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Abstract
The mild and selective functionalization of carbon–hydrogen (C–H) bonds remains a pivotal challenge in organic synthesis, crucial
for developing complex molecular architectures in pharmaceuticals, polymers, and agrochemicals. Despite advancements in
directing group (DG) methodologies and computational approaches, predicting accurate regioselectivity in C–H activation poses
significant difficulties due to the diversity and complexity of organic compounds. This study introduces a novel quantum
mechanics-based computational workflow tailored for the regioselective prediction of C–H activation in the presence of DGs.
Utilizing (semi-empirical) quantum calculations hierarchically, the workflow efficiently predicts outcomes by considering
concerted metallation deprotonation mechanisms mediated by common catalysts like Pd(OAc)2. Our methodology not only identi-
fies potential activation sites but also addresses the limitations of existing models by including a broader range of directing groups
and reaction conditions while maintaining moderate computational cost. Validation against a comprehensive dataset reveals that the
workflow achieves high accuracy, significantly surpassing traditional models in both speed and predictive capability. This develop-
ment promises substantial advancements in the design of new synthetic routes, offering rapid and reliable regioselectivity predic-
tions that are essential for accelerating innovation in materials science and medicinal chemistry.
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Introduction
The activation and functionalization of carbon–hydrogen (C–H)
bonds represent a fundamental challenge in modern organic
chemistry, particularly because of the inherent stability and
prevalence of these bonds in organic molecules. These bonds,
which typically exhibit bond energies ranging from 90 to
110 kcal·mol−1, constitute the majority of bonds in organic

chemicals. Therefore, their selective functionalization is essen-
tial for advancing the synthesis of complex molecules like phar-
maceuticals, polymers, or agrochemicals [1-3].

Advancements in organometallic catalysis have facilitated sig-
nificant progress in this area through C–H activation, trans-
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Figure 1: Overview of the predictive workflow: For the shown substrate on the left, three unique activation sites are possible (labelled “Ha−c” with two
directing groups, a pyridine (blue) and an oxime-ether (red) group. The latter has two potentially directing atoms, nitrogen and oxygen. The transition
state structures of the rate-determining concerted metallation deprotonation (CMD) step are shown in the left column. In this work, we generate the
structures of the proceeding palladacycle intermediate, shown in the right column. For each structure, we perform a conformer search followed by a
low-level optimization (GFN1-xTB) followed by an optional higher-level single-point calculation (r2SCAN-3c). The lowest-energy complex is selected,
and the corresponding reaction site is considered to be most likely to be activated, marked in green.

forming these inert bonds into reactive carbon–transition metal
(C–M) bonds. Subsequent transformations of these complexes
enable the formation of an array of new functional groups, such
as carbon–carbon and carbon–heteroatom bonds, underpinning
a plethora of synthetic applications.

Nevertheless, the high prevalence of C–H bonds in organic
compounds presents a substantial challenge in achieving site-
specific functionalization. A principal strategy to circumvent
this challenge leverages directing groups (DGs) within the sub-
strate, which coordinate to the metal centre of the catalyst,
thereby dictating the site of C–H activation. Common DGs
include unsaturated heteroatoms and alkenyl groups, which
have proven effective in guiding the regioselectivity of these
reactions [4].

Mechanistic studies with palladium(II) acetate (Pd(OAc)2) as
catalyst support the following mechanism of C–H activation,
called concerted metal deprotonation (CMD) [5-7]. In a
concerted mechanism, the Pd atom of the catalyst forms a sigma
bond to an aromatic carbon, which increases the acidity of the
adjacent (alpha) proton. This allows for the simultaneous

abstraction of this proton by a carboxylate ligand. A directing
group facilitates this step as it stabilizes the complex through
coordination to the Pd atom, thereby lowering the reaction
barrier. A depiction of the CMD step is shown in Figure 1.

