

A practical synthesis of long-chain iso-fatty acids (iso-C₁₂–C₁₉) and related natural products

Mark B. Richardson and Spencer J. Williams*

Full Research Paper	Open Access
Address: School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia	<i>Beilstein J. Org. Chem.</i> 2013, <i>9,</i> 1807–1812. doi:10.3762/bjoc.9.210
	Received: 11 June 2013
Email:	Accepted: 15 August 2013
Spencer J. Williams [*] - sjwill@unimelb.edu.au	Published: 04 September 2013
* Corresponding author	Associate Editor: H. Ritter
Keywords: chemoselective reduction; Evans' auxiliary; Grignard addition; homologation; ionic hydrogenation	© 2013 Richardson and Williams; licensee Beilstein-Institut. License and terms: see end of document.

Abstract

A gram-scale synthesis of terminally-branched iso-fatty acids (iso- C_{12} – C_{19}) was developed commencing with methyl undec-10enoate (methyl undecylenate) (for iso- C_{12} – C_{14}) or the C_{15} and C_{16} lactones pentadecanolide (for iso- C_{15} – C_{17}) and hexadecanolide (for iso- C_{18} – C_{19}). Central to the approaches outlined is the two-step construction of the terminal isopropyl group through addition of methylmagnesium bromide to the ester/lactones and selective reduction of the resulting tertiary alcohols. Thus, the C_{12} , C_{17} and C_{18} iso-fatty acids were obtained in three steps from commercially-available starting materials, and the remaining C_{13} – C_{16} and C_{19} iso-fatty acids were prepared by homologation or recursive dehomologations of these fatty acids or through intercepting appropriate intermediates. Highlighting the synthetic potential of the iso-fatty acids and various intermediates prepared herein, we describe the synthesis of the natural products (*S*)-2,15-dimethylpalmitic acid, (*S*)-2-hydroxy-15-methylpalmitic acid, and 2-oxo-14methylpentadecane.

Introduction

Long-chain iso-fatty acids occur in a broad range of organisms, and are especially abundant in bacteria where, through incorporation into phospholipids, they influence membrane fluidity [1]. Emerging evidence has revealed unexpected roles for certain iso-fatty acids; for example iso- C_{15} and iso- C_{17} fatty acids have been shown to be essential in the development of the model eukaryote *Caenorhabditis elegans* [2]. They are present as esters and amides in natural products including septacidin [3], teicoplanins [4], tunicaminyluracil-based antibiotics [5] (tunicamycins [6], corynetoxins [7], and streptovirudins [8]), the arylomycin glycopeptide antibiotics [9,10], maradolipids [11], plipastatin-type lipopeptides [12], Nod factors [13], glycosylglycerides [14,15], phosphoglycolipids [16], and various sphingolipids [17-19]. The terminal isopropyl group of the iso-fatty acids arises from valine and leucine, which through transamination and decarboxylation reactions yield isobutyryl-CoA and isovaleryl-CoA [20]. These starter units are elongated by fatty acid synthases to the final iso-fatty acids (even numbered for isobutyryl-CoA; odd-numbered for isovaleryl-CoA) through extension with malonyl-CoA [21,22]. Long-chain iso-fatty acids are important analytical reference compounds owing to the presence of these materials in tobacco [23], wool wax [24], butter fat [25], human sebaceous secretions [26] (adult skin [27], meibum [28], cerumen [29], and newborn vernix caseosa [30,31]), and a wide variety of microbiological samples [1].

Previous syntheses of iso-fatty acids have typically utilized extended, multi-step sequences. Two main approaches have been used: (1) two-component cross-couplings that include α -ketoester alkylation/decarboxylation [32,33], aldehyde–olefin photoaddition [34], acetylide alkylation (sp³-sp) [35,36], Wittig coupling [3,21,37-39], Kolbe electrosynthesis [35,40-42], organocadmium (sp²–sp³) [43-46], organomagnesium (sp²–sp³) [47], or organocopper (sp³–sp³) [48,49] cross-couplings; or (2) bidirectional extension of a central thiophene C₄-fragment [50]. Two fundamentally different approaches worth special mention are the synthesis of the iso-C₁₄ acid 3 by direct hydro-isopropylation of the terminal alkene of methyl undecylenate (available as a pyrolysis product of ricinoleic acid) using isopropyl chloroformate and ethyldichloroaluminium [51], and the synthesis of the iso- C_{17} acid 6 from methyl ustilate (15,16-dihydroxypalmitate) [52]. Despite the interest in natural products containing iso-fatty acids, these compounds are not readily acquired in multigram quantities due to the complexity of the synthetic routes or limited availability of starting materials. To overcome these problems, we report the scalable, gram-scale syntheses of eight common iso-C₁₂-C₁₉ acids 1-8 (Figure 1), from readily

available starting materials. To illustrate the opportunities that our approach provides, we demonstrate the elaboration of the C_{17} -iso-fatty acid **6** and an intermediate, **22**, to several terminalbranched natural products that have not previously been synthesized.

