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Abstract

Helicenes, a class of non-planar polycyclic aromatic hydrocarbons composed of ortho-fused aromatic rings forming helical archi-
tectures, have attracted considerable attention due to their intrinsic chirality and tunable optoelectronic properties. Among them,
nitrogen-doped helicenes (azahelicenes) and their heteroatom-co-doped counterparts — such as B/N-, O/N-, S/N-, and Se/N-doped
helicenes — have emerged as highly versatile scaffolds for chiral optoelectronic applications. The incorporation of nitrogen enables
precise modulation of electronic structures, redox characteristics, and intermolecular interactions, thereby enhancing performance in
circularly polarized luminescence (CPL), thermally activated delayed fluorescence (TADF), and chiral sensing. Notably, recent de-
velopments have yielded m-extended, structurally robust, and stimuli-responsive azahelicenes exhibiting record-high dissymmetry
factors (|gapsl and |g1uml), elevated CPL brightness (Bcpy), and efficient integration into CPL-OLEDs and redox-switchable emitters.
Boron—nitrogen co-doping strategies, in particular, have facilitated the development of materials with ultra-narrowband emissions,
near-unity photoluminescence quantum yields, and electroluminescence dissymmetry factors (|ggL|) exceeding 1073, Likewise,
heteroatom co-doping with oxygen, sulfur, or selenium enables spectral tuning across the visible to near-infrared range, improved
photostability, and dual-state emissive behavior. In parallel, significant progress in synthetic methodologies — including enantiose-
lective catalysis, electrochemical cyclizations, and multicomponent reaction systems — has granted access to increasingly complex
helicene frameworks with well-defined chirality. This review systematically summarizes recent advancements in the synthesis,
structural engineering, and chiroptical performance of nitrogen-doped helicenes and their heteroatom-doped derivatives, emphasiz-
ing their potential as next-generation chiral optoelectronic materials and outlining future directions toward multifunctional integra-

tion and quantum technological applications.
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Introduction

Helicenes, a class of non-planar polycyclic aromatic hydro-
carbons characterized by ortho-fused aromatic rings forming a
helical framework, have attracted significant attention due to
their inherent chirality, unique optoelectronic properties, and
wide-ranging applications in asymmetric catalysis [1,2], molec-
ular recognition [3], and organic electronics [4,5]. In recent
years, the incorporation of heteroatoms — particularly nitrogen —
into the helicene backbone, giving rise to so-called "azahe-
licenes", has emerged as a powerful strategy to modulate elec-
tronic structures, enhance solubility, and expand functional
diversity [6]. Substituting carbon atoms with electron-deficient
nitrogen atoms introduces new opportunities to fine-tune redox
potentials, charge-transport behavior, and intermolecular
interactions [7]. These modifications have proven especially
valuable in applications such as organic light-emitting diodes
(OLED:s) [8], circularly polarized luminescence (CPL) [9], and
chiral photocatalysis [10]. In the past decade, heteroatom-
containing helicenes have attracted increasing attention due
to their tunable optoelectronic properties and potential applica-
tions in chiral optoelectronics. Several comprehensive reviews
have examined specific classes of these molecules. Crassous
and co-workers provided a detailed overview of hetero-
helicenes up to 2019, focusing on their structural diversity
and functional applications [11]. Nowak-Krél and colleagues
reviewed boron-doped helicenes, emphasizing their roles in
chiral materials design [12], while Maeda and Ema explored
the circularly polarized luminescence (CPL) properties
of azahelicenes [13]. However, despite these valuable contribu-
tions, a dedicated and up-to-date overview of nitrogen-doped
helicenes — particularly those incorporating additional
heteroatoms within the helical m-conjugated framework —

remains lacking.

This review addresses this gap by systematically summarizing
recent advances (from the past five years) in the synthesis,
structural modification, and chiroptical properties of nitrogen-
doped helicenes. Particular attention is given to multi-hetero-
atom systems co-doped with elements such as boron, oxygen,
sulfur, and selenium, highlighting their influence on CPL per-
formance and structure—property relationships. We classify the
nitrogen-doped helicenes into only N-containing helicenes,
B,N-containing helicenes, and X,N-containing helicenes (X =
O, S or Se). In each section, structurally similar compounds are
categorized into groups to facilitate comparison. Then, the
others are discussed in chronological order based on their re-
ported publication dates, with attribution to the respective
research groups. Notably, helicenes bearing nitrogen atoms lo-
cated outside the conjugated system are excluded from this
discussion to maintain a consistent focus on electronically inte-

grated heteroatom-doped architectures.

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

Review

N-Containing helicenes

Among nitrogen-containing helicenes, HBC-fused azahelicenes
represent a particularly significant subclass due to their extend-
ed m-conjugation and potential for enhanced chiroptical proper-
ties. Over the past few years, multiple research groups have in-
vestigated their synthesis, structural characteristics, and opto-
electronic behavior. Notably, in 2021, Jux and co-workers re-
ported a series of superhelicenes that combine helical and
planar n-systems. However, the structural characterization of
compound 1 (Table 1) was impeded by its inherent instability,
limiting further analysis [14]. In 2024, Liu’s group developed a
series of nonalternant nanographenes 2a—c featuring a nitrogen-
embedded cyclopenta[eflheptalene core [15]. These com-
pounds exhibit A,pg at 363, 452, and 580 nm, and PLQY's of
0.05, 0.33, and 0.32, respectively. While compounds 2a and 2b
display broad emission near 505 nm, 2¢ shows dual-emission
peaks at 588 and 634 nm with an ultranarrow FWHM of 22 nm.
Notably, 2b and 2¢ demonstrate strong chiroptical activity with
lgabs! values of 6.7 x 1073 and 1.0 x 1072, |gjym| of 2.4 x 1073
and 7.0 x 1073, and Bcpy, values of 9.1 and 95.2 ML cm™!, re-
spectively. Shortly thereafter, Gong’s group further expanded
the m-system by constructing a tris-hexabenzo[7]helicene 3 with
a carbazole core, which emits at 595/628 nm (PLQY = 0.40),
displays |gapsl = 2.98 x 1073, and achieves a Bcpy, of
32.5 M~! em™! [16]. In 2025, Babu’s group synthesized two
regioisomeric m-extended azahelicenes, 4a and 4b, which differ
in the position of attachment to the carbazole core [17]. Com-
pared to 4a, compound 4b exhibits bathochromic shifts of
12 nm in absorption and 45 nm in emission, as well as a higher
®r (0.75 vs 0.68). Both isomers display TADF at room temper-
ature and phosphorescence at 77 K. Notably, 4a demonstrates a
long-lived red afterglow persisting for up to 30 seconds. In
contrast, 4b exhibits superior chiroptical properties, with |g,psl
and |gpuml values of 3.91 x 1073 and 1.12 x 1073, respectively,
and an impressive Bepy, of 45.77 M~ em™! (Table 1).

In 2021, several research groups reported structurally diverse
heterohelicene systems exhibiting distinctive chiroptical and
photophysical properties, highlighting the expanding potential
of these molecules in chiral optoelectronics. Yorimitsu’s group
developed a series of dihetero[8]helicenes through a systematic
asymmetric synthesis. Among these, diaza[§]helicene 5 exhib-
ited pronounced chiroptical activity, with absorption and emis-
sion maxima (Ayps = 399 nm, Aey, = 405 nm), a fluorescence
quantum yield (®p) of 0.13, and high dissymmetry factors
(Igabsl = 1.9 x 1072, |gapsl = 9.5 x 1073 at 403 nm) [18]
(Table 2). Miura and co-workers employed Pd(Il)/Ag(I)-cata-
lyzed cyclizations to construct azahelicenes, with compound 6

exhibiting enhanced chiroptical performance and protonation-
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Table 1: Structures and optical properties of compounds 1, 2a—c, 3, and 4a,b.2

compound Aabs(max) [NM] Aem [NM] O
2a 363 508 0.05
2b 452 503 0.33
2c 580 588, 634 0.32
3 525 595, 628 0.40
4a 497 497, 531, 570 0.677
4b 522 542,581, 630 0.754

aCompound 1 is unstable and characterized only by mass spectrometry.

induced CPL amplification [19]. Meanwhile, Audisio’s team
developed heterohelicenes via regioselective [3 + 2]-cycloaddi-
tions, with compound 7 displaying pH-responsive CPL sign
inversion (|gjyml = +1.1 x 1073 at 430 nm, —1.2 x 1073 at
585 nm) attributed to reversible intramolecular charge transfer
[20]. In parallel, several groups explored the functional versa-
tility of heterohelicenes in device-oriented and sensing applica-
tions. Crassous’s group synthesized bipyridine-embedded
helicenes via the Mallory reaction, enabling coordination with
Ru(II) to form NIR-emissive complexes that exhibit redox-
responsive chiroptical switching, notably with complex 8
showing reversible electronic circular dichroism (ECD) upon
oxidation [21]. Liao and co-workers introduced a narrowband
CP-TADF emitter 9, characterized by a narrow emission band-
width (FWHM = 36 nm), |gjuml = 1.1 x 1073, |gprl = 1.5 x 1073,
and an external quantum efficiency (EQE) of 0.14 — demon-
strating promise for CPL-OLED applications [22].
Wanichacheva’s team reported urazole-functionalized

aza[5]helicene 10, exhibiting selective Fe(Ill) sensing, marked

|9abs] [G1uml BcpL [M~Tem™1]
6.7 x 10-3 2.4 x10-3 9.1

1.0 x 1072 7.0 x 1073 95.2

2.98 x 1073 43 x 104 325

3.91 x 103 1.12x 1073 45.77

solvatochromism, and a large Stokes shift (85 nm) with
emission at 530 nm in DMSO [23] (Table 2). Collectively,
these studies underscore the structural versatility and functional
tunability of heterohelicenes, establishing them as robust
platforms for advanced chiral optoelectronic materials.
Their diverse response to external stimuli, modular synthetic
accessibility, and strong CPL performance render them
ideal candidates for applications in molecular sensing,
stimuli-responsive switches, and next-generation CPL-active
devices.

