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Abstract
Meroterpenoids are hybrid compounds that are partially derived from terpenoids. This group of natural products displays large
structural diversity, and many members exhibit beneficial biological activities. This mini-review highlights recent advances in the
engineered biosynthesis of meroterpenoid compounds with C15 and C20 terpenoid moieties, with the reconstruction of fungal
meroterpenoid biosynthetic pathways in heterologous expression hosts and the mutagenesis of key enzymes, including terpene
cyclases and α-ketoglutarate (αKG)-dependent dioxygenases, that contribute to the structural diversity. Notable progress in genome
sequencing has led to the discovery of many novel genes encoding these enzymes, while continued efforts in X-ray crystallo-
graphic analyses of these enzymes and the invention of AlphaFold2 have facilitated access to their structures. Structure-based muta-
genesis combined with applications of unnatural substrates has further diversified the catalytic repertoire of these enzymes. The
information in this review provides useful knowledge for the design of biosynthetic machineries to produce a variety of bioactive
meroterpenoids.
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Introduction
Meroterpenoids are complex natural products with intricate
skeletal structures, and are partially derived from terpenoids [1].
Many fungal meroterpenoids are composed of polyketide and
terpenoid moieties. Examples of fungal meroterpenoids include
mycophenolic acid (Figure 1, 1), which shows immunosuppres-
sive activity and cell differentiation-inducing activity by inhibit-
ing the IMP dehydrogenase involved in inosinic acid metabo-

lism [2]; ascofuranone (Figure 1, 2), which exhibits antipara-
sitic activity by selectively inhibiting the oxidase of Plas-
modium trypanosoma [3]; and pyripyropene (Figure 1, 3),
which displays hyperlipidemia treatment activity through the
inhibition of acyl-CoA: cholesterol acyltransferase [4]. In this
mini-review, we focus on the fungal meroterpenoids biosynthe-
sis, especially terpenonid cyclizations and post-cyclization
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Figure 1: Examples of bioactive fungal meroterpenoids.

modifications, which mostly contribute to the skeletal diversity.
Several terpenoid cyclases and αKG-dependent dioxygenases
will be discussed as examples of engineering biosynthetic path-
ways and key enzymes involved in fungal meroterpenoid bio-
synthesis. Furthermore, a construction of the artificial biosyn-
thetic pathway composed of the fungal meroterpenoids path-
way and the pathway from other species, in fungal host
Aspergillus oryzae, will be also introduced.

Review
Standard reactions of fungal meroterpenoid
biosynthesis
The skeletal diversity within this group of compounds arises
from polyketide synthesis, prenyl transfer, terpenoid cycliza-
tions, and post-cyclization modifications [5]. In these reactions,
terpenoid cyclizations and post-cyclization modifications are
especially important in fungal meroterpenoid biosynthesis, con-
tributing to the structural diversity of this class of compounds.
Fungal meroterpenoid cyclases (CYCs) are seven-membrane-
spanning transporter-like enzymes that regulate the conforma-
tions of cationic intermediates, leading to the terpenoid struc-
ture of each product [6,7]. Particular attention has been paid to
the biosynthesis of the compounds derived from farnesyl-
DMOA (5) composed of 3,5-dimethylorsellinic acid (DMOA,
4) and the C15 terpenoid moiety due to their structural diver-
sity (Figure 2).

In 2012, the biosynthesis of terretonin, a meroterpenoid derived
from compound 5 and produced by the filamentous fungus
Aspergillus terreus, was investigated [8,9] using the hetero-
logous expression host Aspergillus oryzae strain NSAR1, a fila-
mentous fungus developed by multiple mutations of metabolic
genes for ease of gene transfer and high substance production
capabilities [10,11].

