protein in the infection. In particu-
lar, the full spike receptor consists of a trimer of S protein, and
each monomer comprises 22 N-glycan sites. Recent studies
suggest that the structure and occupancy of the SARS-CoV-2 S
glycans affect the structural integrity of the trimer [168]. Specif-
ically, different Spike protein models with varying glycan com-
positions in positions N234, N165 and N343 were created by
homology modelling using SWISS-MODEL. Then N-glycans
were added by aligning conformationally equilibrated N-glycan
structures from a Glyco Shape library to the GlcNAc residues
resolved in the cryo-EM structure, with adjustments of the
torsion angles to resolve steric clashes with the surrounding
protein. By using AMBER, the MD simulation was performed
and suggested that diminishing the size of N-glycans at position
N234 results in destabilising the "wide-open" conformation of
the receptor-binding domain (RBD). This destabilisation leads
to increased RBD dynamics. Furthermore, the composition of
N-glycans at positions N165 and N343 influenced the stability
of the open RBD, where shorter structures exhibited reduced
effectiveness in interacting with the disordered loop within the
receptor-binding motif.

Moreover, several groups have employed MD simulation to
design new proteins. For example, the group of Mayo [169] em-

https://www.samson-connect.net/
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Figure 5: A schematic representation of useful computational methods to study protein–glycan interactions. a) Workflow including different key steps
needed to analyse protein–glycan interactions: 1. Building/choosing the appropriate glycan/protein 3D structure; 2. Modelling protein–glycan complex;
3. Running and analysing MD simulations; 4. Processing and visualising the results. b) Summary of the presented tools for building structural model
and/or generating topology files of glycan/protein structures.
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ployed this approach to engineer a de novo homodimer from a
monomeric protein. The integration of computational protein
design (CPD) and MD simulation allowed to refine the struc-
tural and dynamic aspects of the designed proteins overcoming.
CPD inherent limitations, including constraints on side chain
rotamers, fixed protein backbones, and a lack of consideration
for solvent interactions. Thus, the use of MD simulation
allowed to provide a more precise depiction of the protein's be-
haviour, shedding light on its dynamics and stability.

Another example of the relevance of all-atom molecular dynam-
ics simulations is the study performed by X. Cao et al. [170],
which reports the structural dynamics of GH33 sialidases. The
computational analysis revealed significant conformational re-
arrangements within the enzyme active sites leading to the for-
mation of a new cleft to accommodate glycosyl acceptors.
Furthermore, the simulations shed light on the role of specific
residues within the enzyme's active site, such as the arginine
triad and other key residues, which adjusted their conforma-
tions to interact with sialic acid and facilitate the opening of a
new cleft. Computational tools, including GROMACS and
AutoDock, were pivotal in uncovering key insights into the cat-
alytic mechanisms of GH33 sialidases offering a promising
avenue for the rational design of improved biocatalysts.

Computational tools applied to the study of
protein–glycan interactions
Molecular dynamics simulation has proven to be a powerful
tool in understanding and elucidating the intricate dynamics of
glycan interactions with biomolecules. This computational tech-
nique allows researchers to delve deep into the molecular-level
details of how glycans bind to their respective target proteins,
providing valuable insights into binding mechanisms, thermo-
dynamics, and the overall stability of protein–glycan com-
plexes.

MD methods have been extensively employed by different
groups to explore glycan recognition by host receptors, includ-
ing mammalian and bacterial proteins. For example, several
studies have been published on the recognition of sialic acids by
different classes of proteins. It is known that sialic acid plays an
essential role in the modulation of immune response through the
binding with sialic acid-binding immunoglobulin-like lectins
(SIGLEC). In the study reported by Martin Frank et al. [125],
MD were used to analyse the binding modes of several glyco-
mimetics for Siglec-7 and describe their molecular interactions
at atomic level. The conformational characteristics of both
natural, unmodified, and synthetic, modified α-sialoside
glycerol sidechains of sialic acid were investigated. The
applied computational tools allowed to discover a new modifi-
cation in the sialic acid glycerol chain that binds to Siglec-7,

providing a basis for designing next-generation Siglec-7
ligands.

Sialic acid can also be recognised from some bacterial proteins
which exploit this interaction to adhere to host cells during the
first stages of infection. An example is given by the sialic acid-
binding serine-rich repeat adhesins from Streptococci, which
contain a sialic acid-binding region (SLBR) and are known as
Siglec-like adhesins. Di Carluccio et al. [171] described the
interactions between two different siglec-like adhesins with
natural glycans by using a combination of NMR and MD simu-
lations. This integrated approach allowed to accurately describe
the different selectivity and flexibility of the proteins towards
sialoglycans recognition and binding, providing a privileged
starting point for the design and development of novel com-
pounds to counteract streptococcal infections by inhibiting bac-
terial adherence to host tissues.

Another example of the application of MD simulations in
studying bacterial proteins in the interaction with glycans comes
from Bernardi's group [172], whose focus was on examining the
interaction between different glycomimetic antagonists and
BC2L-C lectin derived from B. cenocepacia. The MD results
showed that the binding site at the interface of two BC2L-C-Nt
monomers is pre-organised to host the bifunctional ligands. Ad-
ditionally, the simulation with the water molecules highlights
the importance of two of these molecules in the binding site,
establishing an interaction network.