In 2021, Ema’s group reported the synthesis of carbazole-based
azahelicenes 11a—e via intramolecular Scholl reactions [24]
(Table 3). All compounds exhibited strong absorption in the
UV-vis region (250-450 nm) and fluorescence emission be-
tween 400-550 nm. Among these, compound 11c, a saddle-
shaped dibenzodiaza[8]circulene, was particularly noteworthy
as the first example of its kind synthesized in solution and struc-

turally confirmed via single-crystal X-ray diffraction. It demon-
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Table 2: Structures and optical properties of compounds 5-10.

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

compound Aabs(max) [NM] Aem [NM]
5 399 405, 430, 460
6 405 420, 439
7 430 436, 460, 500
8 (MAN 522 788
(P,AN) 512 786
9 440 467
10 400 485

aAs detected in film.

strated the highest CPL performance among the series, with a
|g1uml value of 3.5 x 1073 and a photoluminescence quantum
yield (PLQY) of 0.31, indicating its potential as a chiral emis-
sive material. Building upon this foundation, the same group in
2024 developed a series of structurally refined aza[7]helicenes
(compounds 12a and 12b) under modified Scholl reaction
conditions [25]. These products were obtained as optically
active diastereomers, which were successfully separated using
silica gel chromatography. Additionally, two cyclic dimers,
designated as compounds 12¢ and 12d, were isolated, exhibit-
ing strong absorption bands at 493 and 474 nm, high PLQY's of
0.61 and 0.54, and notable CPL activity (|gjyml = 0.74 X 1073
and 1.3 x 1073, respectively), with corresponding brightness
values (Bcpr,) reaching 19 and 31 M~ cm™! (Table 3). Impor-
tantly, both dimers displayed selective fluoride ion recognition
through hydrogen bonding, with (M,M)-12¢ exhibiting a high
binding constant (K, = 2 x 10° M~1). The resulting [12¢-F~] and
[12d-F~] complexes exhibited red-shifted circular dichroism
(CD), fluorescence, and CPL spectra, underscoring the capa-
bility of helicene-based frameworks for anion-responsive

chiroptical modulation. These findings highlight how precise

O |Gabsl |G1uml
0.13 1.9 x 102 9.5x 1073
0.14 1.1 x 102 4.4 x 1073
0.10 - 1.1 x 103
0.10 - -

0.25 - _

0.472 - 1.1 %1073

structural design and supramolecular engineering can facilitate
the development of high-performance, stimuli-responsive chiral

luminophores.

In 2022, Zhang and co-workers reported a nitrogen-embedded
quintuple [7]helicene 13, constructed by hybridizing helicene
and azacorannulene 7-systems [26] (Table 4). Compound 13
exhibited distinct absorption bands at 408, 611, and 715 nm,
with strong near-infrared (NIR) fluorescence centered at
770 nm and a PLQY value of 0.28. Upon coordination with
tris(4-bromophenyl)aminium hexachloroantimonate (BAHA), a
new absorption band emerged around 900 nm, extending to
1300 nm, indicative of charge-transfer processes. The enantio-
mers of 13 displayed mirror-image CD signals and showed
excellent dispersibility in polar solvents, highlighting their
potential for NIR bio-imaging applications. In parallel, Cirkva’s
group synthesized a series of aza[n]helicenes 14a—d via photo-
cyclodehydrochlorination [27]. These compounds exhibited
dual fluorescence bands, with emission red-shifting progres-
sively with increasing helical length. Protonation further in-

duced red-shifted emission, with compound 14d-H* emitting at
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Table 3: Structures and optical properties of 11a—e and 12a—d.

‘gs
L e

1M1aR=H
11b R = Me
11c R=1tBu

compound Aabs(max) [NM] Aem [NmM] Or

11a 418 432, 454 0.28
11b 419 432, 455 0.27
11c 419 432, 456 0.31
11d 422 458, 480 0.10
11e 412 456 0.24
12a 436 447,474 0.45
12b 423 431, 456 0.32
12¢ 494 502, 536 0.64
12d 475 485, 514 0.54

542 nm. However, PLQY's decreased significantly from 0.078
to 0.006 with longer helicenes. The CD spectra of 14c and 14d
were found to resemble their carbohelicene analogues, under-
scoring the structural fidelity and chiroptical retention upon
nitrogen incorporation. Qian’s group developed a series of
azahelicenes 15a—d through Bischler—Napieralski cyclization
[28]. Notably, compound 15b displayed a high interconversion
barrier of 36.0 kcal mol™!, enabling enantiomeric resolution. All
compounds exhibited visible-range fluorescence (400-500 nm)
and structured UV—-vis absorption spectra. Importantly, 15b
showed acid/base-switchable UV and CD spectra, suggesting

potential for use in responsive optoelectronic systems. Hu’s

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

|9abs] 91uml BcpL [M~' ecm™1]
49x103 3.2x 1073 -

59 x 103 34 x1073 -

54 x 1073 3.5x 1073 -

3.2x 1073 3.9x 104 -

45x 104 29x 104 -

48 x103 2.6 x 1073 6.7

3.8x 1073 2.2x103 2.8

2.4 x1073 6.5 x 104 19

2.7 x 1073 1.4 x 103 31

group reported an X-shaped double [7]helicene 16 functionali-
zed with four triazole units, which demonstrated absorption at
368 and 516 nm, strong emission at 553 nm, a high PLQY of
0.96, |gaps! of 1.1 x 1072, |gjuml of 9.1 x 1074, and Bcpy, of
30.1 M~! cm™! - surpassing the performance of its all-carbon
and thiadiazole counterparts [29]. In a related study, Hu’s team
synthesized double aza[5]helicenes 17a and 17b, among which
compound 17b exhibited red-shifted emission (538—-632 nm in
CHCI3) and the largest Stokes shift (192 nm), attributed to ex-
tended conjugation and sulfur incorporation [30] (Table 4).
These findings collectively underscore how structural modula-

tion and heteroatom doping can tailor the optical, chiroptical,
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Table 4: Structures and optical properties of 13, 14a—d, 15a—d, 16, and 17a,b.

15a

compound

13

14a
14b
14c
14d
15a
15b
15¢
15d
16

17a
17b

and stimuli-responsive behavior of azahelicenes, providing
strategic design avenues for next-generation chiral optoelec-

tronic materials.

Aabs(max) [Nm]

715
313
302
311
337
398
404
407
424
516
328
440

15¢c

Aem [nm]

770
380, 399
410, 431
421, 443
443, 467
408, 430
408, 434
413, 437
434, 456
553

458

632

0.28

0.077
0.120
0.067
0.029

0.96
0.010
0.014

1.1 x 1072 9.1 x 1074 30.1

In 2023, Langer’s group synthesized a series of double
aza[4,6]helicenes 18a-1 featuring diverse peripheral substitu-

ents through a one-pot, multistep synthetic protocol [31]
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(Table 5). Selected compounds such as 18b, 18c, 18d and 181
exhibit similar A, around 410 nm and emit fluorescence
centered near 530 nm, demonstrating consistent optical profiles
despite structural variation. In a parallel effort, Yang’s group
developed an efficient, enantioselective synthetic approach
toward azahelicenes via a chiral phosphoric acid-catalyzed
multicomponent Povarov reaction or oxidative aromatization
[32]. Among the synthesized compounds, compound 19
displayed dual absorption bands at 260 and 325 nm and emis-
sion peaks at 420 and 440 nm, which red-shifted to approxi-
mately 500 nm upon trifluoroacetic acid treatment. Both the
neutral and protonated forms of 19 exhibited mirror-image CD
and CPL spectra, with high |gjum| values of 1.4 x 1073 and
1.3 x 1073, respectively, underscoring their potential for respon-
sive chiral optoelectronic applications. Concurrently, Liu [33]
and Ishigaki’s [34] groups independently reported a class of
highly twisted nitrogen-doped heptalene derivatives (e.g., com-
pound 20a), which exhibit consistent absorption at 315 nm and
blue fluorescence centered near 450 nm, regardless of the sub-

Table 5: Structures and optical properties of 18a—1,19, and 20a—e.

Me
Q™
O S
\ asey
R \
O N\ O R2 F
R

18aR'=R2=F 18j R=H

18b R'=R2=H 18k R =Me

18c R'=R2=CN

18d R'= R2= OMe

18e R'=R2=Cl

18f R'=F, R2=CN

18g R'=F, R2= OMe

18h R'=F,R2=H

18i R'= OMe, R2=CN
compound Aabs(max) [NM] Aem [NM]
18b 411 530
18¢c 409 520
18d 419 525
18i 413 525
19 325 420, 440
20a 3152, 320P 447
20b 315 459
20c 315 446
20d 320 -
20e 321 —

aBased on reports from Liu's group; Pbased on reports from Ishigaki's group.

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

stituents. These compounds display redox and electronic behav-
iors reminiscent of nitrogen-doped azulenes, featuring strong
absorption dissymmetry factors (|g,psl) at 345 nm — 1.2 x 1072
for compound 20a, 1.0 x 1072 for 20d, and 1.3 x 1072 for 20e
(Table 5). Notably, the radical cation form of compound 20e
(20e"*) exhibits pronounced CD signals extending into the near-
infrared region, suggesting potential for redox-responsive chiral

photonic systems.

