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Solvent-dependent transformations of polysubstituted 2-acetyl-2,5-dihydrothiophenes to the corresponding 2-hydroxy- or

deacetylated derivatives are described. The treatment of a methanolic solution of the dihydrothiophene substrates with sodium

methoxide afforded the deacylated products. Conversely, the treatment with sodium ethoxide in an oxygen saturated ethanolic solu-

tion produced 2-hydroxy substituted 2,5-dihydrothiophenes.

Introduction

Oxidative transformations are an important area of modern
organic synthesis [1], producing a broad range of valuable syn-
thetic products for the industry. A variety of catalytic reactions
were developed for the oxidative conversions of unsaturated
compounds [2-5], alcohols [6,7], alkanes [8-10] and more com-
plex molecules [11]. Rearrangements of the oxidized com-

pounds are equally important transformations [12].

Oxidation of compounds containing a carbonyl group into
carboxylic acid derivatives can be divided into two large
groups: direct oxidation and oxidative rearrangements. Direct
oxidation of ketones includes C-C-bond cleavage, and
carboxylic acids are predominantly formed. This can be
achieved by the treatment of acyclic ketones with hypohalites

[13], in the nitroarene-catalyzed oxidation with oxygen under
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basic conditions [14] or by the use of hypervalent iodine com-
pounds (Scheme 1A) [15,16].

Oxidative rearrangements of carbonyl compounds are based on
Dakin [17] and Baeyer—Villiger reactions [18] and their modifi-
cations.

Cyclic and acyclic ketones were oxidized to afford lactones and
esters, accordingly, involving catalytic reactions with hydrogen
peroxide [19-22], oxygen [23,24] or with m-CPBA
(Scheme 1B) [25,26] or non-catalytic transformations [27].

The few known oxidative transformations of o- or p-hydroxy-
substituted aromatic ketones, that in most cases lead to phenols,
involve the use of hydrogen peroxide as an oxygen source
(Scheme 1C) [20,25,26]. Bernini et al. have developed a cata-
lytic system, containing hydrogen peroxide/methyltrioxorhe-
nium and an ionic liquid, to oxidize acetophenones to afford
phenols [20]. Junjappat et al. found that hydrogen peroxide acti-
vated by boric acid can act as oxidant for the direct conversion
of aromatic ketones to phenols [25]. Hocking has described the
oxidation of o-hydroxyacetophenone and some benzophenones

the reported approaches for the oxidation of ketones

Beilstein J. Org. Chem. 2026, 22, 192-204.

with an aqueous alkaline hydrogen peroxide solution [26]. The
key steps of oxidation of ketones into phenols include:
a) nucleophilic addition of the hydroperoxide anion to the car-
bonyl carbon; b) [1,2]-aryl migration in the formed tetrahedral
intermediate to afford formate ester; c) hydrolysis of the latter
to form phenols [28].

The development of methods for the construction of hetero-
cycles and their modification is an important area of organic
synthesis [29]. Although the Dakin oxidation has become a con-
venient tool for the preparation of phenols from aromatic ke-
tones, several specific approaches have been developed for the
synthesis of hydroxylated heterocycles [30-34].

The deacylation of ketones is also another important direction
of their transformation [35-38]. Dihydrothiophenes can be
considered as analogs of organic sulfides. Accordingly, in oxi-
dative reactions they are also easily oxidized to the correspond-
ing sulfoxides [39,40]. Despite the fact that the synthetic appli-
cations of dihydrothiophenes are being actively studied [39-46],
their oxidative functionalization that does not disrupt the hetero-

cycle or oxidize sulfur has not been previously reported.
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Scheme 1: Previous reports (A—C) and our work (D, E).
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Dihydrothiophenes exhibit a broad spectrum of biological activ-
ity [47-49]. In this regard, the development of new routes for
their modifications with the use of inexpensive and easily avail-

able reagents is an important task.