Upon C–H bond breaking, the Pd atom moves into the plane of
the aromatic ring, forming a palladacycle intermediate and
carboxylic acid. The palladacycle intermediate can undergo
further (coupling) reactions and form a variety of products via
reductive elimination. In previous studies, the rate- and regiose-
lectivity-controlling step was identified as the formation of the
palladacycle [5-7]. The regioselectivity could be correctly pre-
dicted by calculation and comparison of the activation barrier of
this step by Davies and colleagues [8]. Hence, the reaction site
for which the activation barrier is the lowest is predicted to be
the most probable one. Tomberg et al. [9] established that the
regioselectivity could be predicted by calculation and compari-
son of the relative energies of the proceeding palladacycle inter-
mediate, as postulated in the Bell–Evans–Polanyi (BEP) prin-
ciple [10,11]. Focussing on the intermediates allows for easier
automation of the calculations since a minimum instead of a
saddle point structure on the potential energy surface is located,
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which can be done straightforwardly using standard optimiza-
tion algorithms.

While the use of intermediate energies provides a computation-
ally efficient alternative to explicit transition state searches, it
rests on the assumption that there is a meaningful correlation
between thermodynamic stability and kinetic accessibility, as
expressed by the BEP principle. Although this principle has
been successfully applied in many cases, the correlation be-
tween reaction energies and activation barriers is often imper-
fect. For instance, studies on hydrogen atom transfer and cyclo-
addition reactions have reported correlation coefficients (R2) of
around 0.7 at best, indicating significant deviations from ideal
behaviour [12,13]. This means that even when intermediate
energies are accurately computed, the predicted regioselectivity
may still carry a degree of uncertainty, which needs to be
considered when applying BEP-based models to complex
systems.

Tomberg et al. [9] introduced a hierarchy of directing strength
for 238 different ortho-DGs, which can be used to rapidly
predict the regioselectivity of C–H activation in complex mole-
cules. The 238 directing groups are extracted from 150 mole-
cules, taken from Chen et al. [4], for which reaction sites are
known from experiments. For each directing group, the energy
of the palladacycle intermediate with H-abstraction at a specific
site is calculated using B3LYP-D3/LACVP** (6-31G**, except
on heavy atoms where effective core potential was used) in
CH2Cl2, and compiled into a hierarchical list for the determina-
tion of the reaction site with the lowest energy. Using the hier-
archy, the regioselectivity of C–H activations could be rational-
ized for the 150 molecules with remarkable accuracy. While
this approach performs well on this dataset, it does not gener-
alize well to other molecules since not all relevant DGs are
covered in the work by Tomberg and colleagues [9]. This is evi-
denced by our analysis using a dataset curated from Reaxys.
Using our implementation of the method presented by Tomberg
et al. [9] (for further details see section “Pattern matching”), we
could only obtain correct predictions for four out of ten mole-
cules, see section “Dataset curated from Reaxys”. This under-
scores the necessity for more robust and versatile predictive
models that can adapt to the broad spectrum of organic chem-
istry’s structural variability.

Cao et al. [14] developed an automated workflow that predicts
the regioselectivity of C–H activations using extensive DFT
calculations on a HPC cluster using up to 600 nodes, each con-
taining 16 Intel Xeon E5-2670 cores. They considered two
possible reaction mechanisms, an electrophilic aromatic substi-
tution and a proton abstraction mechanism via CMD, where
they calculated the relative energies of the intermediates. Using

their workflow, they were able to predict correctly the regiose-
lectivity for 18 tested substrates. The main limitation of this
work is the computational cost and usability since several DFT
calculations need to be run on an HPC cluster in order to make
a prediction.

In this study, we introduce a quantum mechanics (QM)-based
computational workflow specifically developed to predict regio-
selectivity in C–H functionalization reactions involving
directing groups following the CMD mechanism. This work-
flow employs (semi-empirical) quantum calculations in a hier-
archical way to predict regioselective outcomes, delivering
results within seconds to minutes. For substrates that are ex-
pected to follow the electrophilic aromatic substitution mecha-
nism without the influence of DGs, we refer the reader to
previous work done by Kromann et al. [15] and Ree and
colleagues [16,17]. The there developed RegioSQM predicts the
regioselectivity of reactions following the electrophilic aromat-
ic substitution mechanism within seconds to minutes using a
web interface or a Python module [18].

Similarly to previous works [9,14], we focus on the CMD step,
the first and commonly the rate-determining step in C–H activa-
tion, and consider the prototypical Pd(OAc)2 catalyst. Using a
selective approach, we calculate the relative energies of all rele-
vant palladacycle intermediates using QM methods. We deter-
mine the relevant reaction sites either by a set of SMART
patterns or by screening all possible reaction sites using the
Merck molecular force field calculated ring strain energy, for
details see section “Beyond ortho-directing groups”. This
restriction allows us to rapidly predict the regioselectivity for
C–H activations via the CMD mechanism within seconds to
minutes on standard consumer hardware. The workflow accom-
modates various DGs and reaction conditions and can be ex-
tended to include not only ortho activations, as detailed in
section “Results”.

