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The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on

the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i) The catalysis of olefin metathesis

by dendritic nano-catalysts via either covalent attachment (ROMP) or, more usefully, dendrimer encapsulation — ring closing

metathesis (RCM), cross metathesis (CM), enyne metathesis reactions (EYM) — for reactions in water without a co-solvent and (ii)

construction and functionalization of dendrimers by CM reactions.

Introduction

Olefin metathesis reactions [1-7] have been successfully
catalyzed under standard conditions, including reactions at
room temperature and sometimes even in air, with commercial
Grubbs-type catalysts [8,9]. These are now largely developed
for industry with functional substrates for the synthesis of
highly sophisticated pharmaceutical products and polymers.
There is continuing research in the olefin metathesis field,
however, because of the economical and ecological constraints
of modern society. This requires that the catalyst amounts be as
low as possible and that polluting classic organic solvents be
replaced by “greener” solvents such as water or super-critical
carbon dioxide. Therefore during the last decade, we have
attempted to make progress in this field with dendrimers using

nano-organometallic chemistry [10]. There are several ways in

which dendrimer chemistry can be useful in this direction, and
this short review article will indicate the various connections

between metathesis reactions and dendrimer chemistry.

Review

Covalent attachment of the olefin metathesis
catalyst to the tethers of the dendrimer
periphery

The attachment of catalysts to dendrimers was mostly focused
on the recovery of the catalyst. Only a few metallodendritic
carbene complexes with covalent binding of the olefin
metathesis catalyst are known. Prior to our involvement only

compounds with four branches were known [11-14] but good
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recyclability still remained a challenge. The difficulty resided in
the need to sustain both metathesis activity and stability of the
metallodendrimer. Thus, we selected the ruthenium family of
catalysts and designed metallodendrimers containing ruthe-
nium-benzylidene fragments located at the dendrimer periphery
and chelating phosphine ligands on the branch termini. The
choice of chelating phosphines may seem counter-intuitive,
because the activity of Grubbs catalysts involves the decoordi-
nation of a phosphine from these trans-bis-phosphine
complexes [15]. However, studies by the groups of Hofmann
[16-18], Fog [19,20] and Leitner [20] had demonstrated the
metathesis activity of cis-bis-phosphine ruthenium benzylidene
catalysts. We therefore used Reetz’s bis-phosphines derived
from the commercial polyamine DSM dendrimers [21]. These
dendritic bis-phosphines are useful and versatile in metalloden-
dritic catalysis and provided the first recyclable metalloden-
dritic catalysts [21]. Moreover, dendritic bis-phosphines with
two phenyl groups on each phosphorus atom very cleanly
yielded the first dendrimers decorated with clusters at the
periphery via an efficient electron-transfer-chain reaction using
[Ru3(CO);,] catalyzed by [FelCp(n®-CgMeg)] leading to the
substitution of a carbonyl of the [Ru3(CO);;] by a dendritic
phosphine on each tether [22]. Related dendritic bis-phosphines
with two cyclohexyl groups on each phosphorus were deco-
rated with ruthenium benzylidene metathesis functions using
Hoveyda’s ruthenium benzylidene metathesis catalyst, 1 [23],
as the starting point. These reactions provided four generations
of new, stable metallodendrimers 2 containing ruthenium-
benzylidene fragments at the periphery (Scheme 1) [24,25]. The
fourth-generation metallodendrimer containing 32 ruthenium-
benzylidene fragments, however, was found to have a rather
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low solubility in common organic solvents, unlike the three
first-generation complexes that contained 4, 8 and 16 ruthe-
nium-benzylidene moieties, respectively. The weak solubility of
the 32-Ru dendrimer is presumably due to steric congestion at
its periphery. Such steric congestion is also responsible for the
decrease of the catalytic activity of Ru and Pd high-generation
dendritic catalysts, even when these metallodendritic catalysts
are soluble. The X-ray crystal structure of the model mononu-
clear complex in which the dendritic branch was replaced by a
benzyl group showed distorted square pyramidal geometry and
the classic geometric features of a Ru=C double bond. The
oxygen atom of the isopropyl aryl ether group is not
coordinated unlike in Hoveyda’s complex 1. The fundamental
organometallic chemistry of this monomeric model complex

was also original [24,25].

The three first generations of metallodendrimers 2 and the
model complex do not catalyze RCM reactions, but they were
efficient catalysts for the ROMP of norbornene under ambient
conditions, giving dendrimer-cored stars (Scheme 1 and
Scheme 2) [24,25]. Analysis of the molecular weights by size
exclusion chromatography gave data that were close to the theo-
retical values, which indicated that all the branches were effi-
ciently polymerized. Dendritic-cored stars with an average of
about 100 norbornene units on each dendritic branch were
synthesized from the three first generations of ruthenium-
carbene dendrimers containing 4, 8 and 16 Ru=C bonds,
respectively.

