

Enantioselective Michael addition of 2-hydroxy-1,4naphthoquinones to nitroalkenes catalyzed by binaphthyl-derived organocatalysts

Saet Byeol Woo and Dae Young Kim*

Letter	Open Access
Address:	Beilstein J. Org. Chem. 2012, 8, 699–704.
Department of Chemistry, Soonchunhyang University, Asan,	doi:10.3762/bjoc.8.78
Chungnam, 336-745, Korea	
	Received: 07 March 2012
Email:	Accepted: 17 April 2012
Dae Young Kim [*] - dyoung@sch.ac.kr	Published: 07 May 2012
* Corresponding author	This article is part of the Thematic Series "Organocatalysis".
Keywords:	Guest Editor: B. List
nitroalkenes; organocatalysis	© 2012 Woo and Kim; licensee Beilstein-Institut. License and terms: see end of document.

Abstract

The highly enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinones to nitroalkenes, promoted by binaphthyl-modified chiral bifunctional organocatalysts is described. This reaction afforded the chiral functionalized naphthoquinones in high yields (81–95%) and excellent enantioselectivities (91–98% ee) under low catalyst loading (1 mol %).

Introduction

Quinone and naphthoquinone structures exist in a large number of natural products and biologically active molecules [1-4]. Many of these naturally occurring naphthoquinones and their synthetic analogues are important precursors for the synthesis of natural products and pharmaceuticals [5-9]. The stereoselective formation of C–C bonds is of great importance for the synthesis of enantiomerically pure, biologically active organic compounds [10,11]. It is widely recognized that the Michael addition is one of the most versatile and general methods for C–C bond formation in organic synthesis [12], and intensive research efforts have been directed toward the development of enantioselective catalytic protocols for this reaction [13-15]. The organocatalyst-mediated enantioselective conjugate addition reactions, which are both powerful and environmentally friendly, have been subjected to rigorous investigation in recent years [16-22]. The asymmetric Michael addition of various nucleophiles to nitroalkenes is of great interest, because the products obtained are versatile intermediates in organic synthesis [23-26]. Extensive studies have been devoted to the development of asymmetric conjugate additions of 1,3-dicarbonyl compounds to various Michael acceptors [27-33]. Recently, the groups of Du and Zhou reported a highly enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinones to nitroalkenes catalyzed by chiral, bifunctional tertiary-amine thioureas, thiophosphorodiamides, and squaramide-based organocatalysts [34-36].

Findings

In the framework of our research program for the development of synthetic methods for the enantioselective construction of stereogenic carbon centers [37-42], we recently reported the enantioselective Michael addition of active methines to nitroalkenes [43,44]. Herein, we describe the direct enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinone with nitroalkenes, catalyzed by bifunctional organocatalysts (Figure 1) that bear both central and axial chiral elements [45-47]. We initially investigated the reaction system with 2-hydroxy-1,4-naphthoquinone (1) and nitrostyrene 2a in the presence of 10 mol % of Takemoto's catalyst I in acetonitrile at room temperature, to determine the optimum reaction conditions for the catalytic, enantioselective Michael addition. This reaction exhibited good yield and high enantioselectivity (89% ee, Table 1, entry 1). In order to enhance the enantioselectivity, other bifunctional organocatalysts II–VIII were evaluated in the model reaction (Table 1, entries 2–8). The quinine-derived thiourea catalyst II was less effective (Table 1, entries 1 and 2),

whereas the binaphthyl-modified, chiral, bifunctional organocatalysts **III–VIII**, bearing both central and axial chiral elements, effectively promoted the addition reaction in high yield, with high enantioselectivity (78–97% ee, Table 1, entries 3–8). Catalyst **III** gave the desired product **3a** with high enantioselectivity (97%, Table 1, entry 3), whereas the diastereomeric catalyst **VII** afforded product **3a** in lower enantioselectivity (78% ee, Table 1, entry 7). These results demonstrate that the central and axial chiral elements in the chiral amine-thiourea catalyst **III** are matched, thus enhancing the stereochemical control, whereas in the diastereomeric catalyst **VII** this is not the case.

Different solvents were then tested in the presence of 10 mol % of catalyst **III** together with 2-hydroxy-1,4-naphthoquinone (1) and nitrostyrene **2a** in order to further improve the selectivity of the reaction. Aprotic solvents, such as acetonitrile, toluene, dichloromethane, THF, diethyl ether, were well tolerated in this conjugate addition without a significant decrease of enantio-

selectivities (89–99% ee, Table 1, entries 3 and 9–12). Remarkably, water and brine also afforded products in good yields; however, the selectivity dropped significantly (Table 1, entries 13 and 14). Among the solvents probed, the best results (92% yield and 99% ee) were achieved when the reaction was conducted in THF (Table 1, entry 11). The present catalytic system tolerates catalyst loading down to 5, 2.5, and 1 mol % without compromising the yield or enantioselectivity (Table 1, entries 11 and 15–17).