This development holds the potential to significantly accelerate
the discovery and optimization of new synthetic routes, thereby
impacting materials science and medicinal chemistry by facili-
tating the synthesis of novel compounds with high precision and
efficiency.

Pattern Matching
Tomberg et al. [9] assembled a look-up table with 238
SMARTS patterns to compare the relative strength of different
DGs and to determine which DG would yield the major prod-
uct. This look-up table is convenient when dealing with a few
molecules, but it quickly becomes cumbersome when exam-
ining lots of molecules. Thus, to make the work of Tomberg et
al. [9] more accessible, we implemented a simple program that
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Table 1: Details on the results shown in Figure 2. The matched SMARTS patterns are sequentially sorted according to the number of heavy atom
matches, the sum of atomic numbers of the heavy atom matches, and the DG strength associated with the SMARTS pattern.

Atom ID SMARTS Number of heavy atoms Sum of atomic numbers DG strength [kcal·mol−1]

1 [cH1]cC(N(C)A)=O 7 45 −2.7
1 [cH1]cC(N([C,c])[C,c])=O 7 45 −2.5
1 [cH1]cCN(C)C 6 37 −14.3
2 [cH1]c-C(=O)c 5 32 −1.7
3 [cH1]c-C(=O)c 5 32 −1.7
4 [cH1]c-C(=O)c 5 32 −1.7
5 [cH1]c-C(=O)c 5 32 −1.7
6 [cH1]cC(N(C)A)=O 7 45 −2.7
6 [cH1]cC(N([C,c])[C,c])=O 7 45 −2.5
6 [cH1]cCN(C)C 6 37 −14.3

given a SMILES string goes through all of the SMARTS
patterns to find matches, sorts the matches, and returns a visual
output of the result. The algorithm sequentially sorts according
to the number of heavy atom matches, the sum of atomic
numbers of the heavy atom matches, and the DG strength
associated with the SMARTS pattern. Hence, it favours
SMARTS patterns that are most specific in terms of most atom
matches, patterns with atoms having higher atomic numbers
(matching a nitrogen atom is given a higher priority than
matching a carbon atom), and the lowest DG strength if the
other two priorities are unambiguous. Figure 2 and Table 1
show examples of the results from running the program with
“CCCN(C)C(=O)c1ccc(C(=O)c2ccccc2)cc1” as the input
SMILES string. The sites marked with red indicate the pre-
dicted reaction sites.

Figure 2: Example of the output from running the SMARTS pattern ap-
proach introduced by Tomberg et al. [9] with the predicted reaction site
marked in red. All sites with a SMARTS pattern match are highlighted
with Atom ID and DG strength in kcal·mol−1. For more details on the
matched SMARTS patterns see Table 1.

The advantage of this pattern matching approach is that the
method is extremely fast, as high-level QM calculations on
structurally similar molecules are precalculated and stored in a
database. However, the method also has some pitfalls, like how
much structural information is needed in the SMARTS pattern
to ensure that patterns are general enough to match new mole-
cules but specific enough to only match DGs with similar DG
strength. A choice that indeed affects how the SMARTS

patterns should be prioritized if several of them match the same
DG or reaction site.

As previously described, we decided to sequentially sort the
matched SMARTS patterns according to the number of heavy
atom matches, the sum of atomic numbers of the heavy atom
matches, and the DG strength associated with the SMARTS
pattern. This gave results that were in line with Tomberg et al.
[9], although, for a few examples our algorithm resulted in more
specific SMARTS patterns matching the DG. For example,
Figure 3a shows the result from Tomberg et al. [9], which does
not include the carbonyl oxygen in the SMARTS pattern match
although the pattern marked in red in Figure 3b is part of the
database. This example also highlights that in some cases the
QM results are quite sensitive towards small structural changes.

Figure 3: An example where our algorithm found a more specific
SMARTS pattern match than highlighted in Tomberg and colleagues
[9]. The matching SMARTS pattern from Tomberg et al. [9] is shown in
(a), whereas our algorithm resulted in the match shown in (b).