The expression of trt4 (polyketide synthase, PKS), trt2 (prenyl-
transferase, PT), trt5 (methyltransferase, MT), trt8 (flavin-de-
pendent monooxygenase, FMO), and trt1 (meroterpenoid
cyclase, CYC) in A. oryzae NSAR1 led to the production of
preterretonin A (7) (Figure 2) [9]. These data indicated that Trt1
protonates the epoxide of (10'R)-epoxyfarnesyl-DMOA-3,5-
methyl ester (6), leading to the cyclization of the terpenoid
moiety in the chair–chair conformation, and catalyzes the de-
protonation of H-9' of the resulting cation intermediate at C-4'
to induce an acyl shift, forming the steroid-like structure of 7
with a 6-6-6-5 ring (Figure 2).

Swapping terpenoid cyclases in
heterologous expression systems
A search of the genome database for Trt1-homolog CYCs
revealed the enzyme AusL (41% identity with Trt1) in
Aspergillus nidulans, within the same phylogenetic clade.
Expression of this enzyme in place of Trt1 resulted in the for-
mation of the 6-6-6-6-membered ring protoaustinoid A (8)
(Figure 2) [9]. In addition, the expression of the cyclase AdrI
(38% identity with Trt1) from Penicillium chrysogenum pro-
duced the 6-6-6-5-membered andrastin E (9) (Figure 2) [8].
Like Trt1, AusL and AdrI create the common cation intermedi-
ate from 6, but they deprotonate the cationic intermediate from
H-1' and H-11, respectively [12]. The differences in the struc-
tural bases of Trt1, AusL, and AdrI are quite intriguing, in that
they have similar substrate binding modes but different regional
specificities.

The rapid increase in genomic information has further expanded
the number of available enzyme genes, thus increasing the
potential for diversifying DMOA-derived meroterpenoid bio-
synthesis. Recently, a similar genome mining approach led to
the discovery of new CYCs, InsA7 (32% identity with Trt1) and
InsB2 (40% identity with Trt1) from Aspergillus insuetus [13].
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Figure 2: The diversity of DMOA-derived meroterpenoid biosyntheses.

These enzymes catalyze the formation of the terpenoid skeleton
from 6, adopting chair–boat and chair–chair conformations to
create two distinct 6-6-6-6-membered ring meroterpenoids:
insuetusin A1 (12) and insuetusin B1 (10), respectively

(Figure 2) [9]. Like other Trt1-type enzymes, InsB2 catalyzes
the protonation of the epoxide, the formation of two six-mem-
bered rings in a chair–chair conformation, but the reaction
finishes with the deprotonation of the hydroxy group at C-3 to
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produce compound 10. In contrast, InsA7 commonly initiates
and terminates the reaction with the protonation of the epoxide
and the deprotonation of OH-3, respectively, but it produces
product 12 via a boat–chair conformation. Since all of the other
Trt1-like cyclases catalyze the reaction with chair–chair stereo-
control, the structure basis of InsA7 should be unique. A struc-
tural comparison of InsB2 and InsA7 will help to clarify the
differences in their structural bases.

Recent advances in artifical intelligence (AI) have even made
the structural modeling of membrane-bound proteins possible.
In a recent study, a structural model of AdrI was constructed by
AlphaFold2 [14], and its product 9 was docked into the model
[15]. In the complex structure, H76 and K187 are located close
to the D ring of 9, and are expected to determine the selectivity
of the product. The AdrI H76F/K187A variant was created, and
produced the new compound 11, as expected. In this mutant,
deprotonation occurs from the OH-3 of the folded intermediate,
and the altered cyclization mode produces 11 (Figure 2).