In 2023, Chen’s group reported three nitrogen—nitrogen (NN)-
embedded azahelicenes 21a—c, among which compound 21¢, a
structurally defined antiaromatic double aza[7]helicene — exhib-
ited distinctive long-wavelength optical and chiroptical proper-
ties [35] (Table 6). In the solid state, 21¢ emitted in the far-red
region at 641 nm (®f = 0.10) and demonstrated CPL with
|g1uml = 2.04 x 1074, In solution, 21¢ showed a strong absorp-
tion band at 560 nm and a high ®g value of 0.86 at 583 nm,
yielding a Bcpy, value of 13.2 M~ cm™!. Notably, compound

21c undergoes reversible redox interconversion to its radical

18l 19 20aR'=R2=R%=H
20bR'=R2=H, R3=Cl
20c R'=R2=H, R3=t-Bu
20d R'=Br,R2=R3=H
20e R'=R2=Br,R3=H

®r |Gabs| |G1uml
0.15 - -

0.16 - -

0.17 - -

0.14 - -

- - 1.4 x 1073
- 1.2x 1072 -

- 1.0 x 102 -

- 1.3 x 1072 -
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Table 6: Structures and optical properties of 21a—c and 22.

t-Bu

compound Aabs(max) [Nm] 073

21a 408 423 0.26
21ain film ~410 449 0.15
21b 495 521 0.77
21b in film ~500 548 0.63
21c 560 583 0.86
21c in film =570 641 0.10
22 438 480 0.99

cation 21¢"* and dicationic 21¢2* states via chemical oxidation,
enabling controllable switching between antiaromatic and aro-
matic configurations. These results provide a compelling
strategy for engineering redox-switchable chiral luminophores.
In 2024, the same research group expanded on this redox-
responsive platform by constructing a polycationic open-shell
cyclophane 22, comprising carbazole-embedded aza[7]helicene
subunits [36]. Compound 22 displays intense fluorescence
(®p = 0.99), exceptionally high Bcpy, as 100.2 M~! cm™!, and
marked chiroptical activity (|gapsl = 2.50 X 1073 at 435 nm;
|€1uml = 5.00 x 1073 at 460 nm) (Table 6). Upon mild oxidation,
neutral 22 undergoes stepwise conversion into highly charged,
multispin open-shell species 222*2* and 224*4*, preserving

strong chiroptical signals. This study presents a novel approach

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

|9absl [Gruml BopL M1 ecm™1]
9.78 x 10~ - -

476 x 10~ 2.22 x 104 13.2

- 2.04 x 1074 -

2.50 x 103 5.00 x 103 100.2

to constructing stable, redox-switchable chiral luminophores
based on extended azahelicene architectures, offering broad

potential for molecular electronics and spintronic devices.

In 2024, Qiu’s group synthesized m-extended diaza[7]helicenes
23a-f incorporating dual heptagonal rings [37]. Compound 23a
exhibits dynamic chirality, aggregation-induced emission
(AIE), and intense CPL (|gjym| = 1.7 x 1072), whereas com-
pound 23f, with lateral m-extension, shows enhanced thermal
stability and green emission at 517 nm (Table 7). Kuehne and
co-workers reported two radical aza[7]helicenes, 24a and 24b,
exhibiting distinct photophysical behaviors [38]. Compound
24b features a higher PLQY (0.43), while 24a demonstrates
doublet-state CPL (|gjuml = 5.0 X 107%), highlighting the
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Table 7: Structures and optical properties of 23a—f, 24a,b, 25a,b, 26a,b, 27a—d, and 28a—e.

R3 R3
AT
N N
RACbal
R1

R1
23aR'=R2=R3=H
23b R'=R3=H, R2= CF;
23c R'=R2=H, R3= CFs
23dR"=tBu, R?=R%=H
23e R'= -Bu, R?= CF5, R3= H

Cr Vi~ o
557

i A
N OO
9 9 °
& | & |
FeneWisne i
| R o G R o : 26b R = C,4Ho
24a 24b

CgH17 CgH17

& O
ey O

28dn=4
Me 28en=5

compound Aabs(max) [Nm] Aem [nm] OF |Gabsl |G1uml BgpL M~ cm™T]
23a 360 625 - - 1.7 x 1022 -

23f 462 517 - - 2.0x 103 -

24a 642 696 0.34 4.4 x 104 5x 1074 0.25

24b 655 712 0.43 1 x10-4 - -

25a 506 525 0.57 1.7 x 102 1.4 x 1073 8.94

25b 513 535 0.55 2.2 x 1072 8 x 1074 4.29

26a 388 506, 530 0.055 1.2 x 1072 3.0x 1073 -

26b 393 508, 532 0.058 1.4 x 1072 3.2x 1073 -

27a 483 524 0.38 - - -

27b 487 539 0.71 - - -
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Table 7: Structures and optical properties of 23a—f, 24a,b, 25a,b, 26a,b, 27a—d, and 28a—e. (continued)

27c 459 590 0.24

27d 470 611 0.53

28a 414 496, 532 0.152
28b ~475 511, 543 0.116
28c ~475 522, 550 0.089
28d ~475 530, 554 0.066
28e ~475 530, 555 0.034

2In the aggregated state.

potential of helicene radicals for spintronic applications.
Meng’s group synthesized carbonyl-nitrogen embedded
hetero[7]helicenes 25a and 25b bearing axial chirality [39].
Compound 25a displays excellent optical characteristics with
®p = 0.57, |gabsl = 1.7 X 1072, |g1um| = 1.4 x 1073, and a Bepy, of
8.94 M~! ¢cm~!. Then, Chen’s group contributed triple
aza[6]helicenes 26a and 26b with |gj,| values of approxi-
mately 3.0 x 1073, offering new architectures for CPL-active
helicenes [40]. Singh’s group developed fluorophore-conju-
gated aza[7]helicenes 27a—d, with 27b demonstrating pro-
nounced intramolecular charge transfer (ICT), a high ®f of 0.71
and an extended fluorescence lifetime (7) of 15.5 ns [41]. Wu’s
group synthesized a family of expanded azahelicenes 28a—e,
where increasing helical length leads to red-shifted emission,
prolonged lifetime, and attenuated PLQY [42]. Nonetheless,
these compounds exhibit outstanding chiroptical performance,
with |gpslmax reaching 4.8 X 1072, |gjumlmax = 2.1 X 1072, and
Bcpr, values up to 76 M~ cm™!. Collectively, these investiga-
tions underscore the efficacy of heteroatom doping, extended
m-conjugation, and radical design in advancing azahelicene-
based systems. These approaches significantly enhance optical
and chiroptical performance, paving the way for high-effi-

ciency chiral optoelectronic and quantum materials.

In 2024, Kivala’s group selectively synthesized highly distort-
ed [6]helicenes 29a and 29b incorporating azocine units via a
regioselective Beckmann rearrangement from oxime precursor
29c [43] (Table 8). For comparative evaluation, the correspond-
ing lactams 29d and 29e and amines 29f and 29g were also ob-
tained. Compounds 29a and 29b exhibit A,g centered at
513 nm, while the amines 29f and 29g display high ®p values
of 0.48 and 0.56, respectively. Notably, azocine derivative 29b
exhibits the highest CPL activity among the series, with a |gjyml
value of 1.6 x 1073, In addition, both 29a and 29b demonstrate
redox activity, undergoing reversible formation of radical
anions, dianions, and radical cations. The radical cation 29b"*,
in particular, exhibits a broad near-infrared (NIR) absorption
band extending to 3000 nm, highlighting its potential for NIR
optoelectronic applications. Building on this work, in 2025 the

same group reported the synthesis of a stable N-heterotriangu-

4.4 x 1072 3x 1073 16
4.8 x 102 1.4 x 102 61
4.3 x 102 2.1 x102 76

lene dimer (compound 30) bridged by a rigid m-conjugated
[S]helicene [44]. This chiral dimer undergoes reversible step-
wise oxidation to 30°* and 30%*, accompanied by pronounced
NIR Cotton effects extending up to 2000 nm. These results
provide critical insights into the rational design of redox-switch-
able, NIR-active chiral molecular systems, underscoring their
promise in advanced optoelectronic and spintronic technologies.