Another example that highlights the difficulties in prioritizing
the SMARTS patterns is shown in Figure 4. The site marked
with an arrow has three matching SMARTS patterns, which are
sorted from left to right in accordance with our priority rules.
The first two patterns result in quite different DG strengths,
whereas the first and last patterns have similar DG strengths. In
this case, the first pattern is really important as the assigned DG
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Figure 4: An example highlighting the difficulties in prioritizing the SMARTS patterns. All three patterns match the same site marked with the black
arrow.

strength would otherwise have been completely different than
intended.

Computational Methodology of the QM
Workflow
The here developed predictive QM-based model calculates
which potential reaction site is most likely to react based on its
corresponding reaction energy. Following the BEP principle,
the relative energy of the intermediate should correlate linearly
with the energy of the transition state [10,11]. The site with the
lowest reaction energy is expected to correspond to the experi-
mentally observed reaction site. Therefore, instead of locating
the structure of the transition state, the preceding palladacycle
intermediate structure is generated and optimized, as shown in
Figure 1. Using this approximation the generation and optimiza-
tion of structures simplifies greatly. In an automatized work-
flow, all unique and possible combinations of C–H bonds and
ortho-directing groups (heteroatom with lone pair) in the sub-
strate are found following this procedure:

1. All combinations of C–H bonds from sp2-hybridized C atoms
and directing groups (heteroatom with lone pair) in the sub-
strate, which are between two and five bonds apart from each
other, are detected with SMART patterns. These patterns are
general enough to cover all directing groups that were encoun-
tered in the literature sample from Chen and colleagues [4].

2. Next, we identify all relevant palladacycle complexes
involved in the C–H activation facilitated by ortho-directing
groups. For each match, a model complex is constructed con-
taining the substrate and a Pd atom. In this complex, the Pd
atom is bonded to the carbon at the reaction site and to the
heteroatom of the directing group, as illustrated in Figure 5. To
assess the geometry of these complexes, we generate a 2D
structure using RDKit, where all atoms are constrained to lie in
a single plane. Although this type of 2D embedding is typically

used only for visualisation, it provides a quick way to screen for
unrealistic geometries. We then measure the internal bond
angles within the ring formed by the Pd atom, the directing
group’s heteroatom, and the reactive carbon atom in the 2D
structure. If any of these angles deviates by more than 10%
from the ideal planar angle expected for a ring of Natoms atoms,
the match is discarded. The ideal angle is given by
[(Natoms − 2)·180°]/Natoms. This allows us to filter out com-
plexes with strained geometries, such as the one shown on the
left in Figure 5, using a simple approach.

Figure 5: Example of a combination of C–H bond and DG that is
discarded because of the angle constraint on the left and a combina-
tion that is considered valid on the right.

3. Duplicate matches are removed when the reaction site is
symmetric (Figure 6). Symmetry-equivalent sites are deter-
mined by comparison of the canonical SMILES for the sub-
strate with an explicit hydrogen atom added to the correspond-
ing reaction site. When two SMILES with an added explicit
hydrogen at different atom indices are identical, then the corre-
sponding atoms are symmetry-equivalent.

Figure 6: Example of combinations of C–H bonds and DGs that are
considered identical because of symmetry of the C–H bond.
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4. Duplicates are removed when the directing group is symmet-
ric (Figure 7). Again, symmetry-equivalent atoms are deter-
mined by comparison of SMILES strings. Here, a bond to a
dummy atom is added to the heteroatom of the directing group,
and the canonical SMILES representation is compared to all
other SMILES with an added dummy atom.

Figure 7: Example of combinations of C–H bonds and DGs that are
considered identical because of symmetry of the DG.

5. Duplicates are removed when the directing group has equiva-
lent resonance forms, as shown in Figure 8. The equivalent
heteroatoms are detected using SMARTS patterns for nitro and
carboxylate groups.

Figure 8: Example of combinations of C–H bonds and DGs that are
considered identical because of resonance structures of the DG.

For the remaining combinations of C–H bonds and
directing groups, the corresponding intermediate sub-
strate–Pd(OAc)–complex is generated. For each complex
3Nrot + 3 conformers are generated with ETKDG; here Nrot is
the number of rotatable bonds in the substrate [19,20]. The
conformers are clustered based on their RMSD with a cutoff of
1.0 Å, and the conformer corresponding to the centroid of each
cluster is retained. The remaining conformers of each complex
are optimized using GFN1-xTB in the implicit solvent model
ALPB with parameters for CH2Cl2[21,22].