Results and Discussion

Our approach to the iso- C_{12} – C_{14} fatty acids 1–3 commenced from methyl undec-10-enoate (methyl undecylenate) 9. Reaction of 9 with methylmagnesium bromide afforded the tertiary alcohol 10 in 98% yield (Scheme 1). Selective reduction of the tertiary alcohol of 10 was achieved by 'ionic hydrogenation' with triethylsilane and BF₃·Et₂O [53], affording 11. Oxidative cleavage of 11 with KMnO₄/Bu₄NBr [54] afforded iso- C_{12} acid 1. Alternatively, anti-Markovnikov hydration of 11, using I₂/ NaBH₄ then hydrogen peroxide [55], afforded the alcohol 12, and oxidation of 12 with KMnO₄/Bu₄NBr afforded iso- C_{13} acid 2. Alternatively, alcohol 12 could be intercepted and converted to the mesylate 13 using MsCl/Et₃N [56] and thence the nitrile 14 (KCN in DMSO/THF). Finally, hydrolysis of the nitrile 14 with NaOH in H₂O/EtOH afforded iso- C_{14} acid 3.

Scheme 1: Synthesis of iso-C₁₂ **1**, iso-C₁₃ **2**, and iso-C₁₄ **3** fatty acids from methyl undecylenate (**9**). Reagents and conditions: (a) MeMgBr, THF, 98%; (b) BF₃:Et₂O, Et₃SiH, CH₂Cl₂, 99%; (c) KMnO₄, Bu₄NBr, AcOH, H₂O, 88% for **1**, 96% for **2**; (d) i) I₂, NaBH₄, THF, ii) H₂O₂, 95%; (e) MsCl, Et₃N, CH₂Cl₂, 98%; (f) KCN, DMSO, THF, 72%; (g) aq NaOH, EtOH, 96%.

The iso- C_{15} - C_{17} fatty acids **4–6** were prepared from the readily available C_{15} lactone pentadecanolide (exaltolide, **15**) [57], a natural product that is produced industrially for use as a muskodored perfumery fixative. Reaction of **15** with methylmagnesium bromide afforded the tertiary alcohol **16** in 98% yield (Scheme 2). Selective reduction of the tertiary alcohol of **16** was achieved using triethylsilane/BF₃·Et₂O [53], yielding **17**. Finally, oxidation of **17** with KMnO₄/Bu₄NBr [54] afforded the iso- C_{17} acid **6**. The iso- C_{15} acid **4** and iso- C_{16} acid **5** were prepared by recursive dehomologation through intercepting the alcohol **17**. Preparation of the xanthate ester **18** (NaH, CS₂, then MeI) [58] followed by Chugaev elimination afforded the terminal alkene **19**. Oxidative cleavage of **19** using KMnO₄/Bu₄NBr [54] afforded iso-C₁₆ acid **5**. Reduction of **5** (BH₃·Me₂S) [59] afforded the alcohol **20** that when subjected to the same transformations as before, via the xanthate ester **21**, delivered the terminal alkene **22**. Finally, oxidative cleavage (KMnO₄/Bu₄NBr) [54] of **22** afforded iso-C₁₅ acid **4**.

The iso- C_{18} 7 and iso- C_{19} 8 fatty acids were synthesized through similar approaches from the related C_{16} lactone hexadecanolide 23 [60] (Scheme 3). Reaction of 23 with methylmag-

nesium bromide afforded **24**; triethylsilane/BF₃·Et₂O [53] reduction gave **25**; and KMnO₄/Bu₄NBr oxidation afforded iso- C_{18} acid **7** (Scheme 3). The iso- C_{19} acid **8** was readily prepared by a three-step homologation through intercepting the alcohol **25**. Thus, mesylation of **25** (MsCl/Et₃N [56]) afforded **26**; substitution (KCN/DMSO) afforded the nitrile **27**; and hydrolysis (NaOH in H₂O/EtOH) of **27** afforded **8**.