In 2024, Tanaka’s group synthesized and characterized a series
of length-variable aza[n]helicenes 31a—f via a one-pot intramo-
lecular cyclodehydrogenation [45] (Table 9). Notably, com-
pounds 31e and 31f represent the first examples of triple-lay-
ered heterohelicenes with fully conjugated frameworks. All
members of the series demonstrate high solubility, attributed to
intermolecular hydrogen bonding with solvent molecules. With
increasing helical length, both the A,ps and Ay, exhibit progres-
sive bathochromic shifts, while the ®f values systematically
decline, without clear saturation within the investigated range.
Chiroptical measurements of the N-butylated aza[n]helicenes
31g-j reveal |g,ps| and |gjuml values on the order of 1073. These
findings address long-standing challenges in the synthesis and
stabilization of extended heterohelicenes, paving the way for
the development of structurally persistent, m-extended chiral
materials. In a parallel effort, Tanaka’s group synthesized benz-
annulated double aza[9]helicene 32a and its alkylated deriva-
tives 32b and 32c¢ via a one-pot oxidative fusion strategy [46].
Compared to the parent compound 32a (O = 0.07), com-
pounds 32b and 32c¢ exhibit significantly enhanced ®p (0.35),
red-shifted absorption bands, and |gap| values of 2.4 x 1073 and
2.3 x 1073 at 345 nm, respectively. Their corresponding Bcpr,
values reach 16.0 and 19.2 M~ em™L. Furthermore, terminus-
functionalized aza[9]helicenes 33a, 33b, and 33c were pre-
pared to investigate interlayer interactions [47]. Among them,
the pyrene-decorated compound 33c displays red-shifted emis-
sion and prolonged fluorescence lifetimes as solvent polarity in-
creases, indicating enhanced excited-state stabilization. Collec-
tively, these studies offer valuable strategies for stabilizing long
m-extended helicenes and finely tuning their chiroptical and
emissive properties, thereby advancing their application in

multifunctional chiral photonic and sensing platforms.
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Table 8: Structures and optical properties of 29a—f and 30.2

compound

29a
29b
29d
29%e
29f
29g
30

Aabs(max) [NM]

513
513
510
510
510
547
495

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

t-Bu t-Bu

t-Bu t-Bu

Aem [Nm]

540, 565
552, 582
539, 570
543, 575
536, 570
609, 652
534

OF

0.01
0.12
0.52
0.51
0.48
0.56
0.42

29b

|9absl |G1uml BcpL [M~1ecm™]
25x 1073 - -

1.9x1073 1.6 x 103 -

3.0 x 1073 6.0 x 1074 -

2.1 x 1073 2.4 x 1074 -

2.0x 103 9.1 x 1074 -

2.4 x 1073 6.0 x 1074 -

1.25 x 103 1.1 x103 7.00

aThe optical properties of compound 29¢ are not mentioned in the original paper.

In 2025, Gryko’s group synthesized a series of heterohelicenes
34a—c, featuring a 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP)
core [48] (Table 10). The compounds exhibit similar absorption

and emission profiles. However, compound 34¢ stands out due

to its pronounced solvatofluorochromism (Aep, = 546 nm, O =
0.42 in DMSO). Among the series, compound 34b exhibits the
highest |gjyml| of 7.22 X 1073, while compound 34c¢ shows the

greatest Bepr, as 29.3 M~! em™!. These studies underscore the

importance of regioisomerism and molecular core design in op-

timizing the chiroptical and emissive properties of heteroatom-

rich nanographenes, advancing their potential in next-genera-
tion optoelectronic and chiral photonic devices.

B,N-containing helicenes

Enhancing charge transfer between electron-donating and elec-
tron-accepting units, as well as extending m-conjugated frame-
works, are widely employed strategies for achieving longer-
wavelength emission in optoelectronic materials. Inspired by
the electronic configuration of borazine, boron has emerged as a

valuable electron-accepting counterpart to electron-donating
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Table 9: Structures and optical properties of 31a—j, 32a—c, and 33a—c.

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

31bn=11
31dn=15
31f n=19

compound Aabs(max) [NM] Aem [Nm] O
31a 412 437,466,500  0.21
31b 425 452,479,514 047
31c 438 427,450,480 0.1
31d 451 466,491,530  0.09
31e 388 483, 511 0.18
31 310 508 0.08
31g 409 465, 495 0.16
31h 314 482, 508 0.16
31i 315 508 0.09
31j ~385 ~520 0.07
32a 464 496, 529, 570 8:%:
32b 510 521, 555 0.35
32¢ 508 522, 556 0.35
33a 415 441,466,500  0.19
33b 414 437,466,500  0.21
33c 416 441,466,500  0.08

aAccording to reference paper [42]; Pin THF; Cin DMSO.

nitrogen in conjugated systems, enabling the design of
donor—acceptor helicenes with tunable photophysical properties.

In 2020, Ema and co-workers developed a series of chiral
carbazole-based BODIPY analogues 35a—f, derived from
helical carbazole-based BF, dyes [49] (Table 11). These ana-

33aR=0Me

t-Bu
33bR=© 33cR= O‘

31gn=9
31thn=11
31i n=13

ooa

|Gabsl |G1uml BepL M cm™T]
5.6 x 103 45x 1073 8.62

4.2 x 1073 42 x 1073 -

4.2 x 1073 1.7 x 1073 -

1.7 x 10-3 57 x 1073 -

2.4 x10-3 - 16.0

23 x 1073 - 19.2

logues exhibit red-shifted emission and enhanced CPL com-
pared to their carbazole-based helicene precursors. At Aypg
(=500 nm), the compounds display |gaps| values ranging from
1.1 x 1073 to 3.1 x 1073, ®f values of 20-36%, and |gjum|
values between 7.0 x 107* and 1.9 x 1073, In a subsequent

study, Ema’s group reported an N-containing hetero[7]helicene
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Table 10: Structures and optical properties of 33a,b and 34a—c.

compound Aabs(max) [NM] Aem [nm] O

34a 438 460, 481 0.270
34b 446 463, 488 0.045
34c 456 483, 505 0.324

36a containing a boron—nitrogen coordination site [50]. Its
chiroptical properties could be modulated through the addition
of tetrabutylammonium (TBA) salts, which transformed the
boron center from a trigonal planar to a tetrahedral geometry,
thereby enhancing the |gym| from 4.7 X 1074 to 1.5 x 1073
(OAc™, 36¢) and 1.7 x 1073 (F/OH™, 36b/36d). Treatment with
Ag* ions reversed this coordination, restoring the neutral trig-
onal boron center and its initial optical characteristics. These
findings underscore the potential of boron—nitrogen-embedded
helicene frameworks as tunable chiral luminophores with re-
versible CPL modulation, offering promising strategies for the
development of advanced molecular optoelectronic devices.

In 2021, Hatakeyama and co-workers developed an expanded
B.N-containing heterohelicene 37 via a one-step synthesis em-
ploying excess BBr3 at 180 °C in an autoclave, achieving a 44%
yield [51] (Table 12). In a 1 wt % PMMA-dispersed film, com-
pound 37 exhibited ultra-narrowband emission (FWHM =
16 nm) at 484 nm with an 80% PLQY. OLEDs based on 37
demonstrated excellent external quantum efficiency, current
efficiency, and power efficiency. Duan and co-workers re-
ported B,N-containing double hetero[7]helicenes 38a,b, which
exhibited deep-red fluorescence emission at 662 and 692 nm,
respectively, with narrow emission bandwidths (full width at
half maximum, FWHM = 38 nm) and exceptional PLQY's of
100% [52]. Remarkably, they achieved maximum EQEs of
28.1% and 27.6%, representing the highest reported values for
thermally activated delayed fluorescence (TADF) emitters oper-
ating above 650 nm. Shortly thereafter, Wang’s group reported
a related series of B,N-containing compounds 38a—c, which
displayed pronounced chiroptical activity in the visible region

[53]. These compounds displayed the highest |g,p,s| values re-

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

|9abs] [Gruml BcpL [M~1ecm]
- 1.33 x 103 2.0

- 6.11 x 1073 43

- 3.25 x 10-3 29.3

corded for helicenes to date — 0.033, 0.031, and 0.026 at 502,
518, and 526 nm, respectively. They also showed near-unity ®Op
values of 100%, 99%, and 90%, with corresponding A, at 660,
684, and 696 nm, and |g),m| values of 2 x 1073. The calculated
Bepy, reached 28.5, 37.1, and 40.0 M~ cm™!, positioning these
helicenes among the most efficient red CPL emitters reported to
date (Table 12).

However, such long-wavelength emission poses challenges for
achieving optimal color purity in OLED devices. To overcome
this limitation, Duan’s group subsequently introduced a cova-
lent B—N bond into the helicene framework in 2023, affording
compound 39 [54]. This material emits at 617 nm with a
FWHM of 38 nm and maintains a near-unity PLQY. Circularly
polarized OLEDs (CP-OLEDs) based on 39 exhibit outstanding
device performance, achieving a |ggy | of 1.91 X 1073, a record-
high EQE exceeding 36%, and operational stability with an
LTys of approximately 400 h at 10,000 cd m™2. These findings
underscore the efficacy of B-N covalent integration in helicene-
based frameworks for realizing high-efficiency, spectrally opti-
mized, and robust red CP-OLED emitters.

In 2022, Yang and co-workers reported a W-shaped double
hetero[5]helicene 40, incorporating boron, nitrogen, and sulfur
atoms within its framework [55] (Table 13). Compound 40 ex-
hibits exceptional photophysical and electroluminescent perfor-
mance, including a PLQY value of 100% and a |gyym| value of
2.1 x 1073, Circularly polarized organic light-emitting diodes
(CP-OLEDs) based on 40 demonstrated a |ggr| of 2.2 X 10_3, a
narrow emission bandwidth (FWHM = 49 nm), and a maximum
external quantum efficiency (EQE) of 31.5%, placing it among

the highest-performing multiple-resonance-induced thermally
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Table 11: Structures and optical properties of 35a—f and 36a—d.

