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Herein, we report a visible-light-mediated palladium-catalyzed three-component radical-polar crossover carboamination of 1,3-

dienes or allenes with diazo esters and amines, affording unsaturated y- and €e-amino acid derivatives with diverse structures. In this

methodology, the diazo compound readily transforms into a hybrid a-ester alkylpalladium radical with the release of dinitrogen.

The radical intermediate selectively adds to the double bond of a 1,3-diene or allene, followed by the allylpalladium radical-polar

crossover path and selective allylic substitution with the amine substrate, thereby leading to a single unsaturated y- or e-amino acid

derivative. This approach proceeds under mild and simple reaction conditions and shows high functional group tolerance, espe-

cially in the incorporation of various bioactive molecules. The studies on scale-up reactions and diverse derivatizations highlight the

practical utility of this multicomponent reaction protocol.

Introduction

Since the discovery of the existence of non-canonical amino
acids (AAs) in organisms, such structural motifs have attracted
considerable attention owing to their wide applications in me-
dicinal chemistry [1-5]. y- and e-AA derivatives are widely dis-

tributed in peptide natural products, bioactive molecules, and

drugs, such as pregabalin, baclofen, e-aminocaproic acid and
lysine (Scheme la) [6-12]. The number of reported synthetic
methods for y- and e-AA derivatives is much lower than those
of a-AA derivatives [13,14]. Although synthetic strategies of y-
and e-AA derivatives have been developed [15-20], acquiring
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b) Multicomponent reaction strategies with diazo compounds. ¢) Our design: a radical MCR strategy with diazo esters to access unsaturated y- and

e-AA derivatives.

complex y- and e-AA derivatives with simple starting materials
in a one-step reaction remains a challenge. In addition, many
studies show that unsaturated AAs exhibit a variety of unique
biological activities [21-24]. Accordingly, the development of
efficient methods to synthesize unsaturated y- and e-AA deriva-
tives is a highly sought-after target to enrich non-natural AA

chemistry.

Multicomponent reactions (MCRs) by virtue of high efficiency
for the construction of complex chemicals, have shown the
superiority in high step and atom economy in organic synthesis
[25-27]. Over the past two decades, our group and others have
developed a transition-metal-catalyzed MCR strategy involving
electrophilic trapping of onium ylides generated from metal

carbenes with nucleophiles, providing an ingenious difunction-
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alization strategy for diazo compounds to access structurally
complex and diverse molecules (Scheme 1b, top) [28,29]. In
recent years, radical-mediated MCRs with diazo compounds
have become a highly emerging area of research and exhibit
complementary reactivity to those well-developed carbene-
mediated MCRs [30-42]. In the radical-mediated difunctional-
ization of alkenes, the carbon-centered radical species from a
diazo compound can add to diverse alkenes followed by a dirad-
ical coupling or radical addition process to achieve the difunc-
tionalization (Scheme 1b, middle) [32-37]. However, to the best
of our knowledge, the methodology involving the addition of a
carbon radical from a diazo compound onto the double bond of
an alkene followed by a nucleophilic addition, is unknown
(Scheme 1b, bottom).

The radical-polar crossover strategy has been steadily emerging
in synthetic organic chemistry during the last few years [43-46].
This strategy allows complex chemicals to be assembled with
high step economy that would be difficult to achieve using
either radical or polar chemistry alone. In recent years, Gevor-
gyan, Glorius, Huang and their co-workers reported elegant ex-
amples of the carboamination of 1,3-dienes with unactivated
alkyl halides and amines under photoinduced palladium cataly-
sis via a radical-polar crossover process [47-50]. However, acti-
vated alkyl halides are not suitable for these carboamination
reactions due to the direct nucleophilic substitution of activated
alkyl halides with nucleophilic reagents under the necessary
alkaline conditions [51]. Recently, a Pd-catalyzed alkyl Heck
reaction of diazo compounds mediated by visible light has been
reported by the group of Gevorgyan, which achieves the mono-
functionalization of alkenes [52]. Inspired by these collective
studies, we considered diazo compounds could be a competent
activated alkyl halide equivalent to overcome the synthetic limi-
tation of the photoinduced palladium-catalyzed carboamination
reactions and the radical-mediated difunctionalization of
alkenes with diazo compounds. We envisioned an interesting
MCR strategy with mild conditions to access unsaturated y- and
e-AA derivatives via a m-allyl Pd radical-polar crossover
process (Scheme 1c). In this process, the hybrid a-ester alkyl-
palladium radical species from diazo ester adds to the double
bond of 1,3-dienes or allenes, followed by the allylpalladium
radical-polar crossover path. As with the classical Tsuji—Trost
reaction, a subsequent nucleophilic attack of an amine toward
the allylpalladium species would afford the desired unsaturated
y- and e-AA derivatives. This methodology would represent the
first reaction mode for the difunctionalization of alkenes with
diazo compounds via a radical-polar crossover process.