The above routes enable the acquisition of (multi)gram quantities of the iso-C₁₂₋₁₉ acids 1-8, and provide opportunities for their use as starting materials for the preparation of more complex fatty acids. To illustrate their potential we undertook the synthesis of several representative natural products (Scheme 4). 2,15-Dimethylpalmitic acid has been isolated from a microaerophilic subsurface microbial community [61], and is a component of human newborn vernix caseosa [31], although the absolute configuration of natural samples has not been determined. Conversion of iso-C₁₇ acid 6 to the N-acyloxazolidinone 28 was achieved using pivalyl chloride/LiCl [62] and (S)-4-benzyloxazolidinone. Diastereoselective methylation [63] of the chelated Z-enolate, derived from deprotonation of 28, using NaHMDS, followed by addition of iodomethane, yielded 29 as a single diastereoisomer (as determined by ¹H NMR) in 80% yield. Cleavage of the chiral auxiliary using LiOH/H2O2 (which occurs without racemization at the α -position) [64] afforded (S)-2,15-dimethylpalmitic acid (30) in 98% yield. 2-Hydroxy-15methylpalmitic acid has been identified from a range of sources [1] including the myxobacterium Stigmatella aurantiaca [21,65], and the oral bacterium Veillonella parvula [66], although the absolute configuration has not been reported. Diastereoselective hydroxylation [67] of the chelated Z-enolate derived from **28** using the Davis oxaziridine [68] afforded the 2-hydroxy compound **31** as a single diastereoisomer (as determined by ¹H NMR) in 71% yield. Esterification with MeOMgCl [69] (which has been shown not to cause epimerization at the α -position [67]) and saponification [70] afforded (*S*)-2-hydroxy-15-methylpalmitic acid (**32**). The ketone **33** was isolated from *Xanthomonas campestris* pv. *vesicatoria* 85-10 [71]. A direct one step synthesis of **33** was achieved in 51% yield by Wacker oxidation using Pd/O₂ [72] of the alkene **22**, intercepted from the synthesis of the iso-C₁₅ acid **4**.

Conclusion

We have accomplished a highly practical synthesis of the homologous iso-fatty acids 1–8. The iso- C_{12} 1, iso- C_{17} 6 and iso- C_{18} 7 acids were prepared from commercially-available starting materials through three-step sequences and produced more than 1 g of each of the three iso-fatty acids in just 2 days each. The remaining five fatty acids were each prepared on >1 g scale by homologation or dehomologation reactions, or through the elaboration of intermediates in the synthesis of 1. Underscoring the practicability of this approach, the iso-fatty acids or appropriate intermediates were used for the preparation of three natural products, enantiopure acids 30 and 32, and the ketone 33. The simplicity of our approach suggests that it will be of great utility in the preparation of iso-fatty acids for incorporation into more complex molecules.

Scheme 4: Synthesis of (A) 2-methyl- and 2-hydroxy-iso-fatty acids 30 and 32, and (B) the ketone 33. Reagents and conditions: (a) Et₃N, PivCl, LiCl, DMAP, (S)-4-benzyloxazolidinone, 71%; (b) NaHMDS, MeI, THF, 80%; (c) LiOH, H₂O₂, THF, H₂O, 98%; (d) NaHMDS, Davis oxaziridine, THF, 71%; (e) i) iPrMgCl, MeOH, 76%, ii) NaOH, MeOH, 83%; (f) O₂, PdCl₂, DMA, H₂O, 51%.

Supporting Information

Supporting Information File 1

Experimental part. [http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-9-210-S1.pdf]

Supporting Information File 2

NMR spectra.

[http://www.beilstein-journals.org/bjoc/content/ supplementary/1860-5397-9-210-S2.pdf]

Acknowledgements

The authors thank the Australian Research Council for financial support.