Two kinds of dendritic effect were found on analysis of the
kinetic data. First, the dendrimers were more efficient catalysts
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Scheme 1: Strategy for the ROMP of norbornene by Ru-benzylidene dendrimers to form dendrimer-cored stars.
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Scheme 2: Third-generation (16 Ru atoms) ruthenium-benzylidene dendrimer that catalyzes the ROMP of norbornene at 25 °C to form dendrimer-

cored stars.

than the monomeric model complex. This could possibly be due
to labilization of metal-phosphine bonds that is facilitated in
dendrimers as compared to the monomer for entropic reasons.
Indeed, DFT calculation showed that the catalytic process must
involve decoordination of a phosphorus atom, since the inter-
action of the olefin with the diphosphine complex is non-
bonding. The dendritic ruthenium-benzylidene dendrimers were
air-sensitive in contrast to the monomer model complex, consis-
tent with more rapid dissociation of the alkyl phosphine in the
dendrimers than in the monomer. Secondly, the efficiency of
catalysis decreased upon increasing the dendrimer generation.
This second dendritic effect is thus a negative one, and it is
probably related to the more difficult access to the metal center
due to the increasing steric effect at the dendrimer periphery
when the generation increases.

Analogous ruthenium benzylidene dendrimers were very
recently synthesized with two tert-butyl groups on each phos-
phorus atom, and these were slightly more reactive ROMP cata-
lysts for the polymerization of norbornene than those carrying
cyclohexyl substituents [25]. These new dendritic ligands, in
particular those of low generation (with up to 8 branches), also
proved very efficient in palladium catalysis [26-31].

Construction and decoration of dendrimers
using olefin metathesis reactions

Star-shaped and dendrimer compounds that are terminated by
carbon—carbon double bonds can undergo CM reactions with
olefins. To begin with, we examined cross olefin metathesis

reactions with rather small aromatic molecules bearing a few

double bonds, then continued the study with larger analogues.
Temporary coordination of arenes to the strongly electron-with-
drawing cationic 12-electron group CpFe* greatly increases the
acidity of its benzylic protons (the pK, values of the arenes in
DMSO are lowered upon complexation with CpFe*t by approxi-
mately 15 units, for instance from 43 to 28 in the case of
CgMeg) [32,33]. Therefore, deprotonation of the CpFe(arene)*
complexes is feasible under mild conditions with KOH. Depro-
tonated CpFe(arene)’ complexes are good nucleophiles, and
reactions with electrophiles such as the alkyl halides lead to the
formation of new C—C bonds. Coupling the deprotonation and
the nucleophilic reactions in situ in the presence of excess
substrates leads to perfunctionalization in cascade multi-step
reactions [34,35]. When the electrophile is allyl bromide, poly-
olefin compounds are produced after decomplexation by
visible-light photolysis which removes the temporary acti-
vating CpFe* group [36-38]. These compounds are then ideal
substrates for RCM and CM. New structures were obtained
using this strategy with durene, p-xylene, mesitylene, and
pentamethylcobalticinium [39-41]. The latter was perallylated
to yield a deca-allylated cobalticinium, and then RCM of the
organometallic complex proceeded to afford a pentacyclo-
pentylcyclopentadienyl Co sandwich complex using the first-
generation Grubbs catalyst [Ru(PCy3),Cl,(=CHPh)], 3. Acti-
vation of mesitylene by the CpFe" moiety in 4, followed by a
one-pot perallylation yielded [CpFe(nonaallylmesitylene)*]-
[PF¢], 5, from which the free arene derivative 6 was obtained
on visible-light photolytic decomplexation [34,35,42]. First, a
triple RCM reaction catalyzed by 3 proceeded in ten minutes

under ambient condition, to afford an intermediate tetracyclic
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iron arene complex. Furthermore and interestingly, when the
metathesis reaction was carried out in refluxing dichloroethane
with the addition of the second-generation Grubbs catalyst
[RuCl,(=CHPh)(bis-N-mesityl-NHC)], 7, (Scheme 3, NHC =
N-heterocyclic carbene), the di-iron cage compound 8 was
formed. Similarly, the iron-free nonaallylated compound 6
gave, by metathesis catalyzed by 7, the organic cage 9. After
hydrogenation with H,/Pd/C in CH,Cl; of the tripled-bridged
cage 9, a single hydrogenated product was isolated. Another
very useful feature is that the organic cage formation can be
totally inhibited in the presence of acrylic acid to produce the
triacid 10 by a more rapid stereoselective CM (Scheme 3)
[43.,44].