Bacterial glycoconjugates, as lipopolysaccharides-related
systems, have also been dissected, gaining critical information
about the ability of LPS to both stimulate the host immune
system, mainly by interacting with TLR-4/MD-2 complex, and
interact with several molecules. The Martin-Santamaria group
[173] extensively contributed to increase the knowledge on this
topic, analysing the conformational changes of the TLR4/MD2
complex when interacting either with small and LPS-like mole-
cules

Notably, the comparison of free and bound state MD results can
allow to determine critical differences in the glycan conforma-
tional behaviour upon binding with selected proteins, paving the
way for the design of tailored synthetic inhibitors and therapeu-
tics. As example, in the study of L. Pirone et al. [174], computa-
tional techniques were combined with biophysical and spectros-
copic methods to investigate the interaction between a seleno-
glycoside (SeDG) and galectins Gal-1 or Gal-3CRD. The inte-
gration of data from NMR, CD, and ITC provided valuable
insights into designing selective inhibitors. The computational
studies uncovered two different binding modes: when bound to
Gal-1, SeDG adopted a V-shaped conformation driven by van
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der Waals interactions; on the contrary, when in complex with
Gal-3CRD, it assumed an extended conformation. Comparing
these modes identified specific interaction sites, guiding the
design of selective inhibitors that can differentiate between the
two galectins.

Noteworthy several computational studies have been conducted
also for exploring protein-GAG interactions [175,176]. The
study conducted by U. Uciechowska-Kaczmarzyk et al. [139]
reports an extensive evaluation of protein–GAG complexes
using a dataset of 28 complexes where the GAG length
exceeded DP3 [139]. Through various statistical analyses to
differentiate and highlight the docking programs with superior
performance, valuable insights were provided into the most
effective tools for studying these biologically relevant systems
[177]. The interaction between the chemokine CXCL8/IL-8 and
heparin-derived oligosaccharides was investigated by applying
these docking procedures together with NMR spectroscopic
techniques demonstrating the that higher affinity of the CXCL8
dimer for GAGs compared to the monomer and highlighting the
structural plasticity that allows multiple binding modes. The use
of HADDOCK in this context underscored its capability to
model complex protein-GAG interactions accurately, providing
a detailed understanding of the binding mechanisms at play
[178].

Conclusion
In structural biology, the investigation of protein–glycan inter-
actions often relies on applying various structural techniques,
including NMR, X-ray crystallography, and cryo-EM. Each of
these methodologies comes with distinct advantages and limita-
tions. NMR is particularly valuable for its ability to dynami-
cally study molecules at the atomic level while preserving sam-
ple integrity. This makes it especially suitable for studying
carbohydrates, offering insights into their 3D structures and
conformations, but it generates a huge amount of data, which
can be challenging to interpret effectively. X-ray crystallogra-
phy provides high-resolution structural information, but unfor-
tunately, this technique often fails when investigating carbo-
hydrate–protein interactions due to the intrinsic flexibility of
sugars, rendering them invisible in the density maps. In recent
years, cryo-EM has seen widespread adoption in solving pro-
tein structures and glycoconjugates, thanks to significant
advancements in instrumentation. Nevertheless, a notable limi-
tation of cryo-EM lies in its capacity to handle large, intricate
complexes. In this context, computational approaches can be
valuable allies to develop accurate models helping in inte-
grating and rationalizing data obtained from different methods
and bridging the gap between the insights obtained from experi-
mental data and the detailed understanding of complex biologi-
cal systems. As example, models of protein and ligand, both in

the free and bound states, can assist not only the interpretation
of NMR spectra but also the building of structures that satisfy
experimentally derived distance and angle restraints. Moreover,
in X-ray crystallography and cryo-EM, protein models can be
used to provide accurate templates for molecular replacement in
the crystal cell or for backbone tracing and fitting sequence into
a map, respectively.

We provided here an overview of computational tools available
for ligand and protein building as well as the analysis of their
molecular interactions, with a special focus on carbohydrates
(Figure 5). Generally, to allow the prediction of an accurate 3D
model of protein–glycan complexes, the combined use of differ-
ent tools is highly recommended. A typical workflow could
include firstly research to investigate the favoured carbo-
hydrates bound to a protein (i.e., by using Glynet or LectinOr-
acle), then other tools (such as CASPIF or PESTO) can be em-
ployed to predict the binding location. Subsequently, appro-
priate docking software (i.e., AutoDock Vina-Carb) can be used
to provide a model of protein–glycan complex, which can be
further refined (as example thanks to GlycanDock) and
explored by molecular dynamic simulations (i.e., by using
AMBER). Finally, the detailed analysis of the trajectory (i.e., by
using AmberTools) provides unique vision of the 3D structure
and real dynamics of glycan motifs in the bound state. Notably,
the recent fusion of cutting-edge technologies, such as virtual
reality, with interactive molecular simulations also allows to
create an immersive environment, offering an opportunity with-
out precedents to explore and manipulate molecular systems in
real-time [179].

However, it is worth to note that, despite the continuous
improvement of computational techniques and force fields de-
velopment, there are still some limitations in the application of
bioinformatic methods to the analysis of biomolecular interac-
tions, especially in the case of complex carbohydrates, not to
speak about bacterial glycans. Step forwards have been done in
the improvement of docking programs dedicated to carbo-
hydrates, however, the available software performed better for
smaller glycans, while additional glycosidic linkages still
remain a big challenge for docking calculations, and there is
still room for improvement in ranking the best sugar docking
pose. Additionally, over the years, different carbohydrate-
specific force fields have been developed, the choice of
which varies depending on the preferred simulation conditions,
however, only few parameters have been defined for peculiar
bacterial monosaccharides hampering a user-friendly
and not time-consuming analysis of the system via MD simula-
tions. A step change in this direction will permit the integrated
use of valuable bioinformatic tools tailored on carbohydrates
and would be of great help in unveiling critical structural and
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conformational features, at the atomic level, of complex glycans
in the free and bound state, that can serve as essential resources
for structural glycomics research to both experts and non-
experts in glycobiology.
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