Reconstitution based on the several
meroterpenoid pathways in heterologous
expression systems
Recently, the combinatorial biosynthesis of diterpene pyrones,
derived from a pyrone skeleton and a C20 terpenoid skeleton,
has been achieved by combining multiple biosynthetic path-
ways in a fungal heterologous expression host [16]. First, subA
(PKS), subC (PT), subD (GGPP synthase), subE (FMO), and
subB (CYC) were expressed in A. oryzae to produce the inter-
mediate 15. Next, genes encoding a short-chain oxidoreductase
(SDR), methyltransferase (MT), cytochrome P450 oxygenase
(P450), and FMO from various fungi were additionally
expressed in A. oryzae expessing subABCDE to produce 22 bio-
active meroterpenoids, including the known antitumor com-
pound subglutinol A (16) (Figure 3A and B) [17]. Among the
novel compounds isolated from the production system, some
exhibited intruiging pharmacological activities, such as anti-
tumor (16), anti-HIV activity (17), and anti-Alzheimer's disease
properties (18). Furthermore, FMO EsdpE, which epoxidizes
the C-14, C-15 double bond of 13, was employed to produce 19,
and the CYC EsdpB cyclizes in a chair–chair–chair conforma-
tion to form the 6-6-6 ring structure of 20 [18,19]. This differ-
ence in the epoxidation position represents a new point of
biosynthetic diversity that will receive keen attention in the
future.

Production of pharmacologically active
compounds by genetic engineering of
terpenoid cyclization pathways
A single filamentous fungus reportedly synthesizes two
meroterpenoid compounds via two different cyclization

schemes. In the filamentous fungus Acremonium egypticum,
both asochlorin (22) and ascofuranone (23) are synthesized
from a common intermediate, ilicicolin A epoxide (21), but the
backbones of the terpenoid moiety are different (Figure 4) [20].
In ascochlorin biosynthesis, intermediate 21 is accepted by
AscF to form the hexanone ring of 22. The cyclization process
is initiated by the protonation of the epoxide, leading to the for-
mation of a cation at C-7. A cascade of migrations then occurs
to form the final backbone: H-6 migrates to the cation C-7, the
methyl group at C-13 shifts to C-6, H-10 migrates to C-11, and
finally, deprotonation of the hydroxy group terminates the
cyclization [20,21]. In ascofuranone biosynthesis, compound 21
is initially hydroxylated at C-8, and then the hydroxylated prod-
uct is cyclized via epoxidation by AscI to form the tetrahydro-
furan ring of 23. The biosynthetic pathways of 22 and 23 were
elucidated through heterologous expression, gene disruption,
and in vitro reactions. The ascF gene was disrupted with the
aim toward the mass-production of 23, and a system for produc-
ing quantities greater than 500 mg/L was successfully estab-
lished, thus achieving an industrial-level substance production
system [20].

αKG-dependent dioxygenases – important
enzymes involved in post-cyclization
modifications
After terpenoid cyclization, skeletal modifications are per-
formed by P450 monooxygenases, α-ketoglutarate (αKG)-de-
pendent dioxygenases, isomerases, and acyltransferases [5,22-
25]. In particular, the functions of the αKG-dependent dioxyge-
nase have been analyzed in detail due to its relatively small mo-
lecular weight and the low costs of its cofactors: αKG, ascorbic
acid, and iron ions. The αKG reacts with iron and molecular
oxygen to form the highly reactive Fe(IV)=O via oxidative
decarboxylation. This active molecular species withdraws a
hydrogen atom, and the generated radical induces various reac-
tions such as hydroxylation, unsaturation, epoxidation, halo-
genation, endoperoxidation, and C–C bond reconstruction,
leading to the formation of diverse chemical structures [22,26-
31].

Structure-based mutagenesis of αKG-dependent
dioxygenases
The first αKG-dependent dioxygenases characterized in fungal
meroterpenoid biosynthesis, AusE and PrhA, share high iden-
tity (76% identity to each other) and accept the meroterpenoid
preaustinoid A1 (24) to yield the products preaustinoid A3 (27)
and berkeleydione (28), respectively (Figure 5) [32,33]. In the
initial reaction, AusE abstracts H-2 of 24, while PrhA abstracts
H-5 of 24. PrhA and AusE form a double bond to yield
preaustinoid A2 (25) and berkeleyone B (26), respectively
(Figure 5). AusE abstracts H-5 of 25, forming a radical that
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Figure 3: The combinatorial biosynthesis of diterpene pyrone meroterpenoids. The production of subglutinol A by SubABCDE + DpasF (A), the pro-
duction of novel diterpene pyrones by SubABCDE + various tailoring enzymes (B), and the production of schearone A by SubACD + EsdpE + EsdpB
(C).
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Figure 4: The biosynthetic reaction from the common intermediate 21 to ascochlorin (22) and ascofuranone (23), respectively.