Since successful CM with acrylic acid gave water-soluble com-
pounds, this reaction was exploited to synthesize water-soluble
dendrimers with carboxylate termini. Dendritic precursors were
prepared with long tethers containing olefin termini so that no
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competitive RCM occurred unlike in the preceding example.
Indeed, CM of these long-chain polyolefin dendrimers
catalyzed by the 2" generation Grubbs metathesis catalyst 7
proceeded selectively to produce dendrimers whose tethers
were terminated by carboxylic acid groups (Scheme 4 and
Scheme 5). The corresponding carboxylates are water-soluble.
Higher-generation dendrimers with carboxylic acid termini have
been synthesized similarly [43,44].

Other attempts have been reported in the literature for the
metathesis of polyolefin dendrimers or star compounds from
which ring-closing metathesis products were formed. For
instance, a third generation Fréchet-type dendrimer containing
24 allyl ether end groups was synthesized by the Zimmerman
group, cross-linked using the RCM reaction, and the core
removed hydrolytically without any significant fragmentation
[45-47]. The results are analogous to those previously reported
for homoallyl ether dendrimers suggesting that the less readily

2" generation
Grubbs catalyst 7

CH,Cl,

2nd generation
X Grubbs catalyst 7

CH,Cl,

Scheme 3: Multiple carbon—carbon bond formation upon RCM and CM, and the complete switch of selectivity in the presence of acrylic acid.
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Scheme 5: Example of chemo-, regio- and stereoselective CM of polyolefin dendrimers catalyzed by the 2" generation Grubbs metathesis catalyst:

81-tethered dendrimers.

available homoallyl ether dendrimers can be replaced by their
allyl ether analogues. The strategy consisting of performing
RCM of branches and then to remove the core has also been
applied by the Peng group to produce nanoparticle-cored
dendrimers [48-51].

Dendrimers have been synthesized by reaction sequences
involving hydrosilylation of olefin-terminated dendrimer cores
followed by Williamson reactions with the phenol triallyl
dendron p-HOC¢H4C(CH,CH=CH,)3 and iterations [42,52,53].
This allowed the building of large dendrimers and the exten-

sion of their tethers with alkenyl termini. CM of these large
olefin-terminated dendrimers with acrylic acid was carried out
in order to synthesize dendrimers terminated by carboxy groups
(Scheme 5). These CM reactions were also extended to acry-
lates that contained a dendronic group. This strategy allowed
constructing dendrimers from one generation to the next. Thus,
iteration allows synthesizing a dendrimer of second generation
with 81 olefin termini from a dendritic core containing 9 allyl
termini after two iterative metathesis-hydrosilylation reactions
(Scheme 6). This principle has also been extended to polymers
and gold nanoparticles [54].
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Scheme 6: Dendrimer construction scheme from a 9-olefinic dendrimer to a 27-olefinic dendrimer by regio-and stereoselective CM using Grubbs
second generation catalyst in CH,Cl, at 40 °C, followed by a Wiliamson reaction with p-HOCgH4-O(CH;)gsCH=CH, in DMF at 80 °C. The next itera-

tion of identical reaction sequence yields the 81-olefinic dendrimer.

Dendrimer-induced olefin metathesis in water
Olefin metathesis of hydrophobic substrates, which are the large
majority, in water instead of organic solvents is an obvious
challenge that has been actively pursued [54-57] with water-
soluble ruthenium catalysts [54], surfactants [58] and sono-
chemistry [59-62]. Using a low amount (0.083 mol %) of
dendrimer, we have induced efficient olefin metathesis catal-
ysis in water and with down to 0.04 % of the second-generation
Grubbs catalyst 7 for RCM, (Table 1) [63]. The dendrimer 11
contains triethylene glycol termini that solubilize it in water. In
this way, the dendrimer serves as a molecular micelle [64,65] to
solubilize the hydrophobic catalysts and substrate in the
hydrophobic interior of the nanoreactor. Its “click” synthesis is
shown in Scheme 7.

CM and EYM are also much favored by the presence of 0.083%
mol of the dendrimer 11, although these reactions still need 2%

of Grubbs catalyst 7 [63], which is much more than the amount
used for RCM.

RCM reactions can proceed in the presence of water even
without surfactant, but the amount of 15!- or 2-generation
Grubbs catalyst required then reaches 4 to 5% for good to high-
yield reactions [66,67], which is of the order of 100 times more
ruthenium catalyst than under our reaction conditions [63]. We
have verified that these literature results [64,65] are repro-
ducible with 7.