Results and Discussion

As summarized in Table 1, we started our studies with the palla-
dium-catalyzed MCR of ethyl diazoacetate (1a), 1,3-butadiene
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(2a), and 1-phenylpiperazine (3a) in the presence of 5 mol %
Pd(OAc), and 10 mol % Xantphos as ligand. To our delight,
after irradiation with blue LED light in dimethylformamide
(DMF) for 12 h at room temperature (rt), the desired unsatu-
rated e-AA derivative 4a was obtained in 75% isolated yield
(Table 1, entry 1). Isolation and NMR analysis demonstrated
that this model reaction provided amino acid 4a with good
E-selectivity and excellent regioselectivity (E/Z = 91:9, 1,4-/
1,2-addition >20:1). Control experiments indicated that ligand,
palladium, light and argon atmosphere were necessary for this
transformation (Table 1, entries 2-5). Heating conditions could
not facilitate the reaction instead of light conditions (Table 1,
entry 6). The efficiency was maintained with another Pd(II)
catalyst Pd(PPh3),Cl, (Table 1, entry 7), whereas only low
yields of 4a were observed with Pd(0) catalysts Pd(PPh3)4 and
Pd,(dba)s (Table 1, entries 8 and 9). Moreover, adding potas-
sium carbonate as additive failed to furnish 4a, demonstrating
that the trace amount of acid from the Pd(II) catalyst may facili-
tate the formation of the hybrid a-ester alkylpalladium radical
generated from the diazo ester (Table 1, entry 10) [53].
Replacing Xantphos with rac-BINAP or DPEphos gave very
low product formation, indicating that the type of ligand was
crucial for this transformation (Table 1, entries 11 and 12).
Changing the reactant ratio produced the desired product 4a in
84% yield as optimal conditions for this protocol (Table 1,
entry 13).

With the optimized conditions obtained, we examined the
generality of our palladium-catalyzed regioselective carboami-
nation of 1,3-dienes with diazo esters and amines (Scheme 2).
First, different alkylamines with various functional groups were
evaluated under the optimized conditions, successfully deliv-
ering the corresponding 1,4-difunctionalized products in moder-
ate to excellent yields (4a—k, 35-84%) with high regioselectivi-
ty. Some simple secondary amines including cyclic amines 3a,
3c and linear amine 3b were found to readily participate in this
protocol, furnishing the corresponding products 4a—c in
61-84% yields. To our delight, this MCR strategy was compati-
ble with a wide variety of complex bioactive molecules, includ-
ing tetrahydropapaverine, (R)-duloxetine, sertraline, amoxapine,
an ibrutinib derivative, N-desmethyl sildenafil, silodosin, and
lapatinib (4d-k, 35-67%). The late-stage modification of
these drug agents and their derivatives in this MCR
underlined the synthetic value and high functional
group tolerance (e.g., aromatic amine, amide, alcohol, hetero-

cycle).

We next turned to evaluate the scope of 1,3-dienes. Although
the regioselectivity control of allylic substitution can be attri-
buted to many factors, it is agreed that steric hindrance general-

ly is the primary factor affecting the regioselectivity of nucleo-
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Table 1: Optimization of conditions and control experiments.2
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Xantphos (10 mol %) Ph.