References

- 1. Kaneda, T. Microbiol. Rev. 1991, 55, 288-302.
- Kniazeva, M.; Crawford, Q. T.; Seiber, M.; Wang, C. Y.; Han, M. PLoS Biol. 2004, 2, E257. doi:10.1371/journal.pbio.0020257
- Acton, E. M.; Ryan, K. J.; Luetzow, A. E. J. Med. Chem. 1977, 20, 1362–1371. doi:10.1021/jm00221a002
- Borghi, A.; Antonini, P.; Zanol, M.; Ferrari, P.; Zerilli, L. F.; Lancini, G. C. J. Antibiot. 1989, 42, 361–366. doi:10.7164/antibiotics.42.361
- Cockrum, P. A.; Edgar, J. A. J. Chromatogr. 1983, 268, 245–254. doi:10.1016/S0021-9673(01)95411-1
- Ito, T.; Takatsuki, A.; Kawamura, K.; Sato, K.; Tamura, G. Agric. Biol. Chem. 1980, 44, 695–698. doi:10.1271/bbb1961.44.695
- Edgar, J. A.; Frahn, J. L.; Cockrum, P. A.; Anderton, N.; Jago, M. V.; Culvenor, C. C. J.; Jones, A. J.; Murray, K.; Shaw, K. J. *J. Chem. Soc., Chem. Commun.* **1982**, 222–224. doi:10.1039/C39820000222
- Eckardt, K.; Wetzstein, H.; Thrum, H.; Ihn, W. J. Antibiot. 1980, 33, 908–910. doi:10.7164/antibiotics.33.908
- Kulanthaivel, P.; Kreuzman, A. J.; Strege, M. A.; Belvo, M. D.; Smitka, T. A.; Clemens, M.; Swartling, J. R.; Minton, K. L.; Zheng, F.; Angleton, E. L.; Mullen, D.; Jungheim, L. N.; Klimkowski, V. J.; Nicas, T. I.; Thompson, R. C.; Peng, S.-B. *J. Biol. Chem.* **2004**, *279*, 36250–36258. doi:10.1074/jbc.M405884200
- Liu, J.; Luo, C.; Smith, P. A.; Chin, J. K.; Page, M. G. P.; Paetzel, M.; Romesberg, F. E. J. Am. Chem. Soc. 2011, 133, 17869–17877. doi:10.1021/ja207318n
- Penkov, S.; Mende, F.; Zagoriy, V.; Erkut, C.; Martin, R.; Pässler, U.; Schuhmann, K.; Schwudke, D.; Gruner, M.; Mäntler, J.; Reichert-Müller, T.; Shevchenko, A.; Knölker, H.-J.; Kurzchalia, T. V. *Angew. Chem., Int. Ed.* **2010**, *49*, 9430–9435. doi:10.1002/anie.201004466
- Esumi, Y.; Suzuki, Y.; Itoh, Y.; Chijimatsu, M.; Uramoto, M.; Kimura, K.-i.; Nakayama, S.; Yoshihama, M.; Ichikawa, T.; Haramo, T.; Fujishige, J. J. Antibiot. 2003, 56, 716–720. doi:10.7164/antibiotics.56.716