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

compound Aabs(max) [nm] Aem(max) [nm]
35a 495 568
35b 508 594
35¢ 508 566
35d 524 592
35e (R,P) 508 576
(R,M) 509 571
35f (R,P) 530 605
(R.M) 532 602
36a 487 493
36b 502 512
36¢c 510 526
36d 511 520

activated delayed fluorescence (MR-TADF) emitters to date. In
2023, the same group introduced the first deep-blue chiral
MR-TADF emitters based on heterohelicene scaffolds 41a—c
[56]. These compounds exhibited sharp emissions at
440—444 nm in solution and 445-449 nm in doped films, with
emission bandwidths as narrow as 23 nm and PLQY's reaching

up to 95%. Notably, racemic 41b and 41c displayed excellent

36b X =F

36c X = OAc

36d X = OH
ol |Gabsl |G1uml
0.22 2.7 x 103 1.7 x 103
0.20 3.1 x 103 1.3 x 1073
0.33 1.2 x 1073 8.7 x 104
0.21 1.1 x 1073 7.0x 104
0.30 2.3 x 1073 1.5x 1073
0.36 1.5x 1073 1.2 x 1073
0.20 1.8 x 1073 1.2 x 1073
0.26 1.5 x 1073 8.8x 1074
- 1.6 x 1073 47 x 104
- 3.0x 1073 1.7 x 103
- 2.9 x 1073 1.5x 1073
- 3.2x 1073 1.7 x 103

chiroptical properties, with |gy,,| values ranging from 1.4 to
1.5 x 1073 and Bcpy, values exceeding 22 M~! cm™!. Com-
pound 41c, in particular, achieved a |ggr| of 2.6 X 1073 and a
maximum luminance exceeding 10,000 cd m~2. These findings
underscore the significant potential of heteroatom-integrated
helicene systems as high-efficiency, CPL-active MR-TADF

materials for next-generation OLED technologies, particularly
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Table 12: Structures and optical properties of 37, 38a—c, and 39.

R
R

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

Ph Ph R
N /
ety
NPh,
i B/@/ 7 N\ N
N
Mes/ AN @ N

Mes —
B B N \ / t-Bu
N
Mes Mes
thN 38aR=H t-Bu
38b R =t-Bu
7

3 38c R = 4-(t-Bu)phenyl 39
compound Aabs(max) [NM]  Aem(max) [Nm] ®f |9abs] G1uml
38a 627 660 1.00 3.3x 1072 2.0x10-3
38b 650 684 0.99 3.1 x102 2.0x10°3
38¢c 662 696 0.90 2.6 x 1072 2.0x10°3
39 590 617 0.96 1.2 x 102 1.4 x 1073
film Aabs(max) [NM] Aem(max) [nm] OF FWHM [nm]
37 in PMMA 477 484 0.80 16
38ain CBP - 672 - 48
38b in CBP - 698 - 49
39 in mCPBC - 624 0.95 -
device AEL(max) [Nm] l9eLl FWHM [nm] CIE coordinate EQEmax [%]
37 480 - 17 (0.09, 0.21) 22.92
38a 664 - 48 (0.72, 0.28) 28.1
38b 686 - 49 (0.72, 0.28) 27.6
39 617 1.9 x 103 48 (0.67, 0.33) 36.6

aAs detected at 10 cd m™2,

in the development of deep-blue emissive devices with high

color purity and device efficiency.

In 2022, Marder and co-workers introduced various boryl sub-
stituents at both termini of a series of nitrogen-doped
[S]helicenes, yielding helicenoids 42a—h [57] (Table 14). The
Bpin-substituted derivatives 42a—e exhibited broad emission
across the 400—800 nm range, whereas their analogues 42f and
42g showed negligible emission, indicating a strong depen-
dence of photophysical behavior on boryl-substituent identity.
Compared to their parent azahelicenes, these compounds
displayed significantly larger Stokes shifts, highlighting the pro-
nounced electronic effects of boryl incorporation. Notably,
when a CF3 group was introduced as a substituent on the azahe-

licene core, the resulting boryl-functionalized compound 42¢

exhibited an emission maximum at 563 nm in CH,Cl,, with a
quantum yield of 15%, representing the highest emission effi-

ciency observed among the boron-containing quasi-circulenes.

In 2022, Lu and co-workers developed a series of helical aza-
BODIPY analogues 43a-h, featuring a distinctive B—-O-B
bridge installed within each molecule [58] (Table 15). These
compounds display broad chiroptical responses extending from
the ultraviolet to the entire visible spectrum — an uncommon
characteristic among helicene-type systems. Among them, the
phenyl-substituted aza[7]helicene 43f exhibits pronounced
chiroptical activity, with |g,ps| and |gjuml| values reaching
3.04 x 1073 and 1.30 x 1073, respectively, and a high Bcpy, of
11.5 M~! cm™! in the near-infrared region. In contrast, the cor-

responding aza[5]helicene analogue shows negligible chiral
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Table 13: Structure and optical properties of 40 and 41a—c.

40

compound Aabs(max) [nm] Aem(max) [nm]
40 483 520

41a 424 440

41b 422 443

41c 427 444

film Aabs(max) [nm] Aem(max) [nm]
40 in DMIC-TRZ - 525

41a in DOBNA-OAr - 445

41b in DOBNA-OAr - 448

41c in DOBNA-OAr - 449

device AEL(max) [nm] l9eLl

40 524 2.2x1073
41a 443 -

41b 445 22x 10
41c 447 2.6 x 104

response, with |gapsl and |guml values in the 1075 range. To
further enhance chiroptical performance, Lu’s group introduced
edge-positioned methyl and ethyl substituents into the helical
core, affording 44a and 44b [59]. Compared with 43¢, they are
with significantly improved |g,psl values of 1.51 x 1073 and
1.69 x 1073, respectively. This study underscores the critical
importance of molecular design in modulating chiroptical prop-
erties and provides valuable insights into the development of
helicene-based BODIPY systems for near-infrared CPL applica-
tions. In 2024, Shimizu’s group reported azabora[6]helicenes
45a and 45b [60]. However, their enantiomers could not be iso-
lated due to low racemization barriers. The F- and Ph-coordinat-
ed derivatives displayed moderate PLQY's in solution (0.26 and
0.18, respectively), which dropped markedly in the solid state
(0.02 and 0.04) owing to aggregation-caused quenching (ACQ).

In 2023, Yang and co-workers reported a pair of (NBN),-con-
taining double and quadruple helicenes 46a—d [61] (Table 16).

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

N
be
N
Mes
41a 41bX=0
41cX=8
ol |Gabsl |Giuml
0.98 - 21 x 1073
0.82 - -
0.91 1.4 x 1073 1.4 x 103
0.95 1.5x 103 1.5x 103
O FWHM [nm]
- 48
0.82 35
0.91 28
0.95 28
FWHM [nm]  CIE coordinate EQEmax [%]
49 (0.26, 0.66) 315
26 (0.15, 0.05) 234
24 (0.15, 0.04) 275
24 (0.15, 0.05) 29.3

The neutral compounds exhibited high PLQY's of 99% and 65%
in solution, and 90% and 55% in PMMA-doped films, respec-
tively, with exceptionally narrow full-width (FWHM values as
24 nm and 22 nm). Stepwise titration experiments with fluoride
ions induced a change in the coordination number of the boron
centers from three to four, forming corresponding anionic
species. This coordination triggered red-shifted absorption and
CPL responses while maintaining excellent PLQYs — 99% and
90% in solution, and 80% and 77% in PMMA-doped films, re-
spectively.

In 2024, Wang’s group developed a B,N-embedded
hetero[8]helicene 47, exhibiting narrow green emission at
531 nm (FWHM = 36 nm), a high PLQY of 93%, and outstand-
ing CP-OLED performance (EQE = 32.0%; |ggL| = 7.74 % 1074
[62] (Table 17). Bin’s group introduced orthogonal spiro-struc-
tures into hetero[6]helicenes 48a—c, achieving near-unity
PLQYs in solution (up to 99%) and OLED external quantum
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Table 14: Structure and optical properties of 42a—h.2

=N
N

=N =N
N N
t8 O \ \ Mg
N NN \ Mg o o
B R B
(@) O 0 0" o
3L e

/
k H HH
Sl

c

%—ﬁ % P
42aR=H 42d 42¢ 42f 429 42h
42bR = Me
42c R=CF;

compound Aabs(max) [NM] Aem(max) [nm] O

42a 372 520 0.08

42b 373 522 0.08

42c 364 563 0.15

42d 372 530 0.07

42e 407 588 0.05

42f 385 - -

42g 366 - -

42h - - -

@8N0 gaps OF gium Values were reported.

Table 15: Structure and optical properties of 43a—h, 44a,b, and 45a,b.

1

Cr : o
N VRN O
N N ’
BN g BN R “.‘
RS‘B " R2 RZED i N/E‘;\N
y N ~N O R ) N,B‘N O R @/ﬁ‘N O R R
Q\ V. \ Y \ V
~ /"N R — /N R —~ /N R
43a-d 43e-h
43a,e R" = 4-(t-Bu)phenyl, R2=F 44a R' = 4-(+-Bu)phenylthio, 45aR=F
43bf R'=4-(tBu)phenyl, R2=Ph R2 = Me 45b R =Ph
43c,g R'" = 4-(+-Bu)phenylthio, R2 = F 44b R" = 4-(t-Bu)phenylthio,
43d,h R = 4-(+-Bu)phenylthio, R? = Ph R2 = Et
compound Aabs(max) [NM] Aem(max) [NM] OF |9abs] 91uml
43a 588 625 0.59 4 %1075 3x107°
43b 623 649 0.56 - -
43c 601 640 0.31 - -
43d 634 668 0.12 - -
43e 646 682 0.30 2.0x 1073 1.3 x 1073
43f 677 708 0.24 3.0x 1073 1.3 x 1073
43g 660 695 0.16 1.8 x 1073 1.2 x 1073
43h 691 719 0.10 - -
44a 624 665 0.08 1.5x 1073 -
44b 625 665 0.07 1.7 x 1073 -
45a 548 568 0.26 - -
45b 554 574 0.18 - -
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Table 16: Structure and optical properties of 46a—d.

t-Bu

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

t-B t-B
T .