After each optimization, the geometry of the complex is
analysed to determine whether the connectivity has changed.
The connectivity of the complex before and after optimization
is compared only for bonds not involving the transition metal
since the determination of bonds to transition metals is prone to
errors. Instead, the geometry of the four atoms adjacent to the
transition metal (the two oxygen atoms from the acetate moiety,
the carbon atom from the reaction site, and the heteroatom from
the directing group) is analysed without regard for connectivity.

All four atoms have to lie within a plane after the optimization
for the optimization to be considered successful. This is deter-
mined by calculating the angle between the normal vectors of
the plane spanned by Pd, the reaction site and the heteroatom of
the directing group and the plane spanned by Pd and the two
oxygen atoms of the acetate moiety. This angle has to be below
5° for the atoms to be considered to be within a plane.

Once all calculations for all conformers of all complexes are
completed, the complex with the overall lowest-energy
conformer is selected, and its corresponding reaction site is
considered the most likely to react. All complexes that have
conformers within a defined energy threshold of the overall
lowest-energy conformer are considered to correspond to poten-
tial reaction sites; for this study, we choose a threshold of
1 kcal·mol−1.

When several complexes with conformers within the energy
threshold are found and the corresponding reaction site differs
between the complexes, we allow the user to refine the predic-
tion by running r2SCAN-3c single-point calculations on the
lowest-energy conformer of each complex within the energy
threshold using ORCA [23,24]. This allows us to refine the pre-
dicted binding sites at a higher level of theory when this is re-
quired.

Results
In the following, we tested our method on the dataset from
Tomberg et al. [9] as well as on a new dataset that was curated
from Reaxys [25]. In the evaluation, we considered the three
categories “correct”, “semi-correct”, and “incorrect”. When the
experimentally observed reaction site is the only reaction site
that is predicted within the energy cutoff, the prediction is
considered correct. When the experimentally observed reaction
site is not the only reaction site that is predicted within the
energy cutoff, the prediction is considered semi-correct, since
we cannot distinguish beyond what is considered the chemical
accuracy. When the experimentally observed reaction site is not
one of the predicted sites, the prediction is considered incorrect.

Dataset from Tomberg et al.
We consider 142 molecules with their experimentally deter-
mined reaction site from Tomberg et al. [9], which were origi-
nally curated by Chen et al. [4]. We are excluding cyclization
reactions for which the regioselectivity is not only determined
by the activation energy to form the palladacycle intermediate
but also by which site is accessible for the intramolecular cycli-
zation.

Using the previously described workflow, we were able to
predict the experimentally observed reaction site with 78%
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Figure 9: A: Distribution of correct (green) and wrong (red) predictions for molecules with two to five potential reaction sites, evaluated with an energy
threshold of 0.0 kcal·mol−1. The numbers inside the bar plot correspond to the fraction of each label out of the total number of predictions. The ex-
pected performance of the null model with a 95% confidence interval is shown as a black cross. B: Distribution of correct (green), semi-correct
(yellow), and wrong (red) predictions for the same molecules, evaluated with an energy threshold of 1.0 kcal·mol−1.

Figure 10: Molecules with five potential reaction sites that are predicted wrong by the QM workflow. The experimentally observed and computation-
ally predicted reaction sites are marked by green and blue circles, respectively.

accuracy over the whole dataset when using no energy
threshold, meaning that only the reaction site corresponding to
the lowest-energy complex is predicted to be the reaction
centre. In Figure 9A, the predictions, correct (green) or wrong
(red), are shown as a stacked bar chart for molecules with dif-
ferent numbers of potential reaction sites. The expected number
of correct predictions and the 95% confidence interval of a
model that guesses one of the potential reaction sites at random
is shown as a black cross.

For molecules with only two potential reaction sites, the null
model, which picks reaction sites randomly, is expected to
correctly predict the reaction site for 30 out of 60 molecules.
Our QM-based workflow can predict the correct reaction site
for 54 out of 60 molecules with two potential reaction sites,
which corresponds to 90% correct predictions and lies outside

of the confidence interval of the null model. Similarly, for mol-
ecules with three and four potential reaction sites, the QM
workflow predicts 73% and 67% of the reaction sites correctly,
when we would expect the null model to guess the correct reac-
tion site with an accuracy of 33% and 25%, respectively.
Notably, the QM workflow predicts the correct reaction site for
only four out of seven molecules with five potential reaction
sites, which corresponds to 57% accuracy. The three molecules
with five potential reaction sites and wrong predictions are
shown in Figure 10 with the experimentally observed reaction
site in green and the predicted reaction site marked by a blue
circle.