With the optimized reaction conditions in hand, the scope of the methodology was investigated in reactions with 2-hydroxy-1,4-naphthoquinone (1) and various nitroalkenes 2a-1 in the presence of 1 mol % of catalyst III in THF at room temperature (Table 2). A range of electron-donating and electron-with-drawing substitutions on the β -aryl ring of the nitrostyrenes 2b-h provided reaction products in high yields and excellent enantioselectivities. Heteroaryl- and naphthyl-substituted nitroalkenes 2i and 2j provided products with high selectivity

Table 1: Optimization	of the reaction conditions.				
	O O O O H	Ph NO ₂ -	cat. (10 mol %) solvent, rt	O O H NO ₂	
	1	2a		3a	
entry	cat.	solvent	time (h)	yield (%) ^a	ee (%) ^b
1	I	CH ₃ CN	2	84	89
2	II	CH ₃ CN	2	87	77
3	III	CH ₃ CN	2	96	97
4	IV	CH ₃ CN	2	95	87
5	ν	CH ₃ CN	2	93	81
6	VI	CH ₃ CN	2	90	93
7	VII	CH ₃ CN	2	85	78
8	VIII	CH ₃ CN	2	88	93
9	III	toluene	4	75	95
10	III	DCM	4	93	89
11	III	THF	2	92	99
12	III	Et ₂ O	3	81	91
13	III	H ₂ O	17	89	19
14	III	brine	17	86	37
15 ^c	III	THF	2	90	98
16 ^d	III	THF	2	90	99
17 ^e	111	THF	2	89	99

^alsolated yield.

^bEnantiopurity was determined by HPLC analysis using chiralcel OJ-H column.

^cReaction was carried out in the presence of 5 mol % catalyst.

dReaction was carried out in the presence of 2.5 mol % catalyst.

^eReaction was carried out in the presence of 1 mol % catalyst.

2: Catalytic asymme	tric Michael addition of 2-hydroxy-	1,4-naphthoquinone 1 to nitro	oalkenes 2.	
Ĺ	O O O O H R	NO₂	%) OH OR	NO ₂
	1 2		3	
entry	2 , R	time (h)	yield (%) ^a	ee (%) ^b
1	2a , Ph	2	3a , 89	99
2	2b , <i>p</i> -MeC ₆ H ₄	2	3b , 93	95
3	2c , <i>p</i> -MeOC ₆ H ₄	4	3c , 81	99
4	2d , <i>p</i> -FC ₆ H ₄	3	3d , 95	95
5	2e , <i>p</i> -CIC ₆ H ₄	3	3e , 90	91
6	2f , <i>p</i> -BrC ₆ H ₄	3	3f , 95	95
7	2g , <i>o</i> -FC ₆ H ₄	4	3g , 95	95
8	2h , o-BrC ₆ H ₄	4	3h , 95	95
9	2i, 2-thienyl	5	3i , 93	93
10	2j, 2-naphthyl	5	3 j, 93	99
11	2k isobutyl	5	3k 90	97

^bEnantiopurity was determined by HPLC analysis using chiralcel OJ-H (3a-j) and chiralpak AD-H (for 3k) columns.

(93–99% ee, Table 2, entries 9 and 10). The β-alkyl-substituted nitroalkene, 4-methyl-1-nitropent-1-ene (2k), was also an acceptable starting material and provided the corresponding Michael adducts in high yield and excellent enantioeselectivity (97% ee, Table 2, entry 11).

In conclusion, we have developed a highly efficient catalytic, enantioselective Michael addition of 2-hydroxy-1,4-naphthoquinone to nitroalkenes using a binaphthyl-derived tertiary amine-thiourea organocatalyst. The various types of nitroalkylated naphthoquinone derivatives were obtained in good to high yields with excellent enantioselectivities (91-99% ee) for all the substrates examined in this work. We believe that this method should provide a practical entry for the preparation of chiral nitroalkylated naphthoquinone derivatives. Further details and application of this asymmetric Michael addition of 2-hydroxy-1,4-naphthoquinone nucleophiles will be presented in due course.