’\“c v~ s ﬁN/Ph Pd(OAc), (5 mol %) l\(j
COzE HN_] DMF (0.1 M), t, 12 h, Noe S\ COE
1a 2a 3a blue LED (467 nm) 4a
ligands
w0
X X
::Pth L
o PPh, o
PPh, PPh,
PPh, PPh, OO
Xantphos rac-BINAP DPEphos
Entry Variations 4a (%)P-°
1 none 75¢
2 without Xantphos 0
3 without Pd(OAc)» 0
4 without blue LED ligt 0
5 without argon protection 0
6 100 °C instead of blue LED light 0
7 Pd(PPh3)2Cly instead of Pd(OAc)2 70
8 Pd(PPh3)4 instead of Pd(OAc)» 20
9 Pds(dba)s instead of Pd(OAc)» 24
10 add K>COg3 (1.5 equiv) 0
11 rac-BINAP instead of Xantphos <5
12 DPEphos instead of Xantphos 6
13 1a/2a/3a = 0.15:0.2:0.1 mmol 84

@Reactions (1a/2a/3a/Pd(OAc)s/Xantphos = 0.12:0.12:0.1:0.005:0.01 mmol) were irradiated with blue LED light (467 nm) in 1.0 mL DMF at rt for 12 h
under argon. Yields of compound 4a were determined by H NMR spectroscopic analyses of the reaction mixture using 1,3,5-trimethoxybenzene as
the internal standard or detected by LC—MS. ®The crude NMR yield was consistent with the isolated yield (for more details, see the Supporting Infor-

mation File 1).

philic attack [54-57]. Monoalkyl-substituted dienes 2b and 2¢
were suitable for this MCR, affording the 1,4-addition products
41 and 4m albeit with moderate regioselectivity (1,4-/1,2-addi-
tion = 2:1). To our delight, the reactions with 2,3-disubstituted
diene 2d and 1,4-disubstituted diene 2e also readily provided
products 4n and 4o. In the case of 1,3-cyclohexadiene 2e, the
amine was expected to attack the m-allyl palladium from the exo
side. Considering that substituent effects might affect the regio-
selectivity in this MCR, we further investigated the 1,4-/1,2-ad-
dition selectivity with 1-phenyl-substituted 1,3-dienes 2f-i.
Interestingly, the corresponding 1,2-addition products 4p—t
were formed with high selectivity (E/Z > 20:1, 1,2-/1,4-addi-
tion >20:1), presumably due to steric hindrance by the phenyl
group. Furthermore, the 1,3-diene bearing a 1-furan group with
smaller steric hindrance afforded product 4u with moderate
chemoselectivity (1,2-/1,4-addition = 4:1).

Diazo esters suitable for this transformation were examined
next. The MCRs with diazo substrates equipped with different
substitution patterns were accommodated under the mild photo-
catalytic conditions to generate the desired 1,4-addition prod-
ucts in moderate to good yields (4v—ab, 51-77%). a-Diazo
esters with benzyl, cyclobutanemethyl, and adamantyl groups
could be transformed smoothly to the products 4v, 4w,
and 4x in 64%, 69% and 77% yields, respectively. Gratifyingly,
except for acceptor-substituted diazo esters, donor/acceptor-
substituted diazo compounds were also compatible with these
mild conditions (4y—aa, 51-72%). Additionally, the diazo de-
rivative of epiandrosterone was reactive in this protocol, giving
the product 4ab in 59% yield.

Delightedly, this procedure was successfully applied to aromat-

ic amine (N-methylaniline), primary amine (aniline) and diazo-
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Scheme 2: Substrate scope of diazo compounds, 1,3-dienes and amines. 2Reactions (1/2/3/Pd(OAc)o/Xantphos = 0.3:0.4:0.2:0.01:0.02 mmol) were

irradiated with blue LED light (467 nm) in 2.0 mL DMF at rt for 12 h under argon. Isolated yields. °Amine hydrochloride and EtsN (1.5 equiv) were
used. ¢Diazo compound (0.4 mmol) was used. dPd(PhsP),Cly was used. For more experimental details, see Supporting Information File 1.
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acetamide, affording the corresponding products 4ac, 4ad, and
4ae in high yields with Pd(PPh3),Cl, (69%, 71% and 65%, re-
spectively).