For molecule 1, we can see in the original paper from Yeung et
al. [26] that the reaction preceding the C–H activation is an
intramolecular cyclization between the C atom marked in green
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and the C atom marked by a blue circle. This reaction was origi-
nally not labelled as a cyclization reaction, which is why we did
not remove it from the dataset. Nevertheless, upon inspection,
our QM workflow correctly predicts the reaction site(s) of the
intramolecular cyclization as it predicts one of the two reaction
sites for the C–H activation.

The reaction site of molecule 2 from Dong et al. [27] cannot be
predicted correctly as the experimentally observed reaction site
is 1.7 kcal·mol−1 higher in energy than the predicted site at the
r2SCAN-3c level. This would correspond to a ten times higher
rate constant of the reaction leading to the other regioisomer at
the reaction temperature of 90 °C. Experimentally, it is ob-
served that the regioselective C–H activation happens on the
more electron-rich aromatic ring with the methoxy substituent
as opposed to the one with the alkoxycarbonyl group. The
wrong prediction here might indicate that the BEP relationship
does not hold in this case and one would need to calculate the
activation energy of the actual transition states.

Molecule 3 from Jiang et al. [28] is another intramolecular
cyclization reaction which was not labelled as such. For such
reactions, the regioselectivity is not only determined by the acti-
vation energy for the rate-determining step but also by the prox-
imity of an intramolecular reaction partner, here the secondary
amine.

From this in-depth analysis, we conclude that our QM work-
flow only predicted the wrong reaction site for one out of
these three molecules investigated as the other “incorrect”
predictions are due to a problem with the underlying dataset.

Since we do not assume that the energies obtained at the
r2SCAN-3c(CPCM)//GFN1-xTB(ALPB) level are accurate
enough to separate regioisomers which are close in energy, we
consider all reaction sites that are within a threshold of
1 kcal·mol−1 of the lowest-energy reaction site as potential reac-
tion sites. This threshold was chosen based on the tradeoff be-
tween reducing the number of wrong predictions while simulta-
neously minimising the number of semi-correct predictions. The
fraction of each prediction class (correct, semi-correct, wrong)
as a function of the evaluation threshold is shown in Figure S1,
Supporting Information File 1. Here, one can see that the num-
ber of wrong predictions is reduced by more than 30% when
using an evaluation threshold of 1 kcal·mol−1 while the number
of correct predictions only decreases by 10%. When more than
one reaction site is within this threshold, we label the predic-
tion as “semi-correct”. Depending on the use case, the user
might want to proceed with optimizing the structures of the
relevant complexes at a higher level of theory or perform a tran-
sition state search to calculate the activation energy. With this

threshold, we obtain 70% correct, 14.5% semi-correct, and
14.5% wrong predictions over the whole dataset. For six out of
17 molecules, all possible reaction sites are predicted as reac-
tion sites within the threshold as shown in Figure S7, Support-
ing Information File 1. This means that these predictions do not
yield any information, but for the other cases, the prediction
rules out other potential reaction sites.

We implemented the approach presented by Tomberg et al. [9]
which predicts the reaction site based on pre-computed relative
energies at DFT level of theory for a selection of C–H bonds
that are identified using SMARTS patterns. Using this ap-
proach, we achieved an accuracy of 92% with a total runtime of
less than one second.

Dataset curated from Reaxys
From a query in Reaxys (see Supporting Information File 1,
section “Reaxys Query for C–H activation”), we selected 10
C–H activation reactions with Pd(OAc)2 as the catalyst and
multiple DGs and/or symmetry-nonequivalent reaction sites.
Using our QM workflow, we were able to predict the regiose-
lectivity of nine out of ten molecules (semi-)correctly. Five
reaction sites were predicted to be within 1 kcal·mol−1 of
another possible reaction site in the reactant and were therefore
classified as semi-correct, meaning we cannot predict with our
model which of the two regioisomers will be the main product
of the reaction. Refinement using r2SCAN-3c single-point
calculations did not result in better agreement with experimen-
tal observations.