Experimental

General procedure for the Michael addition of 2-hydroxy-1,4-naphthoguinone (1) with nitroalkenes 2: A mixture of 2-hydroxy-1,4-naphthoquinones (1, 34.8 mg, 0.2 mmol) and catalyst III (1.3 mg, 0.002 mmol) in THF (0.4 mL) was stirred at room temperature for 5 min. A solution of nitroalkene 2 (0.2 mmol) was added. The reaction mixture was stirred for 2-5 h at room temperature. After completion of the reaction, the resulting solution was concentrated in vacuo and the obtained residue was purified by flash chromatography (EtOAc-hexane) to afford the corresponding Michael adducts 3. Products 3 are known compounds, and their data were identical to those reported in the literature [34-36].

Supporting Information

Supporting Information File 1 Characterization data of products 3. [http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-8-78-S1.pdf]

Acknowledgements

This work was supported in part by the Soonchunhyang University Research Fund.

References

- 1. de Andrade-Neto, V. F.; Goulart, M. O. F.; da Silva Filho, J. F.; da Silva, M. J.; Pinto, M. C. F. R.; Pinto, A. V.; Zalis, M. G.; Carvalho, L. H.; Krettli, A. U. Bioorg. Med. Chem. Lett. 2004, 14, 1145-1149. doi:10.1016/j.bmcl.2003.12.069
- 2. Tandon, V. K.; Yadav, D. B.; Singh, R. V.; Chaturvedi, A. K.; Shukla, P. K. Bioorg. Med. Chem. Lett. 2005, 15, 5324-5328. doi:10.1016/j.bmcl.2005.08.032

- Glänzel, M.; Bültmann, R.; Starke, K.; Frahm, A. W. *Eur. J. Med. Chem.* 2005, 40, 1262–1276. doi:10.1016/j.ejmech.2005.07.007
- Gomez-Monterrey, I.; Santelli, G.; Campiglia, P.; Califano, D.; Falasconi, F.; Pisano, C.; Vesci, L.; Lama, T.; Grieco, P.; Novellino, E. *J. Med. Chem.* 2005, *48*, 1152–1157. doi:10.1021/jm0408565
- Gomez-Monterrey, I.; Campiglia, P.; Carotenuto, A.; Califano, D.; Pisano, C.; Vesci, L.; Lama, T.; Bertamino, A.; Sala, M.; Mazzella di Bosco, A.; Grieco, P.; Novellino, E. *J. Med. Chem.* 2007, 50, 1787–1798. doi:10.1021/jm0612158
- Castellano, S.; Bertamino, A.; Gomez-Monterrey, I.; Santoriello, M.; Grieco, P.; Campiglia, P.; Sbardella, G.; Novellino, E. *Tetrahedron Lett.* 2008, 49, 583–585. doi:10.1016/j.tetlet.2007.11.148
- Hsin, L.-W.; Wang, H.-P.; Kao, P.-H.; Lee, O.; Chen, W.-R.; Chen, H.-W.; Guh, J.-H.; Chan, Y.-L.; His, C.-P.; Yang, M.-S.; Li, T.-K.; Lee, C.-H. *Bioorg. Med. Chem.* 2008, *16*, 1006–1014. doi:10.1016/j.bmc.2007.10.012
- Wei, P.; Zhang, X.; Tu, S.; Yan, S.; Ying, H.; Ouyang, P. Bioorg. Med. Chem. Lett. 2009, 19, 828–830. doi:10.1016/j.bmcl.2008.12.006
- Zhang, G.; Wang, Y.; Zhang, W.; Xu, X.; Zhong, A.; Xu, D. Eur. J. Org. Chem. 2011, 2142–2147. doi:10.1002/ejoc.201001570
- Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388–401. doi:10.1002/(SICI)1521-3773(19980302)37:4<388::AID-ANIE388>3.0.
 - CO;2-V
- 11. Christoffers, J.; Mann, A. *Angew. Chem., Int. Ed.* **2001,** *40*, 4591–4597. doi:10.1002/1521-3773(20011217)40:24<4591::AID-ANIE4591>3.0.CO ;2-V
- 12. Leonard, J. Contemp. Org. Synth. **1994**, *1*, 387–415. doi:10.1039/CO9940100387
- 13. Krause, N.; Hoffmann-Röder, A. *Synthesis* **2001**, 171–196. doi:10.1055/s-2001-10803
- 14. Berner, O. M.; Tedeschi, L.; Enders, D. *Eur. J. Org. Chem.* **2002**, 1877–1894.
 - doi:10.1002/1099-0690(200206)2002:12<1877::AID-EJOC1877>3.0.C O;2-U
- Christoffers, J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688–1690. doi:10.1002/anie.200201614
- Connon, S. J. Angew. Chem., Int. Ed. 2006, 45, 3909–3912. doi:10.1002/anie.200600529
- 17. Tylor, M. S.; Jacobson, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520–1543. doi:10.1002/anie.200503132
- Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713–5743. doi:10.1021/cr068373r
- Yu, X.; Wang, W. Chem.–Asian J. 2008, 3, 516–532. doi:10.1002/asia.200700415
- 20. Connon, S. J. Synlett 2009, 354–376. doi:10.1055/s-0028-1087557
- 21. Tsogoeva, S. B. *Eur. J. Org. Chem.* **2007,** 1701–1716. doi:10.1002/ejoc.200600653
- 22. Almaşi, D.; Alonso, D. A.; Nájera, D. *Tetrahedron: Asymmetry* **2007**, *18*, 299–365. doi:10.1016/j.tetasy.2007.01.023
- Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
- 24. Calderari, G.; Seebach, D. Helv. Chim. Acta 1985, 68, 1592–1604. doi:10.1002/hlca.19850680611
- 25. Ballini, R.; Petrini, M. *Tetrahedron* **2004**, *60*, 1017–1047. doi:10.1016/j.tet.2003.11.016
- Czekelius, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2005, 44, 612–615. doi:10.1002/anie.200461879