compound Aabs(max) [NM]  Aemmax) [nm] OF |Gabsl |G1uml
46a@ 511 524 0.99 - -
46b2 507 522 0.65 6.2 x 1073 1.0x 103
46¢cP 524 567 0.99 5.0 x 1073 6.0 x 104
46d° 518 541 0.90 6.0 x 1073 7.0 x 1074
film Aabs(max) [NM] Aem(max) [nm] O FWHM [nm]
46a in PMMA - - 0.95 -
46b in PMMA - - 0.55 -
46¢ in PMMA - - 0.80 -
46d in PMMA - - 0.77 -

an toluene; Pin acetone.

efficiencies (EQEs) exceeding 31% [63]. Chen’s group re-
ported 49, a B,N-containing hetero[9]helicene that emits at
578 nm with a PLQY of 98% and showing excellent chiroptical
properties (|g1uml = 5.8 x 1073; Bepr, = 220.75 M~ em™!) [64].
OLEDs incorporating compound 49 demonstrated an EQE of
35.5% and |gg1 | = 6.2 x 1073. Zhang’s group synthesized 50af,
with and without installed heptagons [65]. The heptagon-con-
taining derivatives showed red-shifted emission, broader
FWHM, lower PLQYSs, and diminished Bcpy values, indicating
a trade-off between extended conjugation and emissive effi-
ciency. Yin’s group introduced 1,4-BN motifs into compounds
51a and 51b, which emitted blue-green light at 474 and 465 nm,
respectively, and exhibited moderate CPL activity
(Igruml = 5 X 10_4) [66] . OLEDs based on compound 51a
emitted at 502 nm and achieved an EQE of 3.18%. Liu’s group
positioned B and N atoms on the inner rim of 52a and 52b [67].
While 52b exhibited remarkably high |gaps| and |gjum| values
(6.1 x 1072 and 2.4 x 1072, respectively), its PLQY was rela-

tively low (24%). Further molecular optimization led to the de-

velopment of compounds 53a—c, which demonstrated ultra-
narrow emission bands (FWHM = 16-34 nm), high PLQYs
(67-82%), and exceptional CPL brightness (Bcprs of 583, 374,
and 349 M~ em™!, respectively), with compound 53a setting a
new record for BN-containing helicene CPL brightness [68].
These collective findings underscore the critical role of rational
BN doping, m-conjugation engineering, and structural rigidity in
precisely tuning the photophysical and chiroptical properties of
helicene-based materials, thereby advancing the design of next-
generation CPL-active optoelectronic systems with superior
performance metrics.

However, these findings also suggest that boron may not always
be the optimal choice for enhancing charge-transfer properties.
The delocalization of electrons between the vacant p-orbital of
boron and the electron-rich m-conjugated systems can diminish
both the electron-accepting capability of boron and the electron-
donating efficiency of the conjugated framework. Additionally,

the inherently low electronegativity of boron further limits its
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Table 17: Structure and optical properties of 47, 48a—c, 49, 50a—f, 51a,b, 52a,b, and 53a—c.

t-Bu t-Bu

48b R = 4-(t-Bu)phenyl

compound Aabs(max) [NM] Aem(max) [nm] OF |9abs] G1uml

47 510 531 0.93 1.4 x 1073 5.8 x 104
48a 482 503 0.91 - -

48b 495 516 0.99 - -

48c 493 515 0.94 - -

49 546 578 0.98 5.6 x 10-3 5.8 x 1073
50a 548 595 0.68 7.4 x 1073 2.7 x 1073
50b 545 585 0.66 8.6 x 103 2.5x 1073
50c 553 598 0.74 3.1 x 1073 2.7 x 1073
50d 622 675 0.11 4.7 x 1073 2.9x 1073
50e 563 623 0.27 - -

50f 595 641 0.02 6.6 x 10-3 5.0 x 1073
51a 453 474 0.83 6.2 x 1073 51 x 104
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Table 17: Structure and optical properties of 47, 48a—c, 49, 50a—f, 51a,b, 52a,b, and 53a—c. (continued)

51b 447 465

52a 403 409

52b 423 430

53a 506 515

53b 513 529

53¢ 516 535

film Aabs(max) [Nm] Aem(max) [Nm]
46a from CHCl3 - 667

46b from CHCl3 - 632

47 in PhCzBCz - =545
51ain DPEPO - 472

51b in DPEPO - 467
device AEL(max) [nm] lgel

a7 536 7.7 x 1074
48a 490 -

48b 506 -

48c 522 -

49 580 6.2 x 1073
51a 502 -

effectiveness as an electron acceptor, thereby restricting the
achievable red-shift in emission. To overcome these limitations,
alternative electron-withdrawing atoms and functional groups
have been introduced into nitrogen-doped helicene frameworks
to improve their photophysical performance and extend emis-
sion into the longer wavelength region.

X,N-containing helicenes (X = O, S or Se)

Imide functional groups are well recognized for their strong
electron-accepting character, making them valuable moieties in
the design of optoelectronic materials. When incorporated into
m-conjugated frameworks, imide groups can significantly modu-
late electronic structures and enhance properties such as fluores-
cence efficiency, charge transport, and chiroptical responses. In
this section, we begin by summarizing representative imide-
functionalized helicenes, highlighting their structural features
and photophysical performances. In 2020, Ravat’s group intro-
duced a novel class of helically chiral diimide molecules 54a—c,
which integrate the favorable characteristics of arylene diimides
within the chiral architecture of [n]helicenes [69]. These com-
pounds exhibit varying PLQYSs of 0.22, 0.02, and 0.12 for 54a,
54b, and S54c, respectively, and notably retain fluorescence in
the solid state. The |g,pg| in the visible region increase systemat-
ically with helical length, reaching values as high as ~1072 for
compounds 54b and 54¢ — among the highest reported to date —
highlighting their strong potential in chiral optoelectronic appli-
cations (Table 18). In 2023, the same group reported a stable

0.54 2.5x 1073 48 x 1074
0.31 3.6 x 1072 2.4 x 1072
0.24 6.1 x 1072 48 x 1072
0.82 2.4 x 1072 1.7 x 102
0.67 1.1 x 1072 1.2 x 1072
0.72 1.1 x 1072 8.0 x 1073
o FWHM [nm]
0.02 48

0.04 35

0.92 ~50

0.32 38

0.42 29

FWHM [nm]  CIE coordinate EQEmax [%]
38 (0.32, 0.66) 31.1

30 (0.10, 0.41) 25.2

37 (0.15, 0.65) 29.2

37 (0.22, 0.70) 31.0

48 (0.53, 0.46) 35.4

35 (0.14, 0.55) 3.2

push—pull [7]helicene diimide (compound 55) that exhibited
notable chiroptical performance, with |g sl and |gjum| values of
1.12 x 1072 and 5.0 x 1073, respectively, in toluene [70].
Furthermore, compound 55 demonstrated solvent-dependent
fluorescence and CPL behavior across the visible spectrum,
with both emission intensity and chiroptical properties varying
in response to solvent polarity. Concurrently, Wiirthner’s group
developed two naphthalimide-annulated [n]helicenes, com-
pounds 56a and 56b (n = 5, 6), via a concise two-step synthetic
route that afforded excellent yields and notable photophysical
properties [71]. Both helicenes display high ®f as 73% for 56a
and 69% for 56b. Notably, compound 56b exhibits markedly
enhanced |g b and |g1uml values of 2.1 x 1073 and 2.3 x 1073
approximately 4.5-fold greater than that of compound 56a. Its
red CPL emission at 615 nm and high Bcpy, of 66.5 M~ cm™!
underscore its potential for advanced chiral photonic applica-

tions.

Heteroatom engineering in double helicenes has emerged as a
powerful strategy for tuning chiroptical properties and excited-
state dynamics. In 2021, Sakamaki’s group synthesized a novel
double N,O-hetero[S]helicene (compound 57b) by coupling two
12H-benzo[b]phenoxazine (BPO) units and systematically com-
pared it to its N,N-analogue (compound 57a) derived from 13H-
dibenzo[b,i]phenoxazine (DBPO) scaffolds [72] (Table 19).
Compound 57b was obtained in significantly higher yield and,

like compound 57a, exhibited electron-rich character and
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Table 18: Structures and optical properties of 54a—c, 55 and 56a,b.

?4"'9

R = methoxy
Ar = 2 6-diisopropylphenyl

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

compound Aabs(max) [Nm] Aem(max) [nm] O |9abs] [G1uml BepL M~ cm1]
a
54a 417, 442 471,499 02 7 x 1073 - -
0.022 o
54b 395 470, 498 0.02b 1.75 x10 - -
0.122 -
54c 452 508 0,06 1.22 x 1072 - -
55¢ 408 532 0.26 8.6 x 1073 42 x1073 7.8
56a 629 655 0.73 45 x 1074 5.0x 104 22.0
56b 588 613 0.69 21 x 1073 2.3 x1073 66.5
device AEL(max) [nm] lgel FWHM [nm] CIE coordinate EQEmax [%]
56b 618 - 50 - 2.3

aAs detected in solution; Pas detected in the solid state; Call detected in DCM.

compact molecular packing, both favorable for p-type tran-
sistor performance. Importantly, both helicenes displayed strong
CPL in CH,Cly, with |g1um| values exceeding 1072, Intriguingly,
the CPL signals of the two compounds exhibited opposite signs,
underscoring the sensitivity of chiral excited-state properties to
heteroatom substitution within the helicene framework.
Extending this design principle, the group reported a double
N.,S-hetero[5]helicene 58 constructed from two benzo[b]pheno-
thiazine units in 2023 [73]. Compared to the N,0O-analogue 57b,
this new compound showed more intense phosphorescence and
an extended emission lifetime in dilute solution. Notably, it
demonstrated room-temperature dual-emission CPL originating
from both prompt fluorescence and long-lived phosphores-
cence, a rare feature in helicene systems. In a subsequent study,
the same group reported a bis(N,Se)-hetero[4]helicene 59b and

systematically compared its structural and dynamic properties

with those of its sulfur analogue 59a [74]. Despite their close
structural resemblance, the longer C—Se bond in 59b led to a
markedly higher racemization barrier (145.7 vs 112.8 kJ/mol),
thereby illustrating how subtle atomic substitutions can signifi-
cantly influence the conformational stability of helical mole-
cules (Table 19). These studies illustrate how precise hetero-
atom modulation enables fine control over CPL directionality
and emission lifetimes, offering promising avenues for the de-
velopment of multifunctional chiral optoelectronic materials —
particularly those capable of simultaneous fluorescence and
phosphorescence-based CPL.