With a reliable set of conditions for the carboamination of 1,3-
dienes with diazo esters and amines, we wondered whether this
three-component reaction could be applied to allenes that were
never used as substrates in interrupted radical Heck/allylic sub-
stitution reactions. As summarized in Scheme 3, unsaturated
y-AA derivatives were observed in this reaction albeit with poor
stereoselectivity. Linear amines containing alkyl, hydroxy, and
terminal alkenyl groups were reactive under the photocatalytic
conditions, providing the corresponding 1,2-adducts 6a, 6b, and
6¢ smoothly in 73%, 93% and 34% yields, respectively. Com-
mercially available amines with a broad range of heterocyclic
rings (e.g., morpholine, piperazine, pyrrolidine, homopiper-
azine) also readily participated in this MCR, affording the prod-
ucts in moderate to good yields (6d-k, 43—73%).

Then, the investigations of the scope of allenes demonstrated
that the substrates possessing substituents at para-, meta-, and
ortho-positions of the aromatic ring were also tolerated under
our catalysis conditions. Para-(methoxy, chloro, n-propyl),
meta-fluoro, ortho-methyl and B-naphthyl-substituted allenes
delivered the 1,2-adducts 6l-q in 58-70% yields, indicating a
weak influence of different electronic groups on the aromatic

ring.

We further assessed the reaction applicability with respect to
diazo esters. 1,2-Adducts could be produced fluently with diazo
substrates containing alkyl-substituted esters. Benzyl- (6r,
57%), cyclobutanemethyl- (6s, 81%), methoxyethyl- (6t, 66%),
and adamantyl- (6u, 82%) substituted diazo esters underwent
this photoinitiated radical reaction well. The donor/acceptor-
substituted diazo compounds with benzyl- and ester groups
were also compatible with this MCR system (6v, 78%). Further-
more, the successful transformation of the diazo compounds
derived from epiandrosterone (6w, 84%) and testosterone (6x,
56%) highlighted the general utility of this reaction in the modi-
fication of pharmaceutical scaffolds.

Naturally, we were eager to acquire detailed mechanistic
insights into this protocol. To validate the radical nature of this
transformation, both model reactions of 1,3-diene 2a and allene
5a were terminated completely with 2.5 equiv 2,2,6,6-tetram-
ethylpiperidinyloxyl (TEMPO) and the corresponding radical-
trapping product A could be confirmed by HRMS of both reac-
tion mixtures, unambiguously supporting radical mechanisms
(Scheme 4a). The reaction with styrene was conducted under
standard conditions, but no product X could be detected, indi-

cating the cationic intermediate B should be ruled out from this
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methodology (Scheme 4b). The product Z-6i was subjected to
the standard conditions, but Z-6i was obtained in 100%
recovery yield. Therefore, the E/Z selectivity of the MCRs with
allenes could be determined by the allylic substitution process
(Scheme 4c¢). Using HPd(PPh3),Cl as catalyst, the model reac-
tion also afforded the corresponding product 4a in 31% yield,
demonstrating the H-Pd(II)-X species could be a possible cata-
Iytic species (Scheme 4d). According to the UV-visible spectra,
the only absorbing species at 467 nm consists in the pre-catalyt-
ic system Pd(OAc), and Xantphos (Scheme 4e). In addition,
deuterium labeling experiments were conducted to investigate
the H-source of this transformation (for more details, see Sup-
porting Information Information File 1). The isotopic-labeling
experiments suggested that both types of protons from the N-H
bond of the amine and the traces amount of water in this reac-
tion system may serve as proton sources for the formation of

hybrid a-ester alkylpalladium radical.