Another key feature of the system is that the aqueous solution
of the water-soluble dendrimer 11 can be recycled because 11 is
insoluble in ether. Re-use of the aqueous solution of 11 is
possible after subsequent filtration of the water-insoluble cata-
lyst 7 after the reaction and removal of the organic reaction pro-

duct by decantation or by extraction with ether. We have been
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Table 1: Compared RCM and EYM catalyzed by 7 in water without co-solvent, in the presence and absence of dendrimer 11.

Substrate Product Mol % Cat. 72 Conv. (%) with Conv. (%) with
0% den. 11 0.083% den. 11
A NN NS @ 0.1 0 86b
=N\ 0.1 0 90°
B Ts—N@ 0.06 0 66°
N\ 0.04 0 62°
EtO,C A\ Et0,C
c co.d ><j] 0.1 6b 8P
2 A EtO,C
Q o)
D Ph)J\N/\/ o 0.1 0 90°
=
Ph 0
E W © Phﬁ; 2 27° 97¢
\/\\ .
Ph_ Ph o

Ph
F /<O prﬁg 2 30° 99¢
// \/\ —

aThe mol % catalyst 7 are pseudo-concentrations (rather than actual concentrations because 2 is insoluble in water; for instance, 4 mg of 7 dispersed
in 47 mg of water, which corresponds to 0.1 mol % 7). The dendrimer amount of 0.083 mol % corresponds to 28 mg. °The reaction mixture without
the catalyst was analyzed by "H NMR in CDCls, following filtration of the Ru catalyst or resulting residual species and subsequent extraction with
ether. The reaction mixture without the catalyst was analyzed by GC (injection of the ether extract).
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Scheme 7: Synthesis of the water-soluble dendritic nanoreactor 7 for olefin metathesis in water without co-solvent.
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able to recycle this aqueous dendrimer solution at least ten
times without any significant decrease in yield. We have tested
the stability of the Grubbs-II catalyst 7 in the presence of water
at ambient temperature for 24 h, and found that it is stable in the
absence of an olefin substrate. For example, after stirring a
suspension of 7 (0.1 mol %) in water for one day at 25 °C in air,
the substrate and the dendrimer 11 were added and, after an
additional day, the results of the RCM reaction were not signifi-
cantly changed (80% conversion) compared to the result indi-
cated in Table 1, entry B (90% conversion) under the same
conditions. This means that the pre-catalyst 7 itself is stable and
that the relative instability of 7 during metathesis in the pres-
ence of water (but in the absence of dendrimer 11) is due to the
slow decomposition of the catalytically active species formed
during the RCM catalytic cycle. In particular, it has been shown
that the methylene species [Ru(=CH,)Cl, {1,3-bis(mesityl)-
NHC}(PCy3)], generated in the catalytic cycle of RCM reac-
tions involving terminal olefins, is usually highly susceptible to
dimerization and decomposition in CH,Cl, or C¢Hg [1]. What-
ever the decomposition path of this species in the presence of
water might be, it appears that the decomposition is consider-
ably reduced when the dendrimer 11 is used for the RCM reac-
tions. This strongly argues in favor of dendritic protection
(probably by encapsulation) of the reactive species. RCM reac-
tions need less catalyst 7 in organic solvents [1] than in the
presence of water, especially in the absence of the dendrimer
11. Thus the hydrophobic dendrimer interior should indeed
favor the protection this intermediate ruthenium-methylene
species from side reactions occurring in the presence of water.

Conclusion

Olefin metathesis reactions are powerful methods that can be
used for the construction of dendrimers and their functionaliza-
tion with water-solubilizing carboxylate groups and other
termini. In turn, water-soluble dendrimers can be used as mole-
cular micelles as exemplified here. The implication of
dendrimers in olefin metathesis reactions has mainly been
focused on recovering the catalyst by loading the dendrimer
with a functionalized catalyst. This strategy has been of very
little success, because the % of catalyst used in metathesis reac-
tions was rather high. This is due to the reactivity of methylene-
metal intermediates that leads to side reactions. Consequently,
another strategy involves protecting the catalytic intermediate in
nanoreactors. Dendrimers are shown here to be excellent reac-
tors achieving the goal of decreasing the catalytic amount when
water is used as solvent. The success of using water as a reac-
tion medium, even without co-solvent, is important in avoiding
polluting organic solvents. Moreover, a very low Ru catalyst
loading is possible in RCM with the fully recyclable water solu-
tion of the dendritic nanoreactor.

Beilstein J. Org. Chem. 2011, 7, 94-103.
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