Figure 5: The multistep oxidations catalyzed by AusE and PrhA from the common intermediate 24.
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Figure 6: Reactions of SptF with native substrates 31 and 32.

initiates a sequential reaction to produce the spirolactone 27. In
contrast, PrhA dehydrogenates H-1 of 26 to form the hepta-
diene 28. Comparing the active centers, only three amino acid
residues differ between AusE and PrhA: L150(AusE)/
V150(PrhA), S232(AusE)/A232(PrhA), and V241(AusE)/
M241(PrhA). By swapping these residues, the catalytic activi-
ties of these enzymes were exchanged [34]. From 24, PrhA
V150L/A232S produced 27, and AusE L150V/S232A pro-
duced 28. Surprisingly, PrhA V150L/A232S/M241V catalyzed
additional oxidations of 27 to produce compounds 29 and 30, as
unnatural products. As demonstrated in these reactions, the
terpenoid skeleton undergoes significant structural changes due
to radical formation through oxidase-induced hydrogen atom
abstraction. Close examinations of the substrate complex struc-
tures of these αKG-dependent dioxygenases involved in these
meroterpenoid oxidations revealed that the terpenoid moiety is
held in a substrate pocket consisting of hydrophobic amino
acids, and the polyketide moiety is retained by a loop structure
serving as a lid. The conformation of the terpenoid moiety can
be easily altered by mutations to the enzyme’s substrate reten-
tion site, thereby changing the position of hydrogen atom
abstraction and the subsequent skeletal reorganization reaction
mode, resulting in the synthesis of a variety of skeletons. Thus,
the meroterpenoid αKG-dependent dioxygenase is a highly po-
tent biosynthetic enzyme, and the structure of the product can
be easily altered by mutagenesis.

Application of diverse unnatural substrates to αKG-
dependent dioxygenases
SptF, an α-KG dioxygenase, represents another example of
structure-based engineering to create multiple products from a
single enzyme reaction [35]. The natural substrates of SptF,
andiconin D (31) and andilesin C (32) derived from andiconin,
can be converted into emervaridone B (33) and anditomin (34),
respectively (Figure 6). Subsequently, 33 can be further modi-
fied into emervaridone C (35), which can be oxidized to 37 or
38 (Figure 6). In contrast, 34 is converted to compounds 36a
and 36b (Figure 6). These multistep reactions with several sub-
strates illustrate the broad substrate specificity of SptF.

To apply the high potential of SptF to generate a variety of oxi-
dation products, meroterpenoids (39, 41, 42, 45, and 46) and
terpenoids (49 and 52) were also used as unnatural substrates to
construct a series of new compounds (40, 43, 44, 47, 48, 50, 51,
and 53–55) (Figure 7A). In addition, a structure-based mutagen-
esis study of SptF was performed to further amplify its catalyt-
ic potential. Firstly, the hydrophobic residues Ile63, Phe133,
and Ile231, which compose the substrate binding site of SptF,
were mutated. As a result, SptF F133A oxidized 31 into 56,
while I231A oxidized the same substrate 31 into compound 57
(Figure 7B). Then, the hydrophilic residues Asn65, Ser114,
Thr148, and Asn150, which also line the cavity, were also
mutated. Compound 31 was converted into 38 by SptF N150A,
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Figure 7: A) Reactions of SptF with unnatural substrates. B) Reactions of SptF variants with 31.

while the WT enzyme converted 31 into 37 and 38 (Figure 7B).
These results exemplify the production of oxidized terpenoids
and meroterpenoids through the use of non-natural substrates
and the application of structure-based mutagenesis.