- 27. Hamashima, Y.; Hotta, D.; Sodeoka, M. J. Am. Chem. Soc. 2002, 124, 11240–11241. doi:10.1021/ja027075i
- 28. Wu, F.; Li, H.; Hong, R.; Deng, L. Angew. Chem., Int. Ed. 2006, 45, 947–950. doi:10.1002/anie.200502658
- 29. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2006, 47, 4565–4568. doi:10.1016/j.tetlet.2006.05.003
- Bartoli, G.; Bosco, M.; Carlone, A.; Cavalli, A.; Locatelli, M.; Mazzanti, A.; Ricci, P.; Sambri, L.; Melchiorre, P. *Angew. Chem., Int. Ed.* **2006**, *45*, 4966–4970. doi:10.1002/anie.200600370
- Rigby, C. L.; Dixon, D. J. Chem. Commun. 2008, 3798–3800. doi:10.1039/B805233F
- 32. Jung, S. H.; Kim, D. Y. Tetrahedron Lett. 2008, 49, 5527–5530. doi:10.1016/j.tetlet.2008.07.041
- Capuzzi, M.; Perdicchia, D.; Jørgensen, K. A. Chem.–Eur. J. 2008, 14, 128–135. doi:10.1002/chem.200701317
- 34. Zhou, W.-M.; Liu, H.; Du, D.-M. Org. Lett. 2008, 10, 2817–2820. doi:10.1021/ol800945e
- Wu, R.; Chang, X.; Lu, A.; Wang, Y.; Wu, G.; Song, H.; Zhou, Z.; Tang, C. *Chem. Commun.* **2011**, *47*, 5034–5036. doi:10.1039/c1cc10797f
- 36. Yang, W.; Du, D.-M. Adv. Synth. Catal. 2011, 353, 1241–1246. doi:10.1002/adsc.201000981
- 37. Kang, Y. K.; Kwon, B. K.; Mang, J. Y.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 3247–3249. doi:10.1016/j.tetlet.2011.04.084
- 38. Kang, Y. K.; Suh, K. H.; Kim, D. Y. Synlett 2011, 1125–1128. doi:10.1055/s-0030-1259932
- 39. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356–2358. doi:10.1016/j.tetlet.2011.02.087
- 40. Kang, S. H.; Kim, D. Y. Adv. Synth. Catal. 2010, 352, 2783–2786. doi:10.1002/adsc.201000515
- Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906–2908. doi:10.1016/j.tetlet.2010.03.105
- 42. Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847–11849. doi:10.1021/ja103786c
- Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759–761. doi:10.1016/j.jfluchem.2009.06.002
- 44. Oh, Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674–4676. doi:10.1016/j.tetlet.2009.06.003
- 45. Lee, H. J.; Kang, S. H.; Kim, D. Y. Synlett 2011, 1559–1562. doi:10.1055/s-0030-1260770
- 46. Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420–424. doi:10.1055/s-0030-1259319
- 47. Kim, S. M.; Lee, J. H.; Kim, D. Y. Synlett 2008, 2659–2662. doi:10.1055/s-0028-1083510

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.8.78