- Poinsot, V.; Bélanger, E.; Laberge, S.; Yang, G.-P.; Antoun, H.; Cloutier, J.; Treilhou, M.; Dénarié, J.; Promé, J.-C.; Debellé, F. *J. Bacteriol.* 2001, *183*, 3721–3728. doi:10.1128/JB.183.12.3721-3728.2001
- 14. Hunter, S. W.; McNeil, M. R.; Brennan, P. J. J. Bacteriol. **1986**, *168*, 917–922.
- Orgambide, G. G.; Hollingsworth, R. I.; Dazzo, F. B. Carbohydr. Res. 1992, 233, 151–159. doi:10.1016/S0008-6215(00)90927-3
- 16. Fujimoto, Y.; Mitsunobe, K.; Fujiwara, S.; Mori, M.; Hashimoto, M.; Suda, Y.; Kusumoto, S.; Fukase, K. Org. Biomol. Chem. 2013, 11, 5034–5041. doi:10.1039/c3ob40899j
- Minamino, M.; Sakaguchi, I.; Naka, T.; Ikeda, N.; Kato, Y.; Tomiyasu, I.; Yano, I.; Kobayashi, K. *Microbiology* **2003**, *149*, 2071–2081. doi:10.1099/mic.0.25922-0
- 18. Nakayama, M. Seikatsu Eisei 1998, 42, 135–148.
- 19. Yano, I.; Tomiyasu, I.; Yabuuchi, E. *FEMS Microbiol. Lett.* **1982**, *15*, 303–307. doi:10.1111/j.1574-6968.1982.tb00239.x
- Schulz, S.; Dickschat, J. S. Nat. Prod. Rep. 2007, 24, 814–842. doi:10.1039/b507392h
- Dickschat, J. S.; Bode, H. B.; Kroppenstedt, R. M.; Müller, R.; Schulz, S. Org. Biomol. Chem. 2005, 3, 2824–2831. doi:10.1039/b504889c
- 22. Dickschat, J. S.; Bruns, H.; Riclea, R. *Beilstein J. Org. Chem.* **2011**, *7*, 1697–1712. doi:10.3762/bjoc.7.200
- Kolattukudy, P. E. *Plant Physiol.* **1968**, *43*, 375–383. doi:10.1104/pp.43.3.375
- 24. Weitkamp, A. W. J. Am. Chem. Soc. 1945, 67, 447–454. doi:10.1021/ja01219a027
- 25. Hansen, R. P.; Shorland, F. B. Biochem. J. 1951, 50, 207–210.
- 26. James, A. T.; Wheatley, V. R. Biochem. J. 1956, 63, 269-273.
- Nicolaides, N.; Apon, J. M. B. *Biomed. Mass Spectrom.* 1977, 4, 337–347. doi:10.1002/bms.1200040604
- Harvey, D. J.; Tiffany, J. M.; Duerden, J. M.; Pandher, K. S.; Mengher, L. S. J. Chromatogr. **1987**, *414*, 253–263. doi:10.1016/0378-4347(87)80051-8
- 29. Harvey, D. J. Biomed. Environ. Mass Spectrom. 1989, 18, 719–723. doi:10.1002/bms.1200180912
- 30. Nicolaides, N. Lipids 1971, 6, 901-905. doi:10.1007/BF02531172
- Nicolaides, N.; Apon, J. M. Lipids 1976, 11, 781–790. doi:10.1007/BF02533404
- Arosenius, K. E.; Stallberg, G.; Stenhagen, E.; Tagtstrom-Eketorp, B. Ark. Kemi, Mineral. Geol. 1948, 26A, 20.
- Weitzel, G.; Wojahn, J. Hoppe-Seyler's Z. Physiol. Chem. 1951, 287, 65–89. doi:10.1515/bchm2.1951.287.1-6.65
- 34. Buu-Hoi, N. G. P. Recl. Trav. Chim. Pays-Bas 1953, 72, 84–87. doi:10.1002/recl.19530720110
- Hougen, F. W.; Ilse, D.; Sutton, D. A.; de Villiers, J. P. J. Chem. Soc. 1953, 98–102. doi:10.1039/JR9530000098
- 36. Silvius, J. R.; McElhaney, R. N. Chem. Phys. Lipids 1979, 24, 287–296. doi:10.1016/0009-3084(79)90034-3
- Bergel'son, L. D.; Vaver, V. A.; Bezzubov, A. A.; Shemyakin, M. M. Zh. Obshch. Khim. 1962, 32, 1807–1811.
- Carballeira, N.; Thompson, J. E.; Ayanoglu, E.; Djerassi, C. J. Org. Chem. 1986, 51, 2751–2756. doi:10.1021/jo00364a024
- Shioiri, T.; Terao, Y.; Irako, N.; Aoyama, T. Tetrahedron 1998, 54, 15701–15710. doi:10.1016/S0040-4020(98)00984-3
- Milburn, A. H.; Truter, E. V. J. Chem. Soc. 1954, 3344–3351. doi:10.1039/jr9540003344
- Norén, B.; Odham, G. *Lipids* 1973, *8*, 573–583. doi:10.1007/BF02532714