The ten molecules with their experimentally observed main
reaction site in green and all predicted reaction sites within
a 1 kcal·mol−1 threshold as a blue circle are shown in Figure 11.

Using the previously mentioned approach following Tomberg et
al. [9], we were able to obtain four out of ten correct predic-
tions. This is slightly worse than a null model that guesses the
reaction site at random, which would yield an accuracy of 0.46.
This can be attributed to the fact that no data is available for
several relevant C–H bonds in these ten molecules. For
three out of the ten molecules, no pre-computed data for any of
the C–H bonds was available, therefore, no prediction can be
made.

Beyond ortho-directing groups
Here we showcase how the workflow can be extended for the
application of the workflow to a substrate with a meta-directing
group. The substrate was investigated by Achar et al. [29], and
the reaction site was determined by the authors to be the H2

with a meta/other regioselectivity of up to 25:1 and a yield up to
85% (Figure 12).
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Figure 11: Predictions of reaction sites within a 1 kcal·mol−1 threshold for ten molecules are marked with a blue circle, and experimentally observed
reaction sites are highlighted by a green circle.

Figure 12: Substrate with six potential unique reaction sites for C–H
functionalization. The experimentally determined reaction site is
marked by a green circle, the computationally predicted one is marked
by a blue circle.

In order to extend our approach to meta-/para- and remote-
directing groups, we use a different approach to identify rele-
vant palladacycle complexes as in points 1. and 2. outlined in
the section “Computational Methodology of the QM Work-
flow”. Instead of using SMARTS patterns to detect pairs of
ortho-directing groups and reaction sites, we detect all potential
reaction sites by detecting all C–H bonds at sp2-hybridized car-
bon atoms as well as all heteroatoms with lone pairs separately
and remove symmetry-equivalent sites. Then, we obtain all

potential pairs of C–H bonds and heteroatoms as the Cartesian
product of the two sets. Next, we filter out all pairs for which no
reasonable 3D geometry can be generated. To determine
whether or not a pair of C–H bond and heteroatom can form a
reasonable 3D geometry, we generate a 3D geometry of a
dummy “palladacycle” intermediate between the substrate and a
CCl2 fragment using ETKDG. The CCl2 fragment is used to
mimic the Pd(OAc)2 catalyst, which cannot be used since the
following step relies on the Merck molecular force field
(MMFF, version MMFF94s), which is not parameterized for
transition metals like Pd [30,31]. If the embedding fails, the cor-
responding pair is removed. When a 3D geometry could be ob-
tained, we optimized the structure using the MMFF94s. Next,
we calculate the sum of (out-of-plane) angle terms and torsion
terms of the MMFF94s force field for the optimized structure.
The geometry is considered reasonable if the sum of the angle
and torsion terms is below a threshold of 10 kcal·mol−1. From
here on, we proceed with the workflow as described in
the section “Computational Methodology of the QM
workflow”.
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For the here considered substrate, this procedure reduces the
number of complexes to optimize with GFN1-xTB from 30 to
nine; the complexes are shown in Figure S2, Supporting Infor-
mation File 1. This procedure involves several force-field opti-
mizations, which increase the overall wall time by ≈10 s for the
here shown substrate compared to the previously reported ap-
proach. From here on, we follow the same procedure as for the
ortho-directing groups and correctly predict the reaction site H2,
which is the only one within the 1 kcal·mol−1 energy threshold
at the GFN1-xTB level.

Discussion
Our study demonstrates that our fully automated QM-based
workflow reliably predicts the reaction site as observed
experimentally with 70% correct predictions and 14.5%
semi-correct predictions on the dataset provided by Tomberg
and colleagues [9]. Analysis of molecules where the reaction
site was incorrectly predicted, particularly those with five
potential sites, revealed that there might be issues with the
underlying data in some cases. When only considering
the lowest-energy reaction site predicted by our workflow,
we were able to achieve an accuracy of 78% on the same
dataset. In contrast, a null model making random guesses would
achieve only 38% accuracy, with a 95% confidence interval
from 36 to 40%, underscoring our workflow’s superior perfor-
mance.

Additionally, we applied the workflow to a new set of ten
molecules, achieving a 90% accuracy rate in predicting C–H
activation sites. We also explored the tool’s capability to
predict regioselectivity in C–H activation with various
directing groups, not limited to ortho-directing groups. By
identifying potential reaction site-directing group pairs
using an approach based on MMFF energies instead of simple
SMARTS patterns, we illustrated the workflow’s effec-
tiveness with a case study from existing literature, accurately
predicting the reaction site in a meta-directing C–H activation
scenario.

Compared to previous work by Tomberg et al. [9], our work-
flow is considerably more compute-intensive to run, since
(semi-empirical) QM calculations are performed. Yet, we are
able to perform predictions on all molecules, not only on mole-
cules for which there is pre-computed data for all the relevant
C–H bonds. This is especially relevant when making predic-
tions on molecules that were not part of the dataset used for the
method development, as highlighted in the section “Dataset
curated from Reaxys”. Even though data for all relevant C–H
bonds from over 150 molecules were pre-computed, the result-
ing molecular patterns are very specific, and the approach does
not generalize well.

In this study, we rely on several key assumptions that we will
outline below. First, we focus exclusively on the regioselective
outcomes of reactions using the concerted metallation deproton-
ation (CMD) mechanism between the catalyst and the substrate.
It is important to note that this approach does not allow us to
predict the occurrence of the reaction, its yield, or confirm if the
reaction might proceed via a different mechanism influenced by
the substrate, catalyst, and ligands. Second, we assume that the
reaction is controlled kinetically, where the activation energy
required to form the palladacycle intermediate determines the
C–H activation regioselectivity. This assumption holds true
primarily when the reaction is irreversible, and the formation of
the intermediate is the rate-limiting step. While previous studies
support this assumption, it may not always apply universally
across various substrates or catalysts [8]. Third, we consider the
linear energy relationship between the intermediate and its
preceding transition state as per the Bell–Evans–Polanyi prin-
ciple. However, this relationship may not provide sufficient
accuracy for making predictions when the energy difference be-
tween reaction sites is less than 1 kcal·mol−1. To enhance the
reliability of our predictions, ideally, we would automate the
process of locating transition state structures.

To enable rapid predictions, ranging from seconds to minutes
on consumer hardware, we employ semi-empirical optimiza-
tions and, when necessary, DFT single-point calculations to
reduce computational costs. In our analysis using the dataset
from Tomberg et al. [9], we recorded median and mean predic-
tion times of 2:02 and 2:21 minutes, respectively, using four
Intel Xeon E5-2643 v3 (3.4 GHz) CPUs. These times were sig-
nificantly reduced to 22 and 34 s when exclusively using semi-
empirical optimizations. The workflow benefits from paral-
lelized QM programs and routines, demonstrating nearly linear
reductions in wall time as the number of cores increases, tested
up to 16 cores. However, for greater accuracy, particularly at
reaction sites with energy differences less than 1 kcal·mol−1,
DFT optimizations are recommended, as they may necessitate
higher-level (re-)optimization for precise predictions.

The primary strength of the QM workflow lies in its flexibility,
which facilitates customization through various means, such as
simulating different solvent effects or examining the impact of
different catalysts and ligands, extending beyond Pd(OAc)2.
Additionally, accounting for varying reaction conditions, like
conducting the reaction in acidic or basic environments, is
possible by adjustments to the substrate-SMILES. Protonation
states of substrates can be predicted using either machine
learning models [32] or QM calculations [33].

This developed workflow is designed to be accessible not only
to computational chemists, but also to those without a computa-
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tional background, through multiple interfaces, including a
command line interface, a web-based user interface, an API,
and a stand-alone Python module for integration into more com-
plex systems. For example, this workflow can be used in further
molecular discovery and optimization to design specific
directing groups that can facilitate the functionalization of
remote C–H bonds, like meta or para functionalization. This
can be done by using the workflow in the scoring function of a
genetic algorithm, for example. Here, the absolute directing
strength towards a specific site can be used to score different
directing groups to each other and have the genetic algorithm
design molecules that increase the directing strength of a
directing group towards a specific site.

While this paper was in review, Oshiya and co-workers
published an ML model that classifies reactants as having
ortho-, meta-, para- or non-directing functionalities for Pd-cata-
lysed directing group-assisted C–H activation [34].

Supporting Information
Supporting Information File 1
Additional computational data.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-21-94-S1.pdf]
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