Recently, thiadiazole-fused helicenes have gradually come into
our view. In 2023, Hirose’s group synthesized a series of
tetraazadithia[n]helicenes — 60a, 60b, and 60c — featuring 2,1,3-
thiadiazole termini [75] (Table 20). Among them, compound
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Table 19: Structures and optical properties of 57a,b, 58, and 59a,b.

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

t-Bu S
59a 59b
compound Aabs(max) [NM] Aem(max) [nm] OF |Gabsl |Giuml
57a ~410 569 0.038 1.7 x 102 2.3 x 102
57b ~380 587 0.035 1.3x 102 1.3 x 102
0.003 _ _
58 ~390 547 0.302 2.0x 102 1.7 x 102D
59a 380 - - - -
59b 380 - - - -

aPhosphorescence quantum yield ®p; °doped in B-estradiol matrix.

Table 20: Structures and optical properties of 60a—c and 61a,b.

60a

compound Aabs(max) [NM] Aem(max) [Nnm] O |9abs]

60a 391 398 0.005 -

60b 431 450 0.008 1.5 x 102
60c 445 483 0.027 3.7x 1072
61a 340 536 0.0735 -

61b 349 556 0.009 -

[G1uml BepL M1 em™1]
1.0 x 1072 2
4.0x 102 15
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60c exhibited pronounced CPL activity in toluene (|gjym| = 0.04,
®r = 3%), demonstrating the efficacy of terminal heterocycle
incorporation for boosting chiroptical performance. In 2024,
Babu and co-workers developed two m-extended
hetero[6]helicenes — 61a and 61b — incorporating thiadiazole
and selenadiazole moieties, respectively [76]. Substitution of
sulfur with selenium enhanced intermolecular interactions and
led to a notable reduction in the optical bandgap, highlighting
the effectiveness of heteroatom modulation in tuning the elec-
tronic and photophysical properties of chiral nanographenes.
These studies exemplify how strategic structural and electronic
design — through m-extension, end-group heteroatom engi-
neering, and atom-specific substitutions — enables precise
tuning of chiroptical and photophysical properties in helicene-
based materials, advancing their applicability in next-genera-

tion optoelectronic devices.

In 2020, Pittelkow’s group developed a unique synthetic
strategy that converts a non-planar hetero[7]helicene into a
planar hetero[8]circulene featuring an antiaromatic cycloocta-
tetraene (COT) core (62a—f) [77] (Table 21). Through con-
trolled oxidation of the thiophene units to sulfones, they
achieved a systematic red-shift in both absorption and emission
spectra. Remarkably, the emission of these derivatives spans
nearly the entire visible spectrum. These studies provide inno-

vative molecular design strategies for constructing helically

Table 21: Structure and optical properties of 62a—f.

compound Aabs(max) [Nm] Aem(max) [nm]
62a 388 429
62b 419 484
62c 431 518
62d 476 574
62e 414 436
62f 473 485

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

twisted or planarized chiral m-conjugated systems with tunable
optical properties, thereby paving the way for the development
of multifunctional materials in advanced photonic and elec-

tronic technologies.

In 2021, Viglianisi’s group synthesized a series of thia-bridged
triarylamine[4]helicene-functionalized polynorbornenes 63a—c
via ring-opening metathesis polymerization (ROMP), intro-
ducing helicene chirality into polymer backbones with tunable
electrochromic behavior [78]. These polymers exhibit revers-
ible pH-responsive color changes. For instance, 63a transitions
from pale yellow to deep blue in the solid state upon exposure
to TFA, while 63b and 63c in CH,Cl; exhibit new absorption
bands at 570 and 575 nm, respectively — reversibly decolorized
upon triethylamine treatment (Table 22). This work demon-
strates the potential of helicene-containing polymers as stimuli-
responsive chiral electrochromic materials. In the same year,
You’s group developed a transition-metal-catalyzed C—H/C-H-
type regioselective C3-arylation of benzothiophenes using mo-
lecular oxygen as the oxidant [79]. This strategy afforded the
TADF-active compound 64a, which exhibits efficient blue
emission and excellent OLED performance with a maximum
EQE of 25.4%. This example highlights the utility of helicene-
related heteroaromatic frameworks in the design of high-effi-
ciency emissive materials. Also in 2021, Ema’s group reported
a concise Scholl-type cyclodehydrogenation strategy for synthe-

H
oo Iy
o "YS
"o MeO O O

N
H
62c

Ty
="

N
H
62f

s% 0

OF |9absl [G1uml

0.08 - -
0.25 - -
0.14 - -
0.13 - -
0.06 - -
0.12 - -
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Table 22: Structures and optical properties of 63a—c, 64a,b, 65a—d, and 66.

63a 63b 63c

compound Aabs(max) [Nm] Aem(max) [nm] ®F |9abs] [Gruml

63a - - - - -

63b 570 - - - -

63c 575 - - - -

64a 376 456 - - -

64b 360 456 - - -

65a 401 420, 441 0.30 9.2 x 104 72x 104
65b 414 432, 457 0.08 1.6 x 103 1.1 %1073
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Table 22: Structures and optical properties of 63a—c, 64a,b, 65a—d, and 66. (continued)

65¢c 440 493

65d 420 554

66 388, 431 489

66 (+TFA) 290, 389, 439 555

device AEL(max) [Nnm]  |gEL FWHM [nm]
64a 474 - -

sizing azahelicenes and diaza[8]circulenes 65a—-d [24]
(Table 22). These molecules exhibited distinct Cotton effects
and CPL, with |gjum| reaching up to 1.6 x 1073, This approach
offers a generalizable route to structurally diverse chiral poly-
cyclic aromatic hydrocarbons (PAHs) with strong chiroptical
responses. Concurrently, Tanaka’s group achieved the enantio-
selective synthesis of aza[6]- and aza[7]helicene-like molecules
via Rh(I)/chiral bisphosphine-catalyzed [2 + 2 + 2] cycloaddi-
tion [80]. The resulting S-shaped double aza[6]helicene-like
compound 66 displayed high enantiomeric excess (up to 89%
ee), pronounced chiroptical activity (|gaps| = 0.0054-0.0056),
and substantial ®g of 0.21-0.32 under both neutral and acidic
conditions. This work exemplifies the power of transition-metal
catalysis for constructing enantioenriched helicenes with
tunable photophysical properties. These contributions from
2021 underscore the synthetic versatility and functional diver-
sity of helicene-based systems, spanning electrochromism, ther-
mally activated delayed fluorescence, and circularly polarized
luminescence. Such structural innovations provide valuable
frameworks for the development of next-generation chiral opto-
electronic materials.

In 2022, Furuta’s group developed a one-pot synthetic protocol
to access (NH)-phenanthridinone derivatives and chiral amide-
functionalized [7]helicene-like molecules 67a,b from biaryl
dicarboxylic acids, employing a Curtius rearrangement fol-
lowed by basic hydrolysis [81] (Table 23). Notably, when
chalcogen-containing substrates were used, the process afforded
phosphorus ester derivatives of aza[5]helicenes. The chiral
nature of the products was confirmed by optical rotation and
CD measurements. In parallel, Soni’s group established an effi-
cient three-step synthesis of coumarin-containing hetero[5]- and
[6]helicene-like structures 68a—g in high yields [82]. These
compounds display diverse photophysical behaviors: com-
pound 68d emits yellow fluorescence in both solution and solid
state, exhibiting solvatofluorochromism due to a twisted intra-
molecular charge transfer (TICT) mechanism, while compound
68e emits blue light (Op = 0.37) and demonstrates pronounced
AIE in the solid state. Concurrently, Jiang’s group reported 69b,
the first hetero[4]helicene-type molecule exhibiting both CPL

0.10 7.3 x 1074 26 x 1074
0.02 - -

0.21 5.59 x 103 1.42 x 1073
0.32 498 x 1073 1.38 x 1073
CIE coordinate EQEmax [%]
(0.15, 0.23) 25.4

and TADF [83]. This compound displays a high ®g of 0.51 and
a|guml of 1.2 X 1073. OLED devices fabricated using 69b emit
sky-blue light with a peak EQE of 10.6% and |ggy | values up to
1.6 x 1073, Collectively, these studies demonstrate the versa-
tility of helicene-inspired architectures for constructing multi-
functional chiral optoelectronic materials, highlighting their
growing relevance in next-generation circularly polarized
OLED technologies.