Evolution of αKG-dependent dioxygenase with
saturated mutagenesis
As meroterpenoids readily change their reaction products
depending on the conformation of the terpenoid skeleton, the
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Figure 8: The reaction of the αKG enzyme AndA and its variants generated via saturated mutagenesis.

Figure 9: The synthetic biological production of daurichromenic acid and its halogenated derivative.

regiospecificity of the oxidation reaction can be modified by
introducing random mutations in the substrate-binding site of
αKG-dependent dioxygenase. The αKG-dependent dioxyge-
nase AndA withdraws H-12 of preandiloid C (58), and gener-
a tes  a  radical  leading to  the  const ruct ion of  the
bicyclo[2.2.2]octane skeleton of andiconin (59) (Figure 8)
[36,37]. Two amino acid pairs, M119/N121 and A228/A230, in
its substrate-binding pocket were mutated by saturation mutage-
nesis using degenerate primers, resulting in an enzyme that
oxidizes C-5, thereby reacting with the electron between C-1
and C-2 [38]. In the future, such mutagenesis strategies will be
applied to a wider range of oxidases to alter their reactivities
and create an expanded range of products.

Construction of artificial fungi–plant hybrid
biosynthetic pathways
Furthermore, there are examples of the enzymatic synthesis of
plant-derived pharmaceutical meroterpenoids through the
heterologous expression of a combination of fungal and plant
biosynthetic enzymes. The biosynthetic enzymes StbA (polyke-
tide synthase, PKS) and StbC (prenyltransferase, PT) from the
filamentous fungus Stachbotrys bisbyi were produced in A.

oryzae to synthesize grifolic acid (60) (Figure 9) [39]. In addi-
tion, the gene encoding DCAS, a prenyl group oxidase from the
plant Rhododendron dauricum, was additionally expressed in A.
oryzae expressing stbAC after codon-optimization to produce
daurichromenic acid (61) (Figure 9), a plant-derived meroter-
penoid that exhibits anti-HIV activity [40]. Furthermore, by
expressing AscD, a fungal halogenase from the ascochlorin
biosynthetic pathway, the authors succeeded in biosynthesizing
62, an unnatural meroterpneoid, chloro-daurichromenic acid,
halogenated at C-3 (Figure 9). Today, with the improvement of
gene synthesis and expression technologies, genes from a wide
variety of species are available, further increasing the potential
for applications of biogenetic resources. In the future, advances
in synthetic biology will enable the biosynthesis of bioactive
compounds with still greater skeletal diversity.

Conclusion
In summary, many novel terpene cyclases and αKG-dependent
dioxygenases were discovered by recent developments in
genome mining approaches. Unique meroterpenoids have been
generated by integrating these enzymes into meroterpenoid
biosynthetic pathways, enzymatic engineering, and feeding with
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unnatural substrates. Enzyme crystal structure analysis and AI
structure prediction also facilitated these investigations. Besides
terpene cyclases and αKG-dependent dioxygenases, P450
monooxygenases and UbiA-type prenyltransferases have also
expanded the variety of meroterpenoids [41,42]. These
untapped membrane enzymes will be applicable for engineered
biosynthesis, with structural models providing useful informa-
tion for mutagenesis, as in the engineering of meroterpenoid
cyclases [11] and fungal P450 oxygenases catalyzing cross-cou-
pling between two aromatic rings [43]. In the future, further de-
velopments in bioinformatics, structural biology, and AI tech-
niques will enable the design of biosynthetic enzymes and path-
ways to produce desired bioactive compounds, although under-
standing the chemistry catalyzed by individual enzymes will
remain important. Furthermore, highly productive substance
production systems will be developed through host,
metabolome, and enzyme improvements by genome editing
technology.
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