- 42. Streibl, M.; Jarolimek, P.; Wollrab, V. Collect. Czech. Chem. Commun. 1964, 29, 2522–2527. doi:10.1135/cccc19642522
- 43. Akiya, S.; Nakazawa, Y. Yakugaku Zasshi 1956, 76, 1403-1405.
- 44. Balzer, T.; Budzikiewicz, H. Z. Naturforsch., B: Chem. Sci. **1987**, 42, 1367–1368.
- Cason, J. J. Am. Chem. Soc. 1942, 64, 1106–1110. doi:10.1021/ja01257a029
- 46. Stein, J.; Budzikiewicz, H. Z. Naturforsch., B: Chem. Sci. 1987, 42, 1017–1020.
- 47. Fordyce, C. R.; Johnson, J. R. J. Am. Chem. Soc. **1933**, *55*, 3368–3372. doi:10.1021/ja01335a054
- Edmunds, A. J. F.; Aluja, M.; Diaz-Fleischer, F.; Patrian, B.;
 Hagmann, L. *Chimia* 2010, 64, 37–42. doi:10.2533/chimia.2010.37
- 49. Takikawa, H.; Nozawa, D.; Kayo, A.; Muto, S.-e.; Mori, K. J. Chem. Soc., Perkin Trans. 1 1999, 2467–2477. doi:10.1039/A904258J
- McGhie, J. F.; Ross, W. A.; Evans, D.; Tomlin, J. E. J. Chem. Soc. 1962, 350–355. doi:10.1039/JR9620000350
- 51. Biermann, U.; Metzger, J. O. *J. Am. Chem. Soc.* **2004**, *126*, 10319–10330. doi:10.1021/ja048904y
- Crossley, A. T.; Craig, B. M. Can. J. Chem. 1955, 33, 1426–1432. doi:10.1139/v55-171
- 53. Orfanopoulos, M.; Smonou, I. Synth. Commun. **1988**, *18*, 833–839. doi:10.1080/00397918808057852
- 54. Herriott, A. W.; Picker, D. *Tetrahedron Lett.* **1974**, *15*, 1511–1514. doi:10.1016/S0040-4039(01)93123-5
- 55. Prasad, A. S. B.; Kanth, J. V. B.; Periasamy, M. *Tetrahedron* **1992**, *48*, 4623–4628. doi:10.1016/S0040-4020(01)81236-9
- Crossland, R. K.; Servis, K. L. J. Org. Chem. 1970, 35, 3195–3196. doi:10.1021/jo00834a087
- 57. Kerschbaum, M. Ber. Dtsch. Chem. Ges. 1927, 60, 902–909. doi:10.1002/cber.19270600411
- Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574–1585. doi:10.1039/P19750001574
- 59. Adams, R. M.; Braun, L. M.; Braun, R. A.; Crissman, H. R.; Opprman, M. J. Org. Chem. **1971**, *36*, 2388–2389. doi:10.1021/jo00815a047
- 60. Bougault, J. C. R. Acad. Sci. 1910, 150, 874-876.
- Hedrick, D.; Peacock, A.; Long, P.; White, D. Lipids 2008, 43, 843–851. doi:10.1007/s11745-008-3206-1
- Ho, G.-J.; Mathre, D. J. J. Org. Chem. 1995, 60, 2271–2273. doi:10.1021/jo00112a060
- Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737–1739. doi:10.1021/ja00370a050
- Evans, D. A.; Britton, T. C.; Ellman, J. A. *Tetrahedron Lett.* 1987, 28, 6141–6144. doi:10.1016/S0040-4039(00)61830-0
- Fautz, E.; Rosenfelder, G.; Grotjahn, L. J. Bacteriol. 1979, 140, 852–858.
- 66. Leuckfeld, I.; Paster, B. J.; Kristoffersen, A. K.; Olsen, I. APM/S 2010, 118, 230–242. doi:10.1111/j.1600-0463.2009.02584.x
- 67. Evans, D. A.; Morrissey, M. M.; Dorow, R. L. J. Am. Chem. Soc. 1985, 107, 4346–4348. doi:10.1021/ja00300a054
- Davis, F. A.; Chattopadhyay, S.; Towson, J. C.; Lal, S.; Reddy, T. J. Org. Chem. 1988, 53, 2087–2089. doi:10.1021/jo00244a043
- Verma, R.; Ghosh, S. J. Chem. Soc., Perkin Trans. 1 1999, 265–270. doi:10.1039/A808840C
- Theodorou, V.; Skobridis, K.; Tzakos, A. G.; Ragoussis, V. Tetrahedron Lett. 2007, 48, 8230–8233. doi:10.1016/j.tetlet.2007.09.074

- Weise, T.; Kai, M.; Gummesson, A.; Troeger, A.; von Reuß, S.; Piepenborn, S.; Kosterka, F.; Sklorz, M.; Zimmermann, R.; Francke, W.; Piechulla, B. *Beilstein J. Org. Chem.* **2012**, *8*, 579–596. doi:10.3762/bjoc.8.65
- 72. Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Angew. Chem., Int. Ed. 2006, 45, 481–485. doi:10.1002/anie.200502886

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the *Beilstein Journal of Organic Chemistry* terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.9.210