Takizawa and co-workers have pioneered electrochemical
strategies for synthesizing structurally diverse hetero[7]heli-
cenes with tunable chiroptical properties and excellent configu-
rational stability. In 2022, they introduced two electrochemical
routes to construct aza-oxa-dehydro[7]helicenes, yielding
helicenes with high racemization barriers and notable chiral
stability [84]. The quasicirculenes 70a and 70b demonstrated
strong blue CPL activity, with |gym| values of 2.5 x 1073 at
433 nm and 2.4 x 1073 at 418 nm, respectively (Table 24).
Building on this, the team achieved the enantioselective synthe-
sis of heterodehydrospiroenes on a gram scale using chiral
vanadium(V) complexes — marking a significant advancement
in asymmetric electrochemical catalysis. In a complementary
study that same year, they reported a two-step electrochemical
synthesis of a double aza-oxa[7]helicene via oxidative coupling
followed by dehydrative cyclization [85]. The resulting meso-
isomer (P,M)-71 emerged as the major product, exhibiting dual
emission bands at 415 and 440 nm and solvent-independent
absorption at 407 nm. Expanding the structural diversity, the
group developed a two-pot synthesis of unsymmetrical
hetero[7]helicenes 72a—g in 2023 [86], employing p-benzo-
quinone and N-aryl-2-naphthylamines through acid-promoted
cyclization followed by electrochemical domino reactions. This
method produced six compounds with yields ranging from
33-45%, all featuring extended m-conjugation and distinct pho-
tophysical characteristics. Furthermore, they established a mild
electrochemical protocol for synthesizing oxaza[7]helicenes in-
corporating pyrrole and furan units [87]. This method afforded
products in 50-86% yield with Faradaic efficiencies up to 77%.
Among them, derivative 73 exhibited CPL activity
(Ig1uml = 3.0 x 107%), showcasing the ability to modulate chirop-
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Table 23: Structures and optical properties of 67a,b, 68a—g, and 69a,b.

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

N~H
N 5
67a
o.__0 O o0._0
O 7N | 0
SoRoUa®As
OMe NO
68c 68d
compound Aabs(max) [Nm] Aem(max) [nm]
67a — —
67b - —
68a 295 411
68b 309 422
68c 328 439
68d 394 514
68e 320 423
68f 318 389
68g 317 411
69a 397 431
69b 400 446
device )‘EL(max) [nm] |gE|_| FWHM [nm]
69b 488 1.6 x10=3 72

tical responses via heteroatom integration. These studies
underscore the versatility of electrochemical synthesis in
enabling precise structural modulation of heterohelicenes, facil-
itating access to high-performance chiral optoelectronic materi-
als.

In 2023, Zhang’s group introduced a new class of helically
chiral double hetero[4]helicenes 74a and 74b exhibiting

OMe
68b
|
= 2N P yZ N
Y LY
68e 68f 68g
OF |9abs] [G1uml
0.08 - —
0.10 - —
0.03 - —
0.22 - —
0.37 - —
0.01 - —
0.04 — —
0.51 - 1.2x 1078
CIE coordinate EQEnax [%]
(0.17,0.34) 10.6

CP-TADF, constructed on a distinct donor—acceptor core archi-
tecture [88] (Table 25). These compounds demonstrate excel-
lent configurational stability and robust CPL signals both in
solution and in solid-state films, with a |gym| of 3.1 x 1073.
Corresponding CP-OLEDs based on compound 74a achieved
outstanding device performance, reaching a maximum EQE of
20.03% and a |ggg | of 2.9 x 1073 — underscoring their consider-

able potential for advanced chiral optoelectronic applications.
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Table 24: Structures and optical properties of 70a,b, 71, 72a—g, and 73.

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

70b 71
p-tolyl
I
Ar = R1 - N R2 = R3 = R4 =
O D 72d H H H
72a Ph H
o O 72e Bpin H
72b p-tolyl H
72f Ph H H
72¢ p-tolyl H R* O R2
72g H H COOMe
R® 73
compound Aabs(max) [NM] Aem(max) [nm] O [Qabsl |G1uml
70a 402 433 0.25 - 25x 1073
70b - 418 0.16 - 2.4 x 1073
71 407 415, 440 - - -
72a 406 439 - - -
72b 403 440 0.065 - -
72¢ 402 440 - - _
72d 413 450 - - -
72e 401 440 - - -
729 405 440 - - _
73 - - - - 3.0x 104

Building upon this framework, in 2024, the same group de-
veloped a novel cove-region bridging strategy to construct
double hetero[4]helicenes with enhanced structural rigidity and
persistent chirality [89]. By selectively modifying the bay
regions of the SPZ (spiro[fluorene-9,9'-xanthene]) scaffold, they
successfully converted initially non-emissive helicenes into effi-
cient TADF luminophores with tunable emission wavelengths
ranging from sky-blue to deep red. Particularly, the enan-
tiomeric forms of the 75b derivatives emerged as rare examples
of red-emissive CPL materials. This innovative design ap-
proach offers a versatile and modular platform for engineering
chiral multi-helicene systems with customizable optoelectronic
properties, paving the way for their deployment in next-genera-
tion CPL-active materials and high-performance CP-OLED
devices.

In 2024, Jancafik and co-workers introduced an intramolecular

radical cyclization strategy to synthesize highly luminescent

tetraceno[6]helicenone and its aza analogue 76 [90] (Table 26).
The incorporation of a carbonyl group into the helicene back-
bone substantially enhanced fluorescence quantum yields and
red-shifted the emission into the visible region. The aza ana-
logue demonstrated promising performance in OLEDs,
confirming its potential for optoelectronic applications. Concur-
rently, Shirinian’s group synthesized a series of nitrogen-func-
tionalized quinoline (NFQ)-based aza-oxa[5]helicenes 77a—f
exhibiting excellent UV stability and solvent-dependent fluores-
cence [91]. Protonation significantly enhanced their emission
intensity, and the presence of nitrogen facilitated further struc-
tural derivatization. In the same year, Alcarazo’s group re-
ported an enantioselective gold-catalyzed synthesis of com-
pound 78, achieving a high enantiomeric excess [92]. They
further investigated various post-synthetic modification strate-
gies, demonstrating their potential for application in chiral
photonic materials. Collectively, these advances underscore the

power of structural tailoring, heteroatom incorporation, and en-
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Table 25: Structures and optical properties of 74a,b and 75a—c.

tBu Sj©/t-8u

compound Aabs(max) [Nm] Aem(max) [Nnm]
74a 406 493

74b 357 450

75a 612 -

75b 495 656

75¢ 436 480

device AEL(max) [nm] l9eLl
(M,M)-74a 500 2.9 x10-3
rac-74a 500 -

aDetected as 20 wt % doped films with the mCBP host.

antioselective strategies in finely tuning the photophysical and
chiroptical properties of helicenes, providing a versatile founda-
tion for the development of high-performance chiral optoelec-
tronic materials.

Conclusion

Nitrogen-doped helicenes and their heteroatom co-doped ana-
logues constitute a rapidly advancing class of chiral m-conju-
gated materials, distinguished by exceptional structural
tunability, photophysical diversity, and chiroptical functionality.
The integration of nitrogen — and its synergistic pairing with
heteroatoms such as boron, oxygen, sulfur, and selenium — has
significantly expanded the molecular design space, enabling
precise control over redox behavior, emission wavelength, CPL,
and responsiveness to thermal or redox stimuli. These hetero-
atom modifications have led to remarkable breakthroughs, in-

cluding near-unity PLQYs, ultranarrow emission bands, |gjuml

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

t-Bu

t-Bu
\__/
LTRSS U8 W
\ /S
75c¢c
®F |9abs] G1uml
0.13/0.672 - 3.1 x 10732
0.07/0.222 — _
0.02 - 2.7 x 1073
0.09 - 2.5 x 1072
FWHM [nm] CIE coordinate EQEmax [%]
82 (0.24, 0.50) 20.03
81 (0.24, 0.49) 20.00

values exceeding 1073, and unprecedented Bcpy , particularly in
the visible to near-infrared (NIR) spectral regions.

Recent advances in synthetic methodology — including electro-
chemical, Scholl-type, and enantioselective catalytic strategies —
have further enabled access to structurally complex helicene
topologies with enhanced configurational stability and inte-
grated multifunctionality. These developments have facilitated a
growing range of applications in CP-OLEDs, molecular
sensing, chiral switches, and photonic devices. Moving forward,
key challenges remain, such as mitigating spectral broadening
in red/NIR emission, enhancing the chemical and photostability
of electron-deficient helicenes, and developing sustainable,
scalable synthetic approaches. The integration of computational
design with multifunctional molecular engineering is expected
to accelerate the deployment of helicene-based materials

in next-generation technologies spanning chiral optoelec-
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Table 26: Structures and optical properties of 76, 77a—f, and 78.2

Beilstein J. Org. Chem. 2025, 21, 1422—-1453.

77d T7e 77f 78
compound Aabs(max) [Nm] Aem(max) [nm] OF
76 483 561 0.43
77ain CHCI3 352 379, 399 0.39
77b in CHCl3 359 379, 392 0.04
77c in CHCI3 360 397 0.08
77d in CHCl3 362 390, 403 0.09
77ain heptane 347 388 0.21
77e in heptane 348 391 0.20
77f in heptane 348, 358 383 0.19
77ain toluene 352 394, 421 0.56
77e in toluene 353 380, 400 0.44
77f in toluene 353 388 0.28
77a in acetonitrile 348 375 0.48
77e in acetonitrile 348 383 0.48
77f in acetonitrile 349 391 0.42
77a in methanol 351 383 0.48
77e in methanol 349 391 0.47
77f in methanol 352 396 0.27
device AEL(max) [nm] lgeLl FWHM [nm] CIE coordinate EQEmax [%]
76 580 - 103 - 0.15
76:MADN 95:5 550 - 93 - 0.7

aNo gabs OF glum Values were reported, no optical characterization for 78.

tronics, bioimaging, spintronics, and quantum information

science.
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