Recently, we have developed a copper(l)/rhodium(Il)-catalyzed
method toward two types of regioisomeric 2,5-dihydrothio-
phenes 1 and 4, containing an acetyl group [50]. In this work, to
evaluate the synthetic utility of these compounds (the scope is
presented at page S3 of Supporting Information File 1) we have
studied their transformations in ethanolic or methanolic
solutions in the presence of sodium ethoxide or methoxide,
accordingly. As a result, catalyst-free oxidation under mild
conditions of 2-acetyl-2,5-dihydrothiophenes into 2-hydroxy-
substituted products (Scheme 1D) or the deacetylated products
(Scheme 1E) have been developed.

Results and Discussion
Dihydrothiophene 1a was selected as a model substrate for our
optimization study (Table 1).

Table 1: Optimization of the transformation of dihydrothiophene 1a.2
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Initially, this compound was treated in ethanolic solution
(2 mL) at room temperature in air for 1 h in the presence of so-
dium ethoxide prepared from 1 equiv of sodium. After the reac-
tion had completed, the reaction solution was concentrated
under reduced pressure and the residue was quenched with
water and extracted with dichloromethane (DCM). Centrifuga-
tion of the concentrated extract in Et,O afforded a mixture of
products 2a and 3a in 22 and 36% yields, accordingly (Table 1,
entry 1). When the loading of sodium was increased to
2.0 equiv, the yield of deacylated product 3a was slightly de-
creased to 27% (Table 1, entry 2). 2-Hydroxy-substituted dihy-
drothiophene 2a was formed additionally in comparable yield
(21%, Table 1, entry 2). When acid (HCl) was added after
quenching the residue with water, the yields of products 2a and
3a were increased (30 and 35%, Table 1, entry 3).

The selective formation of 2-hydroxy-2,5-dihydrothiophene 2a
in 41% yield was achieved when using 5 equiv of sodium and
0.25 mL of HCI (Table 1, entry 4). In the oxygen saturated solu-

tion, the product 2a was obtained with increased yield (51%,

in ethanol

NC NC
i/ conditions /i
NSNS = NS s
O\) Ac NH o\) HO NH
O Ph Ph
1a 2a 3a
Entry [M] or base Solvent [O] Acid (mL) Yields of 2a/3a,
(equiv) (mL) %

1 Na (1) EtOH (2) Os - 22/36°
2 Na (2) EtOH (2) Os - 21/27°
3 Na (2) EtOH (2) (o) HCI (0.25) 30/35P
4 Na (5) EtOH (2) (o) HCI (0.25) 41/0
5 Na (5) EtOH (2) Oy HCI (0.25) 51/0°¢
6 Na (5) EtOH (2) O - 28/trace
7 Na (5) EtOH (2) (o) HCI (0.25) 44/0%d
8 Na (5) MeOH (2) O HCI (0.25) trace/71¢
9 Na (5) MeOH (2) Oy HCI (0.25) 0/78
10 Na (5) iPrOH (2) (o) HCI (0.25) 35/0°¢
11 Na (5) n-BuOH (2) (o) HCI (0.25) 46/0¢
12 Na (5) TFE Oy HCI (0.25) 0/75
13 NaOH (5) EtOH (2) 38% H205 (0.5) - 0/62¢

aConditions: dihydrothiophene 1a (0.12 mmol), dry solvent, [M] or base, rt, 1 h. Water (2 mL) or/and acid were added after evaporation of solvent. Iso-
lated yields after centrifugation in Et,O (2 x 1 mL). PProducts were isolated as a mixture. c<Oxygen was bubbled (1 min) after Na dissolving. 9ice bath.

TFE — trifluoroethanol.
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Table 1, entry 5). When no acid was added, product 2a was iso-
lated in decreased yield (28%, Table 1, entry 6). Conducting the
reaction in the oxygen saturated ethanolic solution at 0 °C
afforded product 2a in a slightly decreased yield (44%, Table 1,
entry 7). To our surprise, when ethanol was replaced with meth-
anol, the deacylated product 3a was isolated as the major prod-
uct in 71% yield (Table 1, entry 8). In this case, dihydrothio-
phene 2a formed only in a trace amount. In contact with air this
reaction proceeded more selectively, and the pure product 3a
was isolated in 78% yield (Table 1, entry 9). Hydroxy-substi-
tuted product 2a also formed in solution of iPrOH or n-BuOH,
and this product was isolated in 35 or 46% yields, respectively
(Table 1, entries 10 and 11). In a solution of TFE the deacy-
lated product 2a was formed in 75% yield (Table 1, entry 12).
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Carrying out the reaction under Hockings conditions [26]
resulted in the selective formation of the deacylated product 3a
(Table 1, entry 13).

Thus, the optimized conditions for the synthesis of 2-hydroxy-
substituted 2,5-dihydrothiophene 2a were found to be the use of
5.0 equiv of sodium in an oxygen saturated ethanolic solution at
rt for 1 h. The deacylated product 3a was synthesized in high
yield when the reaction was performed with 5.0 equiv of sodi-

um in methanolic solution at rt for 1 h in contact with air.

With these optimal conditions in hand, we have investigated the
oxidation of 2-acetyl-2,5-dihydrothiophenes 1, containing
various substituents (Scheme 2).

NC @ /X NC X
/ \s EtOH, EtONa / S
RZ2R'N H ' ' R2R'N H
Oy, rt, 1 h, 3
Ac N\ R N\
Ar then HQO, HCI Ar
1 2a-o0
NC NC NC

//\N/SH //\N/
o) @ N, O @O

o)

2a, 51% (54%"), Ar = Ph
2b, 41%, Ar = p-OMeCgHs

o)

2c, 52%, Ar = Ph
2d, 57%, Ar = p—MeOCsH4
2e, 62%, Ar = p-CICgH4

/
Sy NSNS
\) HO N\Ar
(0]

2f, 60%, Ar = Ph

29, 61%, Ar = p-OMeCgH4
2h, 54%, Ar = p-CICgHy4
2i, 55%, Ar = p-FCgHj

2j, 55%, Ar = p-MeCgH,4

N\

Ar

NC NC
/ ~
Ot | ey
HO *Ph HO
o 0]
v)
2k, 53% 21, 25%

mixture of products

NC
H and \N
N\ / N
Ph o Ph
2I', 32%

2m, 67%,
67% (in iPrOH)
70% (in n-BuOH)

deacetylation is observed

Scheme 2: Oxidation of 2-acetyldihydrothiophenes 1. Conditions: dihydrothiophenes 1 (0.12-0.21 mmol, 1.0 equiv), sodium (0.60—1.05 mmol,
5 equiv), and dry EtOH (2.0-3.0 mL). "Scaled-up synthesis: dihydrothiophene 1a (1.17 mmol, 1.0 equiv), sodium (5.87 mmol, 5 equiv), in dry EtOH

(5 mL).
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Cyclohexano-, cycloheptano- and cyclooctano-spiroannulated
2-acetyl-3-morpholino-N-phenyl-2,5-dihydrothiophene-2-
carboxamides 1a,c,f were oxidized into 2-hydroxy derivatives
2a,c,f in 51-60% yields. Various N-aryl-substituted 2,5-dihy-
drothiophene-2-carboxamides 1b,d,e,g-j selectively
transformed into oxidized products 2b,d,e,g—j in 41-62%
yields. Variation of the amine moiety in the cyclooctano-
spiroannulated 2-acetyl-N-phenyl-2,5-dihydrothiophene-2-
carboxamides showed that the oxidized product formed
from morpholine- (1f) and piperidine-substituted (1k) 2,5-
dihydrothiophenes in 60 (2f) and 53% (2k) yield. Oxidation
of the dimethylamino-substituted 2,5-dihydrothiophene 11
afforded a mixture of products in 25% (OH-substituted, 21) and
32% (H-substituted, 21') yield. Pyrrolidine- and azepane-
substituted cyclooctano-spiroannulated 2,5-dihydrothiophenes
Im and 1n were found to be transformed into deacetylated
products in 67% (2m) and 60% (2n) yields. When experiments
were performed in iPrOH or n-BuOH, we observed the forma-
tion of the deacylated product (2n) in 67 and 70% yield, accord-

ingly.

Next, the deacylation of 2-acetyl-2,5-dihydrothiophenes
in methanolic solution was investigated (Scheme 3). Cyclo-
hexano-, cycloheptano- and cyclooctano-spiroannulated
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2-acetyl-3-morpholino-N-phenyl-2,5-dihydrothiophene-2-
carboxamides in these conditions gave deacylated products in
75-78% yield. Different N-aryl substituted 2,5-dihydrothio-
phene-2-carboxamides selectively formed the deacylated prod-
ucts in 55-74% yield. Variation of the amine moiety in the
cyclooctano- and cyclohexano-spiroannulated 2-acetyl-N-phe-
nyl-2,5-dihydrothiophene-2-carboxamides resulted in all cases
in the selective formation of the deacylated products in 60-70%

yield.

In continuation of the research, isomeric dihydrothiophenes
(Scheme 1, E) were also treated in ethanolic solution with sodi-
um ethoxide. Initially, cyclohexano-spiroannulated dihydrothio-
phene 4a was treated with ethanolic solution (3 mL) in the pres-
ence of sodium ethoxide obtained from 2 equiv of sodium at rt
in air for 1 h. After the reaction was completed, the deacylated
product was isolated in 69% yield (Table 2, entry 1). When the
loading of sodium was increased up to 5.0 equiv, the yield of
deacylated product was slightly increased to 72% (Table 2,
entry 2). In a more concentrated ethanol solution (1 mL) the
product was obtained in 70% yield (Table 2, entry 3). When the
residue was quenched with concentrated HCI (1 mL), the prod-
uct was isolated in reduced yield (58%, Table 2, entry 4).
Adding 0.25 mL of acid (HCI) after quenching the residue with

NC
MeOH, MeONa, R2RN
rt, 1h,
then H,0, HCI

20,m,n, 3

3a, 78%, Ar = Ph, NR'R2 = morpholin-1-yl

3b, 73%, Ar = CgH4,OMe-p, NR'R2 = morpholin-1-yl

20, 67%, Ar = Ph, NR'R2 = azepan-1-yl

3c, 75% Ar =Ph
3d, 66%, Ar = CgH4OMe-p
3e, 74%, Ar = CgH4Cl-p

R2R'N

3f, 76%, Ar = Ph, NR'R2 = morpholin-1-yl

39, 55%, Ar = CgH4OMe-p, NR'R2 = morpholin-1-yl
3h, 71%, Ar = CgH4Cl-p, NR'R2 = morpholin-1-yl
3i, 68%, Ar = CgH4F-p, NR'R2 = morpholin-1-yl

3j, 64%, Ar = CgHsMe-p, NR'RZ = morpholin-1-yl
2m, 66%, Ar = Ph, NR'R? = pyrrolidine-1-yl

2n, 60%, Ar = Ph, NR'R2 = azepane-1-yl

3k, 70%, Ar = Ph, NR'R2 = piperidine-1-yl

Scheme 3: Deacylation of 2-acetyldihydrothiophenes 1. Conditions: dihydrothiophenes 1 (0.11-0.18 mmol, 1.0 equiv), sodium (0.55-0.88 mmol,

5 equiv), dry MeOH (2.0-3.0 mL).
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Table 2: Optimization of the transformation of dihydrothiophene 4a.2

Beilstein J. Org. Chem. 2026, 22, 192-204.

NC N NC N
S H EtOH, Na S H
in air
Ac N, giti H N,
4 Ph conditions 4 Ph
4a 5a
Entr Na Solvent Water HCI Yield,
y (equiv) (mL) (mL) (mL) (%)P
1 Na (2) EtOH (3) 2 - 69
2 Na (5) EtOH (3) 2 - 72
3 Na (5) EtOH (1) 2 - 70
4 Na (5) EtOH (3) - 1 58
5 Na (5) EtOH (3) 2 0.25 74
6 Na (10) EtOH (3) 2 0.25 61

aConditions: dihydrothiophene 4a (0.19 mmol), rt, 1 h. Water or/and HCI were added after evaporation of the solvent. Plsolated yields after centrifuga-

tion in EtoO/hexane (1:2).

water resulted in an increase in the product yield (74%, Table 2,
entry 5). Increasing the amount of sodium up to 10 equiv
resulted in a decrease of the yield of the product 5a (61%,
Table 2, entry 6).

Thus, the optimized conditions for the synthesis of dihydrothio-
phene 5a were found to be the use of 5.0 equiv of sodium in
ethanolic solution (3 mL) at rt for 1 h in air (Table 2, entry 5).

With optimal conditions in hand, we have investigated the
deacylation of acetyldihydrothiophenes 4a—f, containing various
substituents (Scheme 4).

Thus, cyclohexano-, cyclopentano-, cycloheptano- and cyclooc-
tano-spiroannulated dihydrothiophenes 4a—f were transformed
into products Sa—f in 58-90% yield. Piperidine- and azepane-
substituted cyclooctano-spiroannulated dihydrothiophenes 4e,f

NC N NC N
X 5 EtOH, Na, rt, 1 h, x 5
H then H,0, HCI H
A e H e
o)
4a—f 5a—f
(\O (*O (\O
NC N‘) NC N\) NC N~) NC  NR'R?
H N H N H N H N
Ph Ph
a Jph g ph 4

5a, 74% (64%, one-pot) 5b, 58%

5¢c, 90%

5d, 67%, NR'R? = morpholin-1-yl
5e, 71%, NR'R2 = piperidin-1-yl
5f, 89%, NR'R? = azepan-1-yl

Scheme 4: Synthesis of dihydrothiophenes 5. Conditions: dihydrothiophenes 4 (0.13—-0.22 mmol, 1.0 equiv), sodium (0.66—1.11 mmol, 5 equiv), dry

EtOH (2.5-3.0 mL).

197



also transformed into deacylated products Se,f in 71% and 89%
yield, respectively.

Several control experiments were performed to find the effect
of oxygen, argon, additives and TEMPO on the outcome of the
oxidation and deacylation reactions (Scheme 5).

When the deacylated dihydrothiophene 3a, obtained in
methanolic solution, was treated with sodium ethoxide in an
oxygen-saturated ethanolic solution, 2-hydroxysubstituted prod-
uct 2a was isolated in 56% yield (Scheme 5, I). On the other
hand, isomeric deacylated dihydrothiophene 4a in these condi-
tions did not transform into the oxidized product, and deacy-
lated product 4a was recovered in 88% yield (Scheme 5, II).

Next, the transformation of 1a in an argon saturated ethanolic
solution results in the formation of 2-hydroxy-substituted prod-

Beilstein J. Org. Chem. 2026, 22, 192-204.

uct 2a in low yield (8%), although the yield of the deacylated
product 3a increased up to 47% (Scheme 5, III). This suggests
the participation of oxygen in the formation of 2-hydroxy-
substituted product 2a. When the methanolic solution was satu-
rated with oxygen, the 2-hydroxy-substituted product 2a was
not isolated. Only the formation of the deacylated product 3a in
51% yield was observed (Scheme 5, IV).

The influence of a reductant (trimethyl phosphite) on the reac-
tion in methanol was evaluated (Scheme 5, V). This did not
have a significant effect on the reaction outcome. Thus, there
was no formation of oxidized intermediates during transformat-
ion.

The effect of TEMPO (up to 2.0 equiv) was evaluated on the
oxidation reaction, and TEMPO was found to not inhibit the
formation of 2-hydroxy-substituted product 2a (Scheme 5, VI).

NC
OQ}/
Ph H
(¢]
4a

NC
/
EtOH,Na [y S
0, O\) HO N
0
2a, 56%

i (‘O (‘O
W, W

§ s
*Ph “Ph

NC
S
H
o

4a, 88%

EtOH, Na
0,

1Il Ar was bubbled 30 min after Na dissolving, under Ar

IV O, was bubbled 30 min after Na dissolving, under O,

NC NC
/s
N W EtOH,Na | N
o0 _J Ac N Ar 0 _J Ho
Ph
0
1a 3a,51%
v NC NC
N @ MeOH, Na EtOH,Na [ s
H P(OMe)s H

TEMPO o\; HO N,

2.5 equiv
g en ( ) Ph o Pn
1a 3a,61% 1a TEMPO, equiv | Yield,% 2a
1 21
2 31
e o
N/) NC N‘>
NC neutral Al,03 _ decomposition
- S MeOH, MeONa, 1 h or
P S Ph EtOH, EtONa, t, 24 h
Ac =N
Ac Ts
CCDC 2288494 59 49

Scheme 5: Control experiments.
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Therefore, the reaction is most likely not proceeding via a free

radical mechanism.

To clarity the influence of the amide group on the developed
transformations, dihydrothiophene 4g bearing a sulfonylimine
group instead of an amide was treated with sodium methoxide
in methanol or with sodium ethoxide in ethanol (Scheme 5,
VII). However, under these conditions only decomposition of
4g was observed, and neither deacetylated nor hydroxylated
products were isolated. Interestingly, chromatography of 4g on
neutral alumina resulted in elimination of the sulfonylimine
group to give compounds 5g. Therefore, the amide group plays
an important role in these transformations.

In addition, analysis of the reaction mixture obtained in
ethanolic solution was performed after evaporation of the
ethanol. HRMS analysis showed the presence of two peaks with
m/z values 400.1704 (retention time 7.952-7.963) and 400.1700
(retention time 6.905-6.961). One of these peaks can be

Beilstein J. Org. Chem. 2026, 22, 192-204.

assigned to the product 2a, while the other peak showed that the
deacylated product 3a is formed during the transformation with
subsequent oxidation by sulfur in the oxidation/reduction step to
form 2,5-dihydrothiophene 1-oxide 2a’ (Figure 1, a and b and
Scheme 6).

The analysis also suggests the formation of product 2a before
water and acid were added. This also indicates that the reaction

proceeded through an oxidation/reduction step.

UV absorption measurements of the same reaction mixture (a)
and pure product 2a (b) dissolved in methanol are presented in
Figure 2.

The formation of product 2a before water and acid were added
also follows from the comparison of UV-vis spectra of crude
mixture (a) and product 2a (b). According to the previously re-
ported data [51], the absorption maximum in spectrum (a) at
220 nm is caused by the presence of elemental sulfur Sg. Proba-

0.9
0.8
0.7
0.6
0.5

0.3
0.2

0.1

x10 C21 H25 N3 O3 S: +ESI Scan (rt: 7.862, 7.952-7.963 min, 3 scans) Frag=90.0V 5gh-OH.d Subtract

120 140 160 180 200 220 240 260 280

300 320 340 360 380 400 420 440 460 480
Counts vs. Mass-to-Charge (m/z)

x10 C21 H25 N3 O3 S: +ESI Scan (rt: 6.905-6.961 min, 6 scans) Frag=90.0V 5gh-OH.d Subtract

120 140 160 180 200 220 240 260 280

300 320 340 360 380 400 420 440 460 480
Counts vs. Mass-to-Charge (m/z)

Figure 1: HRMS analysis of the crude product.
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Absorbance

200 250 300 350 400

450 500 550 600 650 700

Wavelength, nm

Absorbance

0,5

a

200 250 300 350

400

450 500 550 600 650 700

Wavelength, nm

b

Figure 2: UV-vis spectra of the crude mixture (5.6 mg of the crude mixture was dissolved in 15 mL of methanol and the aliquot (100 pL) was diluted
in 900 pL of methanol) (a) and purified product 2a (¢ = 5 x 102 M) (b) in methanol at 20 °C.

bly, the reaction is accompanied by the desulfurization of the
oxidized intermediate, which causes the yellow color of the

reaction solutions.

The proposed mechanism for the developed transformations is
depicted in Scheme 6. The reaction of dihydrothiophene 1a with
sodium ethoxide led to the intermediate A. Elimination of ethyl/
methyl acetate from intermediate A afforded anion B. The latter
reacted in ethanolic solution with molecular oxygen [52] with
the formation of peroxide anion C. The protonation of anion C
with proton sources (residual water or/and solvent or 3a can
serve as a proton source) formed hydroperoxide D. On the other
hand, competitive reversible proton movement [53] from
ethanol to anion B formed deacetylated product 3a. The subse-

quent reduction of hydroperoxide D by the deacetylated prod-

uct 3a results in the formation of hydroxy-substituted dihy-
drothiophene 2a and oxidized product 2a’. The latter, probably,
undergoes desulfurization into compound 3a’ (for example,
base-promoted transformation of 2,5-dihydrothiophenes-1,1-
dioxides to 1,3-dienes was reported by S. Zard [54]).

It can be assumed that the higher acidity of methanol in com-
parison with ethanol makes the proton transfer to anion B quasi-
irreversible. This could be the cause for the selective formation

of deacetylated dihydrothiophene 3a in methanolic solution.

The observed deacetylation for product 2m in ethanol on
Scheme 2 can be caused by a decrease of the stability of the
formed anion due to the stronger donor character of the pyrrol-

idine moiety due to its planar structure. The formation of the
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RONa

/
s
[N Ph RoH

proton

source //\
N
O\)

/
NH
o HO O 3a ;
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detected by HRMS analysis

of the crude mixture:

detected by HRMS analysis

[M + H]* calcd, 400.1689; found, 400.1700

HN-Ph
NC
% i, °
(g
3a’

of the crude mixture: [M + H]* caled, 352.2019; found, 352.2033

Scheme 6: Proposed mechanism.

deacetylated products 2n,0 (Scheme 2) may be attributed to in-
creased steric hindrance, which makes proton transfer to B in
Scheme 6 more difficult. The dimethyl-1-yl moiety likely ex-
hibits a lower donor character compared to pyrrolidine, but
higher than that of morpholine and piperidine. As a result, a
mixture of products 21 and 2I' is formed.

Starting dihydrothiophenes 1 form more stable anions B in
comparison with regioisomers 4 due to the delocalization of the

negative charge over the double bond, sulfur and amide group.

The difference in the stability of these types of anions results in
their distinct reactivity.

Conclusion

We have reported the solvent dependent transformation of dihy-
drothiophenes 1 under mild conditions. It was found that, in
ethanolic solution in the presence of sodium ethoxide and mo-
lecular oxygen at ambient pressure, dihydrothiophenes 1a,b,d-1
were oxidized into hydroxyderivatives 2a,b,d-1. In methanolic

solution, in the presence of sodium methoxide and molecular
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oxygen, the same dihydrothiophenes 1a,b,d-1 transformed into
deacetylated products 3. Isomeric dihydrothiophenes 4a—f
formed only deacetylated products Sa—f when the reaction was
performed in an oxygen saturated ethanolic solution in the pres-
ence of sodium ethoxide.

Experimental

X-ray structure determination of 5¢g

5g: Crystal data for C;7HgN,0,S (M = 314.40 g/mol): mono-
clinic, space group P—1, a = 9.3076 (5) A, b = 9.3243(5) A,
c=10.1072 (4) A, p = 102.480(4)°, V = 776.19(7) A3, Z =2,
u(Mo Ka) = 0.217 mm™!, Dy = 1.345 g/em?3, 4252 reflections
measured (7.378° < 2@ < 61°), 4252 unique (Rjy; = 0.0407,
Rsigma = 0.0545) which were used in all calculations. The final
R = 0.0596, wR, = 0.1470 (I >= 20(1)) and R; = 0.0837, wR;, =
0.1768 (all data). Largest diff. peak/hole 0.29/-0.55 A3,
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