On the basis of above mechanistic studies and previous reports
[47-50,52,58], the following plausible mechanisms are pro-
posed for the palladium-catalyzed carboamination of 1,3-dienes
(Scheme 5, lower left) or allenes (Scheme 5, lower right) with
diazo esters. There are two possible paths to generate the hybrid
a-ester alkylpalladium radical 1. Path a undergoes an oxidative
addition of HX with Pd(0)L,,, followed by the formation of
Pd—carbene species, hydride shift process, and photoinduced
homolytic cleavage of the C—Pd bond, furnishing hybrid a-ester
alkylpalladium radical I. In path b, upon irradiation with blue
light, photoexcited Pd(0)L,,* reduces ethyl diazoacetate (1a) to
Pd-radical species I by a proton-coupled electron transfer
(PCET) process [32-37,59-62], upon the loss of dinitrogen. The
radical I further adds to the terminal position of 1,3-butadiene
(2a) to produce hybrid allylPd radical II, which would exist in
equilibrium with m-allyl complex III. Following the classical
Tsuji—Trost reaction mechanism, a subsequent attack of amine 3
at the latter stage would afford the unsaturated e-AA derivative
4 and regenerates the Pd(0)L,, to close the catalytic cycle. Dif-
ferent from the reactive site of 1,3-diene, the hybrid alkylPd
radical I selectively adds to the central position of the allenyl
group of allene 5a, providing another type of hybrid allylPd
radical I'V. After the equilibrium shifting to the rm-allyl complex
V, the unsaturated y-AA derivative 6 would be obtained with
the nucleophilic attack of amine 3.

The utility of this protocol was further highlighted by scale-up
reactions and diverse derivatizations of products 4a and 6a
(Scheme 6). Both model reactions with diene 2a and allene Sa
were proven to be easily scalable without further conditions op-
timization, delivering unsaturated y- and e-AA derivatives 4a
and 6a in good yields. Starting from the unsaturated e-AA de-

rivative 4a, unsaturated {-amino alcohols 7 and 8 were pro-
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Scheme 3: Substrate scope of diazo compounds, allenes and amines. 2Reactions (1/5/3/Pd(OAc)o/Xantphos = 0.3.0.4:0.2:0.01:0.02 mmol) were irra-
diated with blue LED light (467 nm) in 2.0 mL DMF at rt for 12 h under argon. Isolated yields. PAmine hydrochloride and EtzN (1.5 equiv) were used.
®Diazo compound (0.4 mmol) was used. For more experimental details, see Supporting Information Information File 1.
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Scheme 4: Mechanistic experiments. a) Radical trapping experiments with TEMPO. b) Exclusion of possible intermediate. ¢) Subjecting the product
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65 °C. For more details, see Supporting Information File 1.



duced in high yields through LiAlH,4 conditions or nucleophilic
addition of methylmagnesium bromide. Moreover, product 4a
could be easily transformed to unsaturated e-amino amide 9 in
total 76% yield. Likewise, Weinreb amide 10 was produced and
further transformed into ketone 11 in 84% yield. Compound 4a
could be hydrogenated to the corresponding reduction product
12 using Pd/C and ammonium formate conditions (Scheme 6a).
Notably, as shown in Scheme 6b, treatment of the unsaturated
vy-AA derivative 6a with Pd/C and ammonium formate
led to a cyclization reaction, furnishing y-lactam 13 in a moder-
ate yield.

Conclusion

In summary, we have developed a visible-light-mediated palla-
dium-catalyzed carboamination reaction of 1,3-dienes or allenes
with diazo esters and amines, providing a broad array of syn-
thetically valuable unsaturated y- and e-AA derivatives. This
methodology represents the first reaction mode for a difunction-
alization of alkenes with diazo compounds via a radical-polar
crossover process. This synthetic transformation proceeds under
mild reaction conditions and shows high functional group toler-
ance. The studies on late-stage functionalization, scale-up reac-
tions, and diverse derivatizations further highlight the practical
utility of this MCR protocol.
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Full experimental details, analytical data and NMR spetra.
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