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C-H Functionalization has the potential to become a paradigm-
shifting strategy for organic synthesis. Over the last decade, the
field has experienced explosive growth and a large variety of
new C—H functionalization methodologies have been devel-
oped. In particular, regioselective functionalization of sp> C—H
bonds has become a broadly flexible approach for the synthesis
of complex aromatic carbocycles and heterocycles. In several
instances the substrates have a natural preference for function-
alization at specific C—H bonds. Alternatively, selective
functionalization is achieved by using a directing group to
orient the catalyst in a defined position. These types of syn-
thetic strategies are already having a significant impact on the
streamlined synthesis of important compounds for the pharma-

ceutical industry and materials science.

The selective functionalization of sp3 C—H bonds is a
more challenging proposition, but in recent years significant
advances have been made to suggest that even these types
of transformations can become broadly applicable. Metal-
bound carbenes, nitrenes and oxo species have been
particularly effective at stereoselective sp3 C—H function-
alization. However, considerable advances still need to
be made to enhance the selectivity and to increase the range
of functionality that can be introduced in these types of
reactions.
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The fundamental principles of a number of C—H function-
alization transformations have been established but, in many
regards, the field is still in its infancy. The ultimate goal would
be to have generally programmable and controllable methods
for the highly selective C—H functionalization of complex
systems at will. To achieve this, it will be necessary to have an
extensive toolbox of catalysts and reagents to override the
natural site selectivity of any given substrate. Therefore, a
greater range of reaction types need to be developed and a
better mechanistic understanding of the controlling elements of
the various methods has to be obtained.

This Thematic Series highlights some of the novel approaches
that are applied to the field of C—H functionalization and I thank
all the authors for their exciting contributions. The series covers
topics that range from novel catalyst design, new synthetic
methods, and cascade sequences that incorporate C—H function-
alization. The articles illustrate the exciting opportunities for
innovation that exist in C—H functionalization research, and
hopefully, will inspire others to explore new research directions

in this area.
Huw M. L. Davies
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Direct C2-alkylation of an indole bearing a readily removable N-pyrimidyl group with a vinylsilane was achieved by using a cobalt

catalyst generated in situ from CoBrj,, bathocuproine, and cyclohexylmagnesium bromide. The reaction allows coupling between a

series of N-pyrimidylindoles and vinylsilanes at a mild reaction temperature of 60 °C, affording the corresponding alkylated indoles

in moderate to good yields.

Introduction

The indole ring ubiquitously occurs in biologically active
natural and unnatural compounds [1-3]. Consequently, there has
been a strong demand for catalytic methods allowing efficient
and regioselective functionalization of indole derivatives [4-6].
Over the past decade, transition-metal-catalyzed direct function-
alization has emerged as a powerful strategy for the direct intro-
duction of aryl and alkenyl groups to the C2 and C3 positions of
indole [7-9]. The situation is different when it comes to direct
C—H alkylation [10,11]. The intrinsically nucleophilic C3 posi-
tion of indole is amenable to a variety of catalytic alkylation
reactions such as Friedel-Crafts reaction [5]. On the other hand,
C2-alkylation of indoles has traditionally required 2-lithio-
indoles generated by C2-lithiation with a stoichiometric lithium

base or indol-2-yl radicals generated from 2-halogenated
indoles [12-17]. Examples of direct C2-alkylation via transition-
metal-catalyzed C—H activation are still limited [18-20], while
Jiao and Bach recently reported an elegant palladium-catalyzed,
norbornene-mediated C2-alkylation reaction with a broad spec-
trum of alkyl bromides [21].

Over the past few years, our group and others have explored
C-H bond functionalization reactions using cobalt complexes as
inexpensive transition-metal catalysts [22], which often feature
mild reaction conditions and unique regioselectivities [23-32].
As a part of this research program, we have recently reported a

C2-alkenylation reaction of N-pyrimidylindoles with internal
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Scheme 1: (a) Cobalt-catalyzed C2-alkenylation of N-pyrimidylindole, (b) ortho-alkylation of aryl imine, and (c) C2-alkylation of N-pyrimidylindole.

alkynes catalyzed by a cobalt—pyridylphosphine complex
(Scheme 1a) [33], in which the pyrimidyl group functions as a
readily removable directing group [34]. We also reported an
ortho-alkylation reaction of aromatic imines with vinylsilanes
and simple olefins using a cobalt—phenanthroline catalyst
(Scheme 1b) [35]. Building on these studies, we have devel-
oped a cobalt—bathocuproine catalyst for the direct C2-alkyl-
ation reaction of N-pyrimidylindoles with vinylsilanes, which is
reported herein (Scheme 1c¢).

Results and Discussion

Our study commenced with the optimization of the reaction of
N-pyrimidylindole 1a with vinyltrimethylsilane (2a). The
combination of CoBr; (10 mol %), 1,10-phenanthroline (phen,
10 mol %) and neopentylmagnesium bromide (100 mol %),
which was effective for ortho-alkylation of aromatic imines
[35], afforded the desired adduct 3aa in only 17% yield accom-
panied by a small amount of a C2-neopentylated product 4
(Table 1, entry 1). Subsequent examination of phenanthroline
and bipyridine-type ligands (Table 1, entries 2—5) revealed that
2,9-dimethyl-1,10-phenanthroline (neocuproine) and 2,9-
dimethyl-4,7-diphenylphenanthroline (bathocuproine)
improved the yield of 3aa, while the byproduct 4 could not be
suppressed (Table 1, entries 3 and 4). The P,N-bidentate ligand
pyphos, which was the optimum ligand for the alkenylation
reaction [33], was poorly effective (Table 1, entry 6).

Additional screening of N-heterocyclic carbene (NHC) and
phosphine ligands did not lead to an improvement of the
catalytic efficiency (Table 1, entries 7-9). The reaction turned
out to be sensitive to the amount of the Grignard reagent, as
reduction of its loading from 100 to 60 mol % improved the
yield of 3aa while suppressing the formation of byproduct 4
(Table 1, entry 10).

Next, we performed screening of Grignard reagents using
bathocuproine as the ligand (Table 2). Among Grignard
reagents without f-hydrogen atoms, neopentyl- and phenylmag-
nesium bromides afforded 3aa in comparable yields (Table 2,
entries 1 and 4), while trimethylsilylmethyl- and methylmagne-
sium chlorides gave much poorer results (Table 2, entries 2 and
3). Primary and secondary alkyl Grignard reagents also
promoted the reaction, in which the reaction efficiency was
strongly dependent on the alkyl group (Table 2, entries 5-10).
We identified cyclohexylmagnesium bromide as the optimum
Grignard reagent, which afforded 3aa in 69% isolated yield
without formation of the cross-coupling product 4 between 1a
and the Grignard reagent.

With the optimized catalytic system in hand, we explored the
scope of the reaction (Scheme 2). A variety of N-pyrimidylin-
doles participated in the reaction with vinyltrimethylsilane to
afford the alkylation products 3ba—3ia in moderate yields, with
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Table 1: Screening of ligands.?
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entry ligand (mol %) yield (%)P
3aa 4
1 phen (10) 17 7
2 bathophen (10) 11 7
3 neocup (10) 32 12
4 bathocup (10) 34 20
5 dtbpy (10) 1 3
6 pyphos (10) 2 3
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8 PPh; (20) 9 5
9 P(3-CICgHa)3 (20) 23 11
10¢ bathocup 50 10

aReaction was performed on a 0.3 mmol scale. PDetermined by GC using n-tridecane as an internal standard. 60 mol % of +-BuCH,MgBr was used.

Table 2: Screening of Grignard reagents.?
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Table 2: Screening of Grignard reagents.? (continued)
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aReaction was performed on a 0.3 mmol scale. PDetermined by GC using n-tridecane as an internal standard. Clsolated yield.
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Scheme 2: Addition of N-pyrimidylindoles to vinylsilanes.
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Scheme 3: Addition of N-pyrimidylindole to norbornene (a) and 1-octene (b).

tolerance of electron-withdrawing (F and Cl) and electron-
donating (OMe) substituents and steric hindrance at the C3 and
C7 positions. Unlike the cobalt-catalyzed C2-alkenylation reac-
tion (Scheme la) [33], the reaction did not tolerate a cyano
group on the indole substrate. In addition, N-pyrimidyl benzimi-
dazole did not participate in the present alkylation reaction,
although it was a good substrate for the C2-alkenylation reac-
tion. A pyridyl group served as an alternative directing group to
the pyrimidyl group, affording the alkylation product 3ka in
80% yield. On the other hand, an N,N-dimethylcarbamoyl
group, which was previously used as a directing group for
rhodium-catalyzed C2-alkenylation [36], was entirely ineffec-
tive. Vinylsilanes bearing dimethylphenylsilyl and triphenyl-
silyl groups were amenable to the addition reaction with 1a,
affording the adduct 3ab and 3ac in modest yields. Vinyltri-
ethoxysilane also reacted with 1a in 20% yield, although the
product could not be separated in a pure form.

Unfortunately, the present catalytic system was not very effec-
tive for C2-alkylation with simple olefins. The reaction of 1a

CoBr; (10 mol %)
bathocup (10 mol %)

THF, 60 °C, 12 h

3ae, 9% (GC)

with norbornene (2d) afforded the alkylation product 3ad in
30% yield (Scheme 3a). The reaction of 1-octene (2¢) was even
more sluggish, affording the alkylation product 3ae in only 9%
yield (Scheme 3b). Styrene also reacted rather sluggishly to
afford only a small amount of the alkylation product (3% as
estimated by GC and GCMS), the regiochemistry (branched
versus linear) of which has yet to be determined. An acrylate
ester was not tolerable as an olefinic reaction partner because of
the presence of excess Grignard reagent.

The present alkylation reaction could be performed on a prepar-
atively useful scale. Thus, alkylation of 1a with vinyltrimethyl-
silane (2a) on a 5 mmol scale afforded the adduct 3aa in 68%
yield (Scheme 4). Furthermore, the pyrimidyl group on 3aa
could be readily removed by heating with NaOEt in DMSO,
affording the free indole 4aa in 85% yield.

Conclusion
In summary, we have developed a cobalt—bathocuproine cata-
lyst for C2-alkylation of N-pyrimidyl indoles with vinylsilanes.

@ CyMgBr (60 mol %) @JSiMe3
,}\ 2a (1.2 equiv) ,}\ NaOE \ it
7N . - > /
N\\) THF, 60 °C, 12 h N\/\) DMSO, 100 °C H
0,
1a (5 mmol) 3aa, 68% 4aa, 85%

Scheme 4: Gram-scale reaction and deprotection of N-pyrimidyl group.
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The reaction could be performed at a mild temperature of 60 °C,
on a preparatively useful scale. Ensuing studies will focus on
the development of more broadly applicable catalytic systems
for the direct alkylation of indole and other heterocycles.

Experimental

Typical procedure: Cobalt-catalyzed alkylation of
N-pyrimidyl indole 1a with vinylsilane 2a

In a Schlenk tube were placed 1-(pyrimidin-2-yl)-1H-indole
(1a) (58.6 mg, 0.3 mmol), CoBr; (6.6 mg, 0.03 mmol), and
bathocuproine (10.8 mg, 0.03 mmol), which were then
dissolved in THF (1.3 mL). To the solution was added cyclo-
hexylmagnesium bromide (0.60 M in THF, 0.3 mL, 0.18 mmol)
at 0 °C. After stirring for 30 min at this temperature,
vinyltrimethylsilane (2a) (66 pL, 0.45 mmol) was added. The
reaction mixture was stirred at 60 °C for 12 h, and then
quenched with saturated aqueous solution of NH4CI (1.5 mL).
The resulting mixture was extracted with ethyl acetate (3 x
10 mL). The combined organic layer was dried over Na,SOy
and concentrated under reduced pressure. Purification of the
crude product by silica gel chromatography (eluent: hexane/
EtOAc 100:1) afforded the title compound as a colorless oil
(61.2 mg, 69%).

Supporting Information

Supporting Information File 1

Experimental details and characterization data of new
compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-174-S1.pdf]
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The concept of frustrated Lewis pairs (FLPs) has received considerable attention of late, and numerous reports have demonstrated

the power of non- or weakly interacting Lewis acid—base pairs for the cooperative activation of small molecules. Although most

studies have focused on the use of organic or main-group FLPs that utilize steric encumbrance to prevent adduct formation, a

related strategy can be envisioned for both organic and inorganic complexes, in which "electronic frustration" engenders reactivity

consistent with both nucleophilic (basic) and electrophilic (acidic) character. Here we propose that such a description is consistent

with the behavior of many coordinatively unsaturated transition-metal species featuring metal-ligand multiple bonds, and we

further demonstrate that the resultant reactivity may be a powerful tool for the functionalization of C—H and E—H bonds.

Introduction

Orbital cooperation has long been recognized as an important
contributor to the diverse reactivities exhibited by transition-
metal systems with small-molecule substrates. The
Dewar—Chatt—Duncanson model provides a paradigm for this
sort of interaction, where molecules such as H, and alkenes are
activated by a combination of ligand-to-metal ¢ donation and
metal-to-ligand © backbonding [1,2]. The traditional line of
thought was that main-group molecules could not mimic this
sort of behavior due to their more limited redox flexibility and
propensity to form inert Lewis acid—base adducts, but recent

work by Power, Bertrand, and others has shown that a number

of unsaturated main-group compounds can exhibit electronic
properties and reactivity reminiscent of transition metals [3].

A different approach was pioneered by Stephan, who demon-
strated that appropriately encumbered (i.e., "frustrated") Lewis
acids and bases could achieve synergistic heterolytic cleavage
of Hj [4-6], and subsequent work in many laboratories has
shown that such frustrated Lewis pairs (FLPs) may react with a
variety of substrates. Most FLPs involve only main-group acids
and bases (with trialkylphosphines and fluorinated triaryl-
boranes being most common), though recent reports have
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extended the approach to include transition metals as Lewis
acids and bases [7,8].

In this review, we show that the FLP concept may be extended
to encompass certain metal-ligand multiply bonded species,
provided that the metal retains an open coordination site to
facilitate cooperative reactivity. Such complexes may activate
various substrates through the combined action of filled and
empty orbitals on adjacent atoms: a hybrid of the classical
Dewar—Chatt—Duncanson paradigm and normal FLP reactivity
[9,10]. M=E FLPs include two limiting scenarios: (1) early,
electropositive transition metals in high oxidation states that are
attached to m-basic ligands (i.e., M3"=E®"), and (2) late tran-
sition metals in low oxidation states attached to m-acidic ligands
(i.e., Mo™=E®"). The reactivity engendered by such a bonding
situation can in some cases be quite useful in C—H functional-
ization schemes that require cooperative activation of
substrates. One well-defined case with iridium(I) carbenes
generated by multiple C—H activations is explored as a proof of

principle.

Note that the purpose of this review is not to provide an exhaus-
tive list of examples of reactivity consistent with the descrip-
tion of certain metal-ligand multiple bonds as FLPs, thus there
will necessarily be a number of omissions. Instead, this article is
presented in order to show the similarity between many M=E
species and main-group FLPs and provide some inspiration for
how such multiply bonded complexes may be used in C—H

functionalization schemes.

Review

Metal-ligand multiple bonds as FLPs
Electronic basis for FLP behavior of metal-ligand
multiple bonds

As mentioned above, most FLPs rely on steric encumbrance to
minimize the interaction between an electron-rich Lewis base
and an electron-poor Lewis acid. The weakly interacting
acid—base pair is then capable of activating various substrates
by synergistically polarizing bonds, often in a concerted fashion
[6,11-14]. The reaction is favorable, because the small-mole-
cule substrates facilitate a shift in electron density away from
the electron-rich Lewis base and toward the electron-deficient
Lewis acid. In the case where molecular hydrogen interacts with

t-Bu

N /CGF5 H2 t-BU\P__(;:
- P---B oy —> t- Bu\\“' o
t-Bu™ |\ CeFs |
t-BU  CgFs t-Bu

Beilstein J. Org. Chem. 2012, 8, 1554—1563.

a phosphine/borane FLP, this occurs by the formation of a phos-
phonium/borate ion pair (Scheme 1). For unsaturated substrates,
the reaction is better described as an insertion or cycloaddition
(see Scheme 2 for a representative example), but the outcome is

quite similar.

CO,

/\ &/
MesoP----B(CgFs),

Q
MesyR  B(CgFs),

G

Scheme 2: Insertion of carbon dioxide into a phosphine/borane FLP
[14].

The FLP description may easily be extended to transition-metal
species containing multiple bonds to ligands, provided that two
conditions are met: (1) The metal must retain a vacant coordina-
tion site or be able to dissociate a ligand to provide such a site,
and (2) there must be sufficient M5™=E®~ or M®™=E®%" char-
acter (typically associated with incomplete E—-M or M—E ©
donation) to induce reactivity with polar or polarizable
substrates. The first requirement is fairly straightforward: if a
transition metal is coordinatively saturated, it will be unable to
react as a Lewis acid or base, irrespective or how electron poor
or rich it is. The second requirement can perhaps be better
conveyed by using molecular-orbital diagrams. For the
M3*=E3~ case, which we may associate with early, electroposi-
tive transition metals in their highest oxidation states, ligand-to-
metal © donation is not strong enough to fully attenuate either
the m basicity of the ligand or the acidity of the metal
(Figure 1a). This bonding scenario is frequently encountered,
for example, with the classic Group 4 imido complexes of
Bergman and Wolzcanski, or the Group 5 alkylidenes of
Schrock [15,16]. The reverse MO ™=E%" case, in which = back-
bonding from an electron-rich metal into a relatively electropos-
itive ligand is insufficient to fully attenuate the basicity of the
metal and/or the 7 acidity of the ligand (Figure 1b), is encoun-
tered for low-oxidation-state late-metal silylene [17], carbene
[18], and borylene complexes [19], among others [20-23].
Either bonding situation can be described as electronic frustra-
tion [24], since sterics do not play a primary role in separating
acidic and basic reactive sites on a molecule.

t-Bu
NC)
/CeFs SP-H o CeFs
: - w,C F t-BU\‘ ‘ H_B/~.
=) CoFs £BU | “CeFs
Cos CoFs

Scheme 1: Heterolytic cleavage of Hy by a phosphine/borane FLP by Hy polarization in the P-B cavity [5,11].

1555



M3+ ES-
K c*
d(o) —_ e o
d(m) "t
d(nb) =———=--t--—nb

...~ p()

FLP molecular orbitals —j
- sp(o)

.
-

c 44'-'
(a)

Beilstein J. Org. Chem. 2012, 8, 1554—1563.

M3~ E®
Rl ’/- FLP molecular orbitals
do) — — p(m)
d(nb) 4“_ """ "ﬂ_ nb

(b)

Figure 1: Simplified frontier-molecular-orbital diagrams for (a) M3*=E3~ and (b) M5"=ES* FLPs (n = 1 for linear or terminally bound species, e.g.,
nitride, carbyne, linear imide, oxo, or borylene; n = 2 for bent or trigonal species, e.g., carbene, silylene, bent imide, amide, or boryl).

Steric effects nevertheless play an important role, as one can
envision a bimolecular pathway to acid—base adduct formation
(Figure 2a). Such dimerization does occur in cases with insuffi-
cient steric encumbrance (e.g., the bis-u-imido zirconium
complexes of Bergman, Figure 2b) [25]. Thus, as for the main-
group FLPs of Stephan and others, moderately-to-severely
bulky ligands must be employed to favor the most reactive

monomeric M=E FLPs.

o+ o
(@  2L,M=E — LnMiEjl\ALn
Ar
N C
Cp... Cpa,_ I\ wLP
(b) 2 Zr=N—-Ar — Zr Zr,
cp” cp” \l}l/ \Cp
Ar

Figure 2: Quenching of M=E FLPs by dimerization: (a) generic
M3*=E®~ case, and (b) Bergman's arylimido zirconium(IV) [25].

M=E FLPs with 11-basic ligands: Reactions with
unsaturated bonds

Species containing M3*=E®~ moieties have been known for
some time, with the clearest examples being terminal imido and
alkylidene complexes of early metals in their highest oxidation
states. Such complexes may have substantial nucleophilic char-
acter at the multiply bonded group E [15,16,26], leading to
well-defined reactions with various electrophiles as well as
polarized and polarizable substrates. In many cases, these reac-
tions resemble those explored more recently for main-group
FLPs.

The first type of reaction exhibited by M=E FLPs containing
n-basic ligands is with polar multiple bonds such as carbonyls.
The nucleophilic multiply bonded group can attack the electro-
philic carbon atom, ultimately leading to metallacycle forma-
tion and frequently atom or group transfer. This type of reactiv-
ity is observed upon exposure of Schrock's tris(neopentyl)neo-
pentylidene tantalum(V) complex to CO,, upon which terz-
butylketene and then di-fert-butylallene are formed by consecu-
tive oxygen-atom abstractions via metallacyclic intermediates
(Scheme 3) [27].

t-Bu t-Bu
NpsTa=/ o NpsTa=/
% — [Np3TaO], I — [Np3TaO], t-Bu H
C o
6 . /O )J\ . /O “‘H H t-Bu
via NpzTa O H t-Bu  via NpsTa :\t B
" " -bu
H t-Bu H t-Bu

Scheme 3: Oxygen-atom extrusion from CO5 by a Ta(V) neopentylidene [27].
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Cp'h.. Cp""- /O "
L Zr=N—t-Bu )] | ————— [Cp2zrOlx
Cp Cp N _ Nt-Bu
t-Bu

Scheme 4: Oxygen-atom transfer from acetone at a Zr(1V) imide [28].

Similar reactions have been observed for nucleophilic imido
complexes, in which imines can be formed by an oxo/imide
metathesis at zirconium(IV). As with the Schrock neopentyli-
dene, the reaction proceeds through a four-membered metalla-
cycle, which eliminates the organic product through a [2 + 2]
cycloreversion (Scheme 4) [28]. Other early metal imides may
demonstrate similar reactivity, as seen in a reaction reported by
Schrock for a tantalum(V) imide [29].

The reactions described above represent only a few of the many
metal-ligand cooperative reactions of nucleophilic, multiply
bonded species with polar multiple bonds. Related reactions
have been observed for terminal oxo, sulfido, phosphinidene,
and alkylidyne complexes of early transition metals (see refer-
ences [30-33] for representative examples). Similar reactions
can also occur in [3 + 2] fashion with azides [34].

As for main-group FLPs [35], M®"=E%~ FLPs may also react
with nonpolar unsaturated substrates, such as alkenes or
alkynes, by polarizing the substrate to facilitate cycloaddition.
[2 + 2] cycloadditions of M3"=E®~ FLPs with alkenes/alkynes
have been thoroughly explored in the context of olefin
metathesis (where E = CR») and related variants such as alkyne
and enyne metathesis [36,37]. Related reactivity is prevalent for
other M¥*=E%~ species such as imides and nitrides. Bergman's
bis(cyclopentadienyl)zirconium(IV) imides, described above,
will add alkenes and alkynes in [2 + 2] fashion across the
Zr=NR bond (Scheme 5) [38]. This reaction is important for the
hydroamination of alkynes by CpyZrX, complexes, which
proceeds through zirconium imido intermediates [39]. A similar
[2 + 2] cycloaddition of symmetrical alkynes across a tungsten
nitride is the initial step in Johnson's nitrile-alkyne cross
metathesis reaction (Scheme 6) [40,41].

Ph
Cp. Ph—=—Ph  Cp,, )y
p/"Zr:N—Ar p/‘z(\ Ph
Cp Cp” N

Ar

Scheme 5: Alkyne cycloaddition at a Zr(IV) imide [38].

Et——Et Et
\|/|\|/ —EtCN I
RO"W-or Et

RO via gr—/ N RO

RO"/oR
RO

Scheme 6: Nitrile-alkyne cross metathesis at a W(VI) nitride [40,41].

M=E FLPs with 1r-basic ligands: Reactions with
saturated bonds

M3*=E®~ FLPs of the type described above have also been
shown to react with a number of saturated bonds. Although it
should be no surprise that such basic units would deprotonate
relatively acidic N-H, O-H, and related bonds, their potential
utility lies in the fact that they can also react with unpolarized
H-H and C-H bonds (including those of methane). The result is
a 1,2-addition of X—H across the M=E bond to give a
M(X)(EH) species, which may in some cases react further.

A prominent example was reported by Wolczanski, in which a
Z1(IV) silylimide can react with the C—H bonds in benzene and
even methane (Scheme 7) [42]. The reaction proceeds in a
manner similar to the reactions of main-group FLPs with Hj,in
which the substrate is polarized in the presence of the frustrated
pair and ultimately added across it [43]. Intramolecular addi-
tion of a benzylic C—H bond across a Zr(IV) phosphinidene has
been reported by Stephan [32]. Several C—H cleavage reactions
have also been reported across alkylidenes and alkylidynes [44-
46], and these may be viewed as the microscopic reverse of the
a-hydrogen eliminations frequently utilized to generate such
multiply bonded units.

(t-Bu3SiNH)3Zr—Cy
— CyH

H
t-Bu 3S| NI:.,.

. R-H
Zr=NSit-Bus — (- i -R
t-Bu 3SiNH’ 3 (t-Bu3SiNH)3Zr

R =H, Me, Ph

Scheme 7: C-H and H-H addition across a zirconium(1V) imide [42].
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The limitations of these sorts of reactions in terms of potential
catalytic applications are largely related to the reluctance of the
metal center to undergo redox chemistry (e.g., N—C reductive
elimination to generate an amine). The systems are constructed
to favor high oxidation states, so reductive elimination is quite
unfavorable relative to other non-redox processes, and insertion
of unsaturated bonds is generally not observed. In a sense, this
limitation is similar to what is encountered in attempts to use
o-bond metathesis processes in catalysis, in which only a few
specialized systems have been reported to accomplish catalytic
C-H functionalization [47-49]. In fact, the bond-breaking
process across metal-ligand multiple bonds is closely related to
o-bond metathesis [43], highlighting the potential of M"=E5~

FLPs to activate some of the most challenging substrates.

One phenomenally useful example of heterolytic H-H cleavage
across a ruthenium—amide bond, somewhat related to those
described above, is found in Noyori's ruthenium hydrogenation
catalysts, which utilize metal-ligand bifunctional pathways both
for breaking the H-H bond and then for transferring H; to polar
multiple bonds [50,51]. Though the Ru-N bond polarization is
not nearly as dramatic for the Noyori systems as it is for the
early metal complexes described above, the nitrogen basicity
and ruthenium acidity clearly play important roles in guiding
the observed reactivity.

M=E FLPs with 1r-acidic ligands

The reverse situation with respect to the metal-based FLPs
described above is one in which a coordinatively unsaturated
metal acts as a Lewis base and a relatively electropositive
n-acidic ligand acts as a Lewis acid. We might expect this situa-
tion to be less common since metals are typically formulated as
cations and are more electropositive than the majority of
elements normally attached to them. However, the phenom-
enon of metal basicity is well known [52,53], particularly for
the late transition metals in low oxidation states. There are
numerous cases in which M=E = bonding is inadequate to
quench the electrophilicity of the multiply bonded group
(particularly for heavier main-group elements, but also for
carbon- and boron-based groups), affording a bonding situation
that can be described as a Mo"=ES* FLP.

Late metal silylenes, such as those explored by Tilley, often
have substantial positive character at the silicon site (especially
in cationic complexes), leading to reactivity that is dominated
by the electrophilicity of silicon, with the metal playing a sec-
ondary role [17]. Prominent examples include the formation of
base-stabilized silylenes [54,55], insertion of olefins into
hydrosilylenes [56], and bimolecular redistribution of thiolates
between ruthenium silyl and silylene complexes [57]. Reactiv-

ity that involves metal-ligand cooperation (in the sense

Beilstein J. Org. Chem. 2012, 8, 1554—1563.

described in this article) has been reported in the formal [2 + 2]
cycloaddition of isocyanates to ruthenium(Il) silylenes [58]
(Scheme 8). These complexes do not react with nonpolar
substrates (although a possible cycloaddition with azobenzene
was reported), and the overall cycloaddition was found to
proceed through initial nucleophilic attack at an electrophilic
silylene, indicating that the metal center is not itself very reac-
tive. However, the ability to stabilize the metallacycle is clearly
derived from an enhanced transfer of electron density from
ruthenium to silicon through an intervening heterocumulene.
Unfortunately, retrocycloaddition to give silylene-group transfer
and silaimine formation was not observed.

Cfg cpr. O
MeNCO
MesPRus. _CHj e ‘\R(,%/U\
{ i Me3P‘/ \ NMe
Me3P | Me-P Si
CHs 3 Me,

Scheme 8: Formal [2 + 2] cycloaddition of methyl isocyanate at a
ruthenium silylene [58].

Many transition-metal borylene complexes may also be catego-
rized as M®=E®" FLPs, undergoing reactions with hetero-
cumulenes and other polar multiple bonds similar to those
reported for silylenes [59]. The [2 + 2]-type reactions with
heterocumulenes can lead to insertions or, in some cases, atom
transfer [60]. One example with Aldridge's iron(II) amino-
borylenes is presented in Scheme 9. In this case, Fe/B coopera-
tion leads to scission of the C=0 bond and oxygen-atom
transfer to the borylene unit. As with cationic silylenes, the
borylene complexes in Scheme 9 react by initial coordination of
a heteroatom to the highly electrophilic boron center, followed
by interaction with the metal to give a four-membered metalla-
cycle and oxygen-atom transfer upon cycloreversion [61]. Thus,
the reactions are initiated by the electrophilicity at B rather than
the nucleophilic character of Fe.

Cp PhNCO
o APr ~[PRNBOL,

oc” | NiPr via
oc

Cp

¥2-cNPh
oc”|

NPh

Scheme 9: Oxygen-atom transfer from phenyl isocyanate to a cationic
terminal borylene [60].

In contrast to the silylene and borylene examples presented

above, square-planar carbene complexes of iridium(I) often
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react in a fashion that is dictated by the nucleophilic metal
center. An early example of this type of complex was an
amidophosphine-supported iridium methylene reported by
Fryzuk [62-64]. With a coordinatively unsaturated and electron-
rich center, this species exhibits some reactivity that is similar
to the isoelectronic Vaska's complex [65], such as oxidative ad-
dition of methyl iodide. It also reacts in dipolar fashion with an
in-situ-generated phosphorus ylide to release ethylene and make
an iridium(I) trimethylphosphine complex (Scheme 10). More
recently, Werner reported several square-planar iridium(I)
carbene complexes that react with acid to selectively protonate
the iridium center (i.e., the more basic/nucleophilic site)
[66,67].

i”>PPh MesP=CH, PPh
MQZSI\ | 2 ~CyH, Me,Si | 2
N—Ir=CH, : N—Ir-PMe;
H via
Me,Si__PPh, Mes Me,Si__PPh,
Pen
] 2
\C/
H2

Scheme 10: Coupling of a phosphorus ylide with an iridium methylene
[62].

Whited and Grubbs explored the reactivity of a related
iridium(I) carbene system, supported by Ozerov's amidophos-
phine pincer ligand and generated by multiple C—H activations
[18,68-70], with a number of heterocumulenes such as those
described above. Oxygen-atom, sulfur-atom, and nitrene-group
transfers to the carbene were observed when carbon dioxide,
carbonyl sulfide, and isocyanates were utilized, cleanly gener-

ating the Ir(I) carbonyl as a byproduct (Scheme 11) [71].

The nucleophilicity of the iridium center was demonstrated
through a series of experiments. First, it was noted that the
carbene complex does not react with simple nucleophiles, a
departure from traditional "Fischer-type" carbene reactivity

[72]. Second, the iridium center reacts with excess CS, to

Beilstein J. Org. Chem. 2012, 8, 1554—1563.

reductively couple two carbon disulfide units, generating a
metallacyclic IrC,S42~ with no new bonds formed to the
carbene (Scheme 12) [73]. Interestingly, this reaction is revers-
ible and the thermodynamic product from the reaction with CS,
is the Ir(I) thiocarbonyl, analogous to the reactions shown in
Scheme 11. Finally, though the complex does not react with
simple nucleophiles, a cation—t complex is formed from the
interaction of silver triflate with the Ir=C bond [74], and this
complex was crystallographically characterized (Figure 3).
Together, these findings showed that carbenes of this type do
not exhibit traditional Fischer (electrophilic at C,) or Schrock-
type (nucleophilic at C) reactivity, and were better classified as
nucleophilic-at-metal (or "Roper-type") carbenes with signifi-
cant m backbonding, consistent with Roper's predicted patterns

of reactivity for metal-carbon double bonds [75].

S
ENCHS

cs, o  Cs ?/lks

PNPIr=  —= (PNP)In, —=~ (PNP)Ir—(

) s I
t-BuO H™ "Ot-Bu

S
(PNP)I_ S —(PNP)Ir—CS
H Ot-Bu

Scheme 12: Reductive coupling of two CS units at (PNP)Ir=C(H)Ot-
Bu [73].

These Roper-type carbenes also reacted with organic azides and
nitrous oxide via an apparent [3 + 2] cycloaddition [76,77],
leading to oxygen-atom or nitrene-group transfer and formation
of (PNP)Ir-N, [78], and this reaction was utilized in catalytic
C-H functionalization (see below). More recently, Hillhouse's
nickel carbenes and imides have been shown to exhibit similar
reactivity with organic azides, though reaction with CO;, has not
been observed [77].

co o]

PiPr, 2 o) —— (PNP)Ir=CO + J_
)k H™ "Ot-Bu

_ SCO S

N—Ir= (PNP)“‘ E - > (PNP)Ir—CO + )J\
| otBu H~Ot-Bu

PiPr, PhNCO H Ot-Bu (PNPYIr—CO + NPh
— r—

E=0,S,NPh 1 orBy

(PNP)Ir=C(H)Ot-Bu

Scheme 11: Reactions of (PNP)Ir=C(H)Ot-Bu with oxygen-containing heterocumulenes [71].
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Figure 3: Single-crystal X-ray structure of a silver(l) triflate adduct of
(PNP)Ir=C(H)Ot-Bu with most H atoms and phosphine substituents
(except ipso carbon atoms) omitted for clarity.

As described above, FLPs of the MS=E®* variety can be very
useful for inducing atom or group transfer from heterocumu-
lenes or other polar multiple bonds such as those in phosphine
oxides. Compared with early-metal M®"=E%" FLPs, these sorts
of complexes have the advantage of greater redox activity, facil-
itating application in catalysis (see below). However, they also
have lower reactivity due to a less polarized M=E bond, which
cannot activate strong C—H or related bonds. Though H-H addi-
tion across Ir=C bonds has been reported, this almost certainly
occurs by oxidative addition of H, at the Ir(I) center followed
by hydride migration [64,79,80]. The well-developed C-H
borylation chemistry of Hartwig and others provides an indica-
tion that cooperation may be operative to some extent in the ac-
tivation of C—H bonds at metal boryls [81-84], though the exact
mechanism of C—H cleavage seems to depend on the nature of
the metal catalyst. Nevertheless, these results do provide inspi-
ration for the development of similar C—H functionalization
catalysis involving metal carbenes or silylenes (or perhaps even
electrophilic nitrenes).

Utility of M=E FLPs in C-H functionalization

Given the types of reactivity discussed thus far, there are
several distinct routes to the functionalization of C-H (or E-H)
bonds using metal-ligand multiply bonded FLPs. If C—H acti-
vation is effected by 1,2-addition across a M=E bond, then
reductive elimination could result in a net C—H insertion of
carbene or nitrene (Scheme 13a). This would be formally
related to carbene or nitrene insertions that have been shown to

occur, among other cases, at dirhodium paddlewheel complexes

Beilstein J. Org. Chem. 2012, 8, 1554—1563.

[85], though the specific mechanism of C—H bond breaking
(and hence the reaction selectivity) would be quite different.
Such a transformation has not been realized with the early metal
complexes that are most reactive toward C—H bonds, probably
because reductive elimination is strongly disfavored relative to
the 1,2-elimination of alkane. Another possibility would be an
initial 1,2-addition of a C—H bond across M=E, followed by
insertion of an unsaturated substrate (olefin, alkyne) and either a
1,2-elimination (to afford a hydroalkylation or hydroarylation
product) or reductive elimination as described above. However,
to the best of our knowledge, this type of reactivity has not been
observed at early metal imido or alkylidene complexes that can
cleave C—H bonds.

M=E 1,2- reductive
- addition ) elimination
—— M-EH T R-EH (a)
R-H
— | insertion
1,2-
R elimination
———= R7 ()
M-EH -M=E

Scheme 13: Possible routes to C—H functionalization by 1,2-addition
across a polarized metal—-element multiple bond.

An alternative route involves the generation of a M=E FLP
species by multiple C—H (or E-H) activations [18,70,86]. As
mentioned above, Whited and Grubbs showed that an iridium(I)
carbene system that exhibited FLP reactivity could be gener-
ated by multiple C-H cleavage events at fert-butyl methyl ether
(MTBE) (Scheme 14) [71,87]. For the (PNP)Ir system devel-
oped by Ozerov, it was found that an initial C—H activation of
the most accessible methyl C—H bond in MTBE was followed
by slow a-hydrogen elimination and reductive elimination of H,
to afford the Ir(I) alkoxycarbene. The complex could be gener-
ated stoichiometrically when norbornene was utilized as a
hydrogen acceptor. The reaction was shown to be general for
several methyl ethers and tetrahydrofuran, but other ethers were
prone to 1,2-dehydrogenation or decarbonylation [88,89] The
use of methyl amines as substrates also allowed the selective
formation of dihydrido aminocarbenes, but the greater basicity
of these species prevented the reductive elimination of Hy under
any of the conditions examined [90].

With this complex in hand, the coordinative unsaturation (and
nucleophilicity) of the square-planar iridium center was utilized
to explore a variety of atom- and group-transfer reactions, as
described above. However, the iridium carbonyl, thiocarbonyl,
or isocyanide products thus generated could not be incorpo-
rated into catalytic cycles due to the stability of the Ir-CO, —CS,
and —CNR bonds [71,91]. A catalytic cycle was ultimately
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Scheme 14: Alkoxycarbene formation by double C—H activation at
(PNP)Ir [88].

achieved following the discovery that the reaction of
(PNP)Ir=C(H)Ot-Bu with organic azides leads to the formation
of tert-butyl formimidates and (PNP)Ir—N,, which is a suitable
precursor for C—H activation of MTBE upon photolysis [78]
(Scheme 15). Although the presence of excess azide poisoned
the catalyst (presumably by irreversible formation of
iridium—azide adducts), the controlled addition of azide to an
MTBE solution of (PNP)Ir and norbornene, illuminated by a
23 W halogen bulb, led to efficient catalytic oxidation of
MTBE. The net C—H functionalization in this case is facilitated
both by the propensity of iridium to engage in multiple C—H
activations to form the carbene, as well as by the Mo =E®" FLP

nature of the intermediate Ir(I) alkoxycarbene species.

Fem

= RN3

Ot-Bu

NR
(Ir1=N2

<jﬂ:l+MTBE

Scheme 15: Catalytic oxidation of MTBE by multiple C—H activations
and nitrene-group transfer to a M3"=E®* FLP [18,78].

H Ot-Bu

These results not only show that species containing
metal-ligand multiple bonds with the appropriate electronic
structure may exhibit reactivity consistent with a FLP descrip-
tion, but that this reactivity may be harnessed for catalytic C—H

functionalization. Several challenges remain in the catalytic

Beilstein J. Org. Chem. 2012, 8, 1554—1563.

cycle presented, namely that large excesses of substrate are
required, and the generality of the reaction is limited by the
number of substrates than can serve as carbene precursors, but
these may be overcome through the design of more-selective
systems for C—H activation. The reactivity observed by Grubbs
also highlights the importance of hydrogen management in
processes that involve generating M=E FLPs by multiple C-H
activations, since the active catalysts must either be able to
eliminate H, without unproductive back reactions or must
transfer H; into a sacrificial acceptor (such as norbornene in the
cycle described). All in all, these findings provide a framework
both for the discovery of new reactions involving M=E FLPs
and for their implementation in catalytic transformations for the
functionalization of C—H and E—H bonds.

Conclusion

In this article, we have proposed that many species containing
polarized metal-ligand multiple bonds and coordinatively
unsaturated metal centers may be described as analogues of the
recently developed frustrated Lewis pairs involving main-group
Lewis acids and bases. Although the manner in which "frustra-
tion" occurs is somewhat different (i.e., it is primarily elec-
tronic and not steric in origin), the types of reactivity observed
are remarkably similar. One example in which this behavior has
been used for the catalytic functionalization of C—H bonds has
been elaborated, and several strategies for future utilization of

such electronically frustrated species have been presented.
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The single-crystal X-ray structure of
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An efficient method for the synthesis of arylglycine derivatives is described. The oxidative coupling reactions of naphthols and

phenols with a-amino esters proceeded smoothly in the presence of mefa-chloroperoxybenzoic acid as an oxidant under ambient

conditions, to produce arylglycine derivatives in satisfactory yields.

Findings

Arylglycine derivatives represent important synthetic intermedi-
ates or building blocks for drug development and natural-prod-
uct synthesis [1,2]. The arylglycine moiety also occurs in
several bioactive natural products [3]. Consequently, the devel-
opment of convenient and efficient methods for the preparation
of arylglycine derivatives has attracted considerable attention.
Over the past years, many methods have been developed for the
preparation of arylglycine derivatives [3]. Among these, the
addition reaction of a carbon nucleophile to imines or iminium
ions through Mannich-type reaction appears more useful
(Scheme 1, reactions 1-3). However, these reactions need
expensive arylboronic acids (Petasis reaction) [4-9] and suit-
able leaving groups [10-12] as well as a metal catalyst
(Polonovsky reaction; this route requires the preparation of

amine N-oxide in advance) [13,14].

We have recently reported the copper-catalyzed oxidative
coupling reaction of alkynes with tertiary amine N-oxides [15].
This new strategy for the direct functionalization of sp3 C—H
bonds adjacent to a nitrogen atom, via tertiary amine N-oxide
intermediates, was successfully applied to the coupling reaction
of ethyl 2-(disubstituted amino)acetates with indoles to achieve
indolylglycine derivatives (Scheme 2, reaction 1) [16]. In the
course of our continuous research on the direct functionaliza-
tion of sp? C—H bonds, we found that this new strategy could
also be applied to the coupling reaction of naphthols and
phenols with ethyl 2-(disubstituted amino)acetates. The results
are reported in the current work (Scheme 2, reaction 2).

In our initial studies, the reaction of 2-naphthol (1a) with ethyl
2-morpholinoacetate (2a) was chosen as a model for opti-
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Scheme 2: Oxidative sp3 C—H functionalization of a-amino esters.

mizing the reaction conditions. The results are shown in
Table 1. The proportions of substrate 2a and oxidant meta-
chloroperoxybenzoic acid (mCPBA) were initially screened
with CH3CN as the solvent (Table 1, entries 1-3). The yield of
3a was increased to 77% when 1.2 equiv of 2a and mCPBA
were used (Table 1, entry 2). Further increasing the amounts of
2a and mCPBA or adding a copper catalyst could not improve
the yield of 3a (Table 1, entries 3 and 4). The solvents were
then screened (Table 1, entries 5-10). The best result was
observed when CH,Cl, was used as the solvent (79%, Table 1,
entry 5). Therefore, the subsequent reactions of naphthols and
phenols with ethyl 2-(disubstituted amino)acetates were
performed in the presence of mCPBA (1.2 equiv) in CH,Cly

under ambient conditions.

The substrate scope was determined under the optimized reac-
tion conditions, and the results are shown in Table 2. As
expected, the reactions of ethyl 2-morpholinoacetate (2a), ethyl
2-(piperidin-1-yl)acetate (2b), and ethyl 2-(benzyl(methyl)-
amino)acetate (2¢) proceeded smoothly to give the corres-

ponding products 3a—3c in good yields (Table 2, entries 1-3,

64—79%). These results indicated that both a-cyclic and acyclic
amino esters could be employed in this type oxidative coupling
reaction. The desired products 3d-3f were obtained in yields of
66-79% from the reactions of naphthols 1b—1d with 2a
(Table 2, entries 4-6). However, relatively low yields were
observed from the reactions of phenols 1e—1h with 2a (Table 2,
entries 7-10, 30-55%). The poor reactivity of phenols 1e-1h
was considered to be due to their lower electron density
compared to naphthols 1b—1d. No reaction was observed from
the mixture of phenol 1i, bearing an electron-withdrawing Br
substituent on para-position, and 2a (Table 2, entry 11).

The plausible mechanism for the coupling reaction of naph-
thols and phenols with ethyl 2-aminoacetate derivatives is
shown in Scheme 3 [16-19]. mCPBA oxidized 2a to amine
N-oxide 4 before being transformed into 3-chlorobenzoic acid.
The interaction of 4 with 3-chlorobenzoic acid led to the gener-
ation of the iminium ion 5 and 3-chlorobenzoate anion. The
Mannich-type reaction of § with 2-naphthol may have occurred
to generate the coupling product 3a. The generated 3-chloro-

benzoate anion acted as a proton acceptor.
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Table 1: Optimization of reaction conditions.?

OH o .
N Q\l CO,Et conditions OH
e

H
1a 2a 3a
Entry 2a (equiv) mCPBA (equiv) Time (h) Solvent Yield of 3a (%)P
1 1.0 1.0 40 CH3CN 63
2 1.2 1.2 40 CH3CN 77
3 1.5 1.5 40 CH3CN 77
4¢ 1.2 1.2 40 CH3CN 75
5 1.2 1.2 24 CHCl, 79
6 1.2 1.2 40 THF 65
7 1.2 1.2 48 dioxane 16
8 1.2 1.2 48 CH3CH,0H 14
9 1.2 1.2 48 toluene 70
10 1.2 1.2 48 DMF trace

@Reaction conditions: 2-naphthol (1a, 72.1 mg, 0.5 mmol), ethyl 2-morpholinoacetate (2a, 1.0 equiv to 1.5 equiv), and mCPBA (1.0 equiv to 1.5 equiv)
in solvent (3.0 mL) under air at 25 °C. Plsolated yield. ©10 mol % Cu(OTf), was used as a catalyst.

Table 2: Oxidative coupling reaction of naphthols and phenols with a-amino esters.2
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Table 2: Oxidative coupling reaction of naphthols and phenols with a-amino esters.2 (continued)

oo () E
‘ 4 . 208 :
Me CO,Et

2a Me
3d
o
oH [Oj EtO,C__N._J
H
e A T s e o
Me CO5Et MeO
1c 2a Me
3e
OH [Oj OH CO,Et
N X N
; ! o Uy e
CO,Et
1d 29 3f
OH [Oj OH CO,Et
7 © NK 48 fj/k '\() 30
o)
CO,Et
1e 2a 39
OH o OH CO,Et
() N
8 © NK 36 d@ 30
Et CO,Et Et
1f 2a 3h
OH [Oj OH CO,Et
9 /@\ "t 24 '\L/O 35
Me Me CO,Et Me .Me
19 2a 3i
OH [O] OH CO,Et
N
10 @\ N 16 55
OH N HO K/O
CO,Et _
1h 2a 3j
OH o OH CO,Et
) N
" © v i L :
Br CO4Et Br
1i 2a 3k

@Reaction conditions: naphthols or phenols (1, 0.5 mmol), a-amino esters (2, 0.6 mmol, 1.2 equiv), and mCPBA (121.8 mg, 0.6 mmol, 85% purity) in
CH,Cl, (3.0 mL) under air at 25 °C. Plsolated yield.
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In conclusion, a new strategy for the functionalization of sp3
C-H bonds of amino esters was successfully applied to the
coupling reaction of ethyl 2-(disubstituted amino)acetates with
naphthols and phenols. The proposed coupling reaction
proceeded smoothly in the presence of mCPBA as an oxidant
under ambient conditions to provide arylglycine derivatives in
satisfactory yields.
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General methods, characterization data and NMR spectra of
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A new method for the regioselective synthesis of 2-alkoxycarbonyl- and 2-(aminocarbonyl)phenylglycinate methyl esters has been
developed. The reaction of the orthopalladated complex [Pd(p-Cl)(CgH4(CH(CO,Me)NMe,)-2)], (1) with nucleophiles HNu under
a CO atmosphere results in the selective incorporation of the C(O)Nu moiety to the phenyl ring and formation of the carbonyl
species ortho-CgHy(C(O)Nu)(CH(CO,Me)NMe,) (2a—j) (Nu = OR, NHR, NRj,). Compounds 2a—j are conformationally restricted
analogues of glutamic acid and glutamine and are interesting due to their biological and pharmacological properties. The reaction of
[Pd(p-Cl)(CgH4(CH(CO,Me)NHTT)-2)], (3) with nucleophiles in a CO atmosphere results, however, in the formation of the cyclic

isoindolinone or the open 2-carboxyphenylglycine methyl esters, with the reaction outcome being driven by the choice of the

solvent.

Introduction

The selective functionalization of organic molecules is, at the
present time, one of the most developed areas of organic and
organometallic chemistry. Several factors have contributed to
this spectacular growth. The main one is the use of transition
metals, such as Rh, Ru, Pd, Pt or Au, with the capability of acti-
vating and breaking C—H bonds and, thus, transforming the
inert C—H unit into the reactive C—M group (M = transition
metal) [1-3]. In addition, the introduction of the concept of a

"directing group" enables the attack of the metal on a unique

position [4], therefore affording highly selective processes and
avoiding the obtainment of unwanted isomers.

Probably the aspect of this method of synthesis with the greatest
impact is the oxidative coupling of two C—H bonds to give a
new C—C bond, because it avoids the use of prefunctionalized
substrates, minimizes the amount of waste generated during the
reaction and, in general, allows for the reactions to occur under

mild conditions and tolerates a variety of functional groups
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[5-10]. This is advantageous when reactive or sensitive frag-

ments are present in the molecular scaffold.

We are interested in the regioselective functionalization of
o-amino acids [11-13], due to the extraordinary interest in these
delicate molecules as building blocks of peptides and proteins,
and because of their relevant biological activity. In this context,
we have recently reported C—H bond activation processes on a
variety of arylglycines substituted at the phenyl ring, and the
corresponding synthesis of a new family of orthopalladated
complexes [12]. The carbonylation of these compounds allows
for a general synthesis of methyl (1H)-isoindolin-1-one-3-
carboxylates under very mild reaction conditions, regardless of
whether the substituents at the aryl ring R,, are electron-with-
drawing or electron-releasing. This method, shown in
Scheme 1, represents a real synthetic alternative to other clas-
sical preparative pathways [12].

CO.,Me
R 2 CO/—PdO R, SoMe
Y N | ZHOL |, (T Ny
=~ —Pd-ClI CHCl3 %
A A o
l methyl (1H)-isoindolin-1-one-3-carboxylates
T—HCI/—PdO
\/Rn CO,Me R, COZMG
o) NHe | R
= I;’d—CI Z Pdgy
ocC (0]

Scheme 1: Synthesis of methyl (1H)-isoindolin-1-one-3-carboxylates
by carbonylation of phenylglycine derivatives [12].

With the aim of expanding the scope of application of this
method, we report in this paper the results obtained when other
functional groups on the same starting material (methyl phenyl-
glycinate) are changed. In particular, we have detected that the
presence of different types of substituents at the nitrogen atom
has a critical effect on the final outcome of the reaction and that,
instead of the expected (1H)-isoindolin-1-ones, conformation-
ally restricted glutamines and glutamates can be obtained. The
undoubted importance of conformationally constrained

Beilstein J. Org. Chem. 2012, 8, 1569-1575.

aminoacids is based on the fact that their incorporation into
peptides constitutes a very useful strategy to reduce their flexi-
bility and retard enzymatic degradation. Moreover, these
restricted amino acids can stabilize particular conformational
features, which may lead to improvements in the biological
potency if the bioactive conformation is tethered [14-16].

Results and Discussion

Synthesis of new orthopalladated derivatives

Two phenylglycinate derivatives have been used as starting ma-
terials, one of them containing a sterically hindered
N atom, protected by two methyl groups, namely
[CeH5C(H)(COy;Me)NMej] [17,18], and the other one
containing a less hindered, but strongly electron-withdrawing,
triflate (Tf) group [C¢HsC(H)(CO,Me)NHTS] [19]. The
orthopalladation of [C¢H5C(H)(CO,Me)NMe,] has been
reported previously by Ryabov and Beck [17,18], and
affords complex 1 by heating of Pd(OAc), and
[C¢H5C(H)(CO,Me)NMe,] in acetic acid (55-60 °C over
15-20 min), followed by stirring at room temperature for 2—3
days. In this way, complex 1 is obtained in 50% yield. We did
not use this method, and we present here an optimized syn-
thesis of complex 1, which is achieved by heating a solution of
Pd(OAc), with [CqH5C(H)(CO;Me)NMes] (1:1 molar ratio) in
acetone under reflux for 24 h, followed by the typical
metathesis of acetate by chloride bridging ligands in MeOH.
Our improved procedure takes place in a shorter reaction time
(1 versus 3 days) and affords analytically pure complex 1 in
yields typically higher than 65%. The characterization of 1 was
performed by comparison of its spectral data with those previ-
ously reported [18]. On the other hand, the reaction of
[CeH5C(H)(CO,Me)NHTT] with Pd(OAc), (1:1 molar ratio)
affords the orthometallated [Pd(p-Cl)(C¢H4CH(CO,Me)NHT{-
2)]» (3), after metathesis of acetate by chloride bridging ligands,
as shown in Scheme 2. In this case the reaction also takes place
in acetone under reflux, but 48 h of heating is necessary to
achieve completion. Complex 3 was characterized following the
usual techniques. Both microanalytical and mass spectral data
are in good agreement with the proposed dinuclear stoichiom-
etry for 3. The 'H NMR spectrum of 3 shows broad signals,
probably due to different equilibrium processes. These could
involve the interconversion between the two possible diastereo-

COMe 5 Pd(OAc),/Me,CO CO;Me CO,Me
2(j\/\NHTf reflux/48 h NHTf NC5Ds NHTF (3-py)
H LiCI/MeOHirt Pd-Cl CDCl; pa-c| (only for NMR)
[ d

3

2 @Ds

Scheme 2: Synthesis and NMR characterization of orthometallated complex 3.
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isomers (RR/SS and RS/SR) through cleavage of the chloride
bridges, as well as the potential formation of cisoid and tran-
soid geometric isomers. The breakage of the chloride bridging
system by NCsD5 and "in situ" formation of the corresponding
mononuclear derivative (3-py, see Scheme 2), which is static on
the NMR time scale, simplifies notably the NMR spectra. The
'H NMR spectrum shows then the presence of four well-spread
signals, one of them (H6) strongly shifted upfield due to the
anisotropic shielding of the cis-pyridine ring. This observation,
together with the presence of six different peaks in the
13C NMR spectrum, one of them clearly deshielded (C1,
151.41 ppm), points to the presence of the PACgH4 unit. All the
other features of the NMR data are in keeping with the struc-

ture depicted in Scheme 2.

Synthesis of conformationally restricted gluta-

mates and glutamines
Complex 1 reacts with CO in the presence of alcohols or amines
(even aminoesters) affording the corresponding alkoxycarbony-
lated (2a—f) or aminocarbonylated species (2g—j), as shown in
Scheme 3 and Figure 1, under very mild reaction conditions
(CH,Cly, 1 atm CO, 25 °C).

The clear formation of black palladium indicates the progress of
the reaction, which is completed typically in 16 h in all studied

cases. After removal of the Pd® the workup of the reaction is

COsMe CO/HNu COyMe
@bwez o e,

Pd-Cl CH,Cl, Nu

[ o)

1 2a-j

Scheme 3: Carbonylation of 1 to afford glutamate and glutamine
derivatives 2a—j.

Beilstein J. Org. Chem. 2012, 8, 1569-1575.

very simple, since the evaporation of the solvent affords 2a—j as
analytically pure yellow oils. Compounds 2a—f can be consid-
ered as glutamic acid derivatives, while 2g—j are analogues of
glutamine, in which the - and y-positions belong to an aryl ring
and display, therefore, a severe conformational restriction.

The present method appears to be quite general, since it is valid
for a wide range of alcohols and amines. In the case of alcohols,
primary (2a, 2b, 2d, 2e) and secondary (2¢) aliphatic alcohols,
and even arylic substrates (2f) have been incorporated into the
phenylglycine scaffold. Very good yields are obtained with
acidic alcohols, such as methanol (2a), ethanol (2b) or even 1,2-
ethanediol (2d). These values drop when 2-propanol (2¢) or
phenol (2f) are used, and moderate yields are obtained (=40%),
whereas no reaction at all is observed for bulky tertiary alco-
hols, for example when Me3COH is used.

In alkoxycarbonylation reactions the nucleophile finally incor-
porated into the carbonyl group (an alkoxide) usually comes
from the reaction solvent (an alcohol). This fact guarantees the
full displacement of the reaction, but sometimes hampers the
purification of the target products, mainly when alcohols of
high boiling point and/or viscosity are involved. However, in
our method, CH,Cl, is used as the solvent and stoichiometric
amounts of the nucleophiles are used instead, without any

problem in the purification step.

Interestingly, there is a clear difference in the reactivity of 1
with CO, depending on the presence or lack of nucleophiles.
The reaction of 1 with CO in CH,Cl; has been reported previ-
ously by Beck [18], and this process affords the y-lactam
displayed in Scheme 4. Assuming the mechanism shown in
Scheme 1, it seems that, in the absence of any other nucle-
ophile, the intramolecular C-N coupling takes place with
concomitant formation of a N,N-dimethylisoindolinonium salt,
which undergoes further elimination of a methyl group by

CO,Me CO,Me CO,Me CO,Me CO,Me
NMe, X+ “NMe, NMe, NMe; NMe,
OMe | Z OEt OiPr o OCH,
o) o) o) o) IOH o} )
2a 97% 2b 95% 2c 38% 2d 91% 2e 27%
CO,Me CO,Me CO,Me CO,Me CO,Me
©¢NMG2 @gNMez EI;NM% @Q”Mez @iww
OPh NHBn NHPh N._Ph NBu,
o) o o) o éOZMe O
2f 43% 2g 59% 2h 81% 2i 76% 2j 35%

Figure 1: Scope of the carbonylation reaction.
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COMe CO,Me
_Pd0
NMe, CO/-Pd NMe
Pd-Cl CH,Cl,
[V, o)

Scheme 4: Reaction of 1 and CO in CH,Cl5 [18].

1,2-shift of the Me unit from the N atom to the Pd centre, as
previously reported by Heck et al. [20].

As we have shown previously in Scheme 3, in the presence of
nucleophiles the process results in the formation of conforma-
tionally restricted glutamate derivatives. This is mainly due to
the fact that the demethylation of the NMe; unit shown in
Scheme 4 is not a very favourable process, and the reaction can
take a different outcome, especially if alternative pathways are
accessible. Taking into account these facts, we can propose a
sensible explanation for the different reactivity. Therefore, the
attack of the oxygen of an O-bonded alcohol on the electro-
philic acyl carbon in our complexes seems to be favoured, since
no demethylation is involved, and the C—O coupling occurs
selectively instead of the intramolecular C—N bond formation. It
seems that the reaction is driven by the pathway that tends to
avoid the demethylation, while the comparison of the different
nucleophilic abilities of the species coordinated to the metal
(O-bonded alcohols versus N-bonded amines) plays in this case

only a minor role.

Using the same arguments we can explain the different reactiv-
ity found for 1, and shown in Scheme 3, when compared to
related Pd complexes previously reported by us [12], resumed
in Scheme 1. Therefore, the synthesis of the methyl (1H)-isoin-
dolin-1-one-3-carboxylates by carbonylation of [Pd(p-
Cl)(C¢H4CH(COyMe)NH,-2)], occurs by C—N coupling, irre-
spective of the presence of additional nucleophiles, since the
cyclization generates an isoindolinonium salt, from which it is

relatively easy to promote a simple deprotonation.

Very interestingly, the reactivity of 1 is not limited to the add-
ition of alcohols, and primary amines, secondary amines, and

even a-aminoesters can also be coupled to the N,N-dimethyl-
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arylglycine fragment, as stated above. Then, the reaction of 1
with CO, in CH,Cl,, and in the presence of stoichiometric
amounts of benzylamine, aniline, methyl (R)-phenylglycinate or
di-n-butylamine, occurs with smooth insertion of CO into the
Pd-C,yyi bond and further incorporation of the C(O)NHCH,Ph
(2g), C(O)NHPh (2h), C(O)NHCH(CO,Me)Ph (2i) or
C(O)NBu; (2j) moieties into the ortho-position of the
CcH4C(H)(CO,Me)NMe, ligand. This results in the synthesis
of the corresponding conformationally restricted glutamines
2g—j in moderate to good yields, as shown in Figure 1. This
means that the process can be efficiently performed not only
with a variety of O-nucleophiles, but also with different types of
N-nucleophiles.

In comparison with other aminocarbonylations found in the
recent literature [21-24], our method is remarkable since it
occurs under very mild reaction conditions (1 atm CO, 25 °C)
and, mainly, because it occurs through C—H bond activation
processes without the need to use prefunctionalized substrates.
Typical aminocarbonylations catalysed by Pd usually start from
the corresponding iodides or bromides, and require high CO
pressures and high reaction temperatures. Obviously, further
efforts in our systems have to be directed to the transformation
of the stoichiometric process into a catalytic one, a challenge
that is still not accomplished in the case of the aminocarbonyla-
tion, even though several catalytic examples are known of the

related alkoxycarbonylation reaction [25-30].

Once we had determined the reactivity of complex 1, having a
N,N-dimethyl-phenylglycine ligand, we focused our attention
on complex 3, possessing a triflate as a N-protecting group, in
order to study the influence of the substituents at the N atom in
the carbonylation further. The reaction of 3 with CO (1 atm) in
CH,Cl, at room temperature, that is, in the absence of nucle-
ophiles, occurs with C-N coupling and formation of the methyl
3-0x0-2-((trifluoromethyl)sulfonyl)isoindoline-1-carboxylate
(4) in good yields, as shown in Scheme 5 (right).

This means that the N atom is still nucleophilic enough to
promote the cyclization, in spite of the presence of the highly
electron-withdrawing triflate group. It is also clear that, after
C-N coupling, the resulting ammonium salt eliminates easily

CO,Me CO,Me CO,Me
4 + NHTf coj-pgo NHTf| _COI-Pd? -
OMe ™ MeOH Pd-Cl CH,Cl,
0 [V, o
44% 5 18% 3 4 72%

Scheme 5: Reactivity of 3 with CO in the presence (left) and absence (right) of nucleophiles.
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HCI (formally) affording the neutral amine, in close similarity
to the process shown in Scheme 1. However, when the reaction
of 3 with CO (1 atm) is performed in MeOH, a mixture of the
compounds derived from intramolecular cyclization (4) and
alkoxycarbonylation (5) is obtained (molar ratio 4/5 2.4:1). This
mixture can be separated by column chromatography, and pure
isolated compound S has been characterized as containing the
NHT( group and two different CO,Me moieties, as represented
in Scheme 5 (left). This result can be interpreted as a competing
reaction between the nucleophilic abilities of the N atom of the
glycine moiety and the oxygen atom of the methanol, which in
this case is the reaction solvent. It is clear that the introduction
of the triflate group decreases the electron density of the N
atom, which is now less nucleophilic in comparison, for
example, with the complex containing the NH; unit, shown in
Scheme 1. In that case the N was quite nucleophilic, and
cyclization occurred regardless of the solvent used for the reac-
tion [12]. In the present case the N is less nucleophilic and
competes with other nucleophiles, giving mixtures 4 and 5 in
the presence of methanol. Obviously, in absence of additional
nucleophiles, 4 is obtained selectively. We attempted several
reaction conditions in order to prepare selectively compound 5,
but it seems to be difficult to quench the intramolecular cycliza-
tion, and in all studied cases the 4/5 mixture is obtained. Due to
this fact, we have not studied other alcohols.

Conclusion

The reactivity of the orthopalladated dimers [Pd(p-
C1){C¢H4(CH(CO;Me)NR»)-2}], (NR, = NMe,, NHTY)
towards CO in the presence of alcohols or amines as nucle-
ophiles allows for the synthesis of conformationally restricted
glutamates or glutamines, respectively, through alkoxycarbony-
lation or aminocarbonylation intermolecular processes. In spite
of the presence of an intramolecular nucleophile (the N atom of
the NR, group), the formation of the cyclic isoindolinone
derivatives has been observed only in one case. This means that
the nitrogen atoms of the NMe, or the NHTT groups behave as
weaker nucleophiles than the oxygen or nitrogen atoms of the
external nucleophiles involved (alcohols, amines). In addition,
the results also show that the nucleophilic abilities
of the N atom in the starting materials [Pd(pu-
Cl)(CgH4CH(CO,Me)NR»)]» (NRy = NMe,, NHTY) are weaker
than those observed in [Pd(u-Cl)(C¢H4CH(CO,Me)NH,)],, for
which a systematic intramolecular aminocarbonylation was

observed.

Experimental

General Methods. The general methods are reported in the
Supporting Information File 1. The complex [Pd(p-
Cl)(C¢H4CH(CO;Me)NMej-2)], (1) has been prepared
following previously reported procedures [17,18].

Beilstein J. Org. Chem. 2012, 8, 1569-1575.

Synthesis of methyl N, N-dimethyl-a-(2-
methoxycarbonylphenyl)glycinate (2a)
Methanol (13 pL, 0.300 mmol) was added to a solution of 1
(100.0 mg, 0.150 mmol) in CH,ClI, (10 mL), and the resulting
mixture was stirred under a CO atmosphere for 16 h. Decompo-
sition to black metallic palladium was observed. The mixture
was filtered through a plug of Celite. The light yellow solution
was washed with water (3 x 20 mL), dried over MgSQOy, filtered
and evaporated to give compound 2a as a yellow oil. Yield:
72.9 mg, 0.290 mmol, 97%.

TH NMR (300 MHz, CDCl3) & 7.83 (d, J = 7.7 Hz, 1H, CgHy),
7.68 (d, J= 7.7 Hz, 1H, C¢Hy), 7.50 (t, J= 7.7 Hz, 1H, C¢Hy),
7.35 (t, J=17.7 Hz, 1H, C¢Hy), 5.12 (s, 1H, CH), 3.89 (s, 3H,
OMe), 3.69 (s, 3H, OMe), 2.31 (s, 6H, NMe,); 13C NMR
(75 MHz, CDCl3) 6 172.08 (s, CO), 168.36 (s, CO), 137.60 (s,
C), 131.96 (s, CH), 130.99 (s, C), 130.32 (s, CH), 129.03 (s,
CH), 127.88 (s, CH), 68.42 (s, CH), 52.34 (s, OCH3), 51.88 (s,
OCH3), 42.97 (s, NMe»); IR (v, cm™') 1724 (C=0), 1257
(C-0); ESIMS (positive mode) (m/z): 251.9 [M + H]"; anal.
calcd for C13H|7NOy4 (251.12): C, 62.14; H, 6.82; N, 5.57;
found: C, 62.35; H, 6.91; N, 5.36.

Synthesis of [Pd(p-
Cl)(CgH4CH(CO,Me)NHTE-2)], (3)

To a solution of Pd(OAc), (421.1 mg, 1.836 mmol) in acetone
(30 mL), PhnCH(CO,Me)NHTS [19] (545.8 mg, 1.836 mmol)
was added, and the resulting mixture was heated under reflux
for 48 h. After the reaction time, the solution was evaporated to
dryness, the residue was treated with CH,Cl, (40 mL), and the
resulting suspension was filtered over a Celite pad. The
resulting clear solution was again evaporated to dryness, and the
residue was dissolved in MeOH and allowed to react with NaCl
(243.6 mg, 4.167 mmol) at room temperature for 4 h. The pale
yellow solution was evaporated to dryness, the dry residue
extracted with CH,Cl, (30 mL), and the resulting suspension
filtered to eliminate the excess of NaCl. Evaporation of this
clear solution and treatment of the residue with pentane
afforded 3 as a yellow—brownish solid. Yield: 452.6 mg,
0.516 mmol, 56.2% yield.

'H NMR (300 MHz, CDCl; + py-ds) & 7.21 (dd, J = 7.6,
1.5 Hz, 1H, C¢Hy), 6.94 (td, J = 7.4, 1.2 Hz, 1H, C¢Hy), 6.71
(td, J=7.5, 1.5 Hz, 1H, C¢Hy), 5.91 (dd, J = 7.7, 1.2 Hz, 1H,
CgHy), 5.38 (s, 1H, CH), 3.78 (s, 3H, OCHs), 2.24 (s, 1H, NH);
13C NMR (75 MHz, CDCl3+py-ds) & 173.94 (s, CO), 151.41 (s,
C, CgHy), 149.54 (m, CD, py), 146.10 (s, C, C¢Hy), 135.55 (m,
CD, py), 132.49 (s, CH, CgHy), 125.57 (s, CH, C¢Hy), 124.46
(s, CH, CgHa), 123.29 (m, CD, py), 122.69 (s, CH, C¢Hy),
120.82 (q, J = 324.6 Hz, CF3), 72.37 (s, CH), 52.30 (s, OCH3);
I9F NMR (282 MHz, CDCl; + py-ds) 8 =76.71 (s, CF3); IR (v,
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em™1): 3375 (br, N-H), 1742 (vCOO); ESIMS (positive mode)
(m/z): 439 [M/2 + H]™; anal. calcd for CyoH;gCl,FgN,OgPd,S,
(876.23): C, 27.41; H, 2.07; N, 3.20; S, 7.32; found: C, 26.93;
H, 2.02; N, 3.45; S, 6.98.

Synthesis of methyl 3-oxo-2-
((trifluoromethyl)sulfonyl)isoindoline-1-
carboxylate (4)

A solution of 3 (50.0 mg, 0.057 mmol) in dichloromethane was
stirred under a CO atmosphere for 16 h. Decomposition to black
palladium was observed. The mixture was filtered through a
plug of Celite, and the yellow solution was washed with water
(3 x 20 mL), dried over MgSQy, filtered and evaporated to give
4 as a yellow oil. Yield: 26.7 mg, 0.083 mmol, 72%.

'H NMR (300 MHz, CDCl3) & 7.98 (dt, J = 7.7, 1.0 Hz, 1H,
CgHy), 7.79 (td, J = 7.6, 1.2 Hz, 1H, CgHy), 7.68 (dd, J = 7.8,
0.9 Hz, 1H, CgHy), 7.65 (td, J= 7.5, 0.7 Hz, 1H, C¢Hy), 5.72 (s,
1H, CH), 3.85 (s, 3H, OCH3); 3C NMR (75 MHz, CDCl3) &
166.65 (s, CO), 164.37 (s, CO), 139.43 (s, C), 135.84 (s, CH),
130.87 (s, CH), 127.63 (s, C), 126.49 (s, CH), 123.54 (s, CH),
119.59 (q, J = 323.5 Hz, CF3), 63.20 (s, CH), 53.94 (s, OCH3);
19 NMR (282 MHz, CDCl3) § —74.04 (s, CF3); IR (v, cm™!):
1758 (COO). ESIMS (positive mode) (m/z): 324.0 [M + H]™;
anal. calcd for C;1HgF3NO5S (323.01): C, 40.87; H, 2.49; N,
4.33; S, 9.92; found: C, 40.94; H, 2.53; N, 4.41; S, 10.05.

Synthesis of methyl N-trifluoromethylsulfon-
amido-a-(2-methoxycarbonylphenyl)glyci-
nate (5)

A solution of 3 (100.0 mg, 0.114 mmol) in methanol was stirred
under a CO atmosphere for 16 h. During the reaction, the for-
mation of Pd® was evident. The black material was eliminated
by filtration through a plug of Celite, and the resulting light
yellow solution was washed with water (3 x 20 mL), dried over
MgSQy, filtered and evaporated to give an oily residue charac-
terized as the mixture of compounds 4 and 5. This mixture was
separated by column chromatography (silica, hexane/CH,Cl,:
3/7), yielding pure 5 as a colourless oil. Yield: 14.2 mg,
0.040 mmol, 18%.

'H NMR (300 MHz, CDCl3) & 8.10 (dd, J = 7.8, 1.5 Hz, 1H,
CgHy), 7.61 (td, J = 7.5, 1.5 Hz, 1H, CgHy), 7.50 (td, J = 7.6,
1.4 Hz, 1H, C¢Hy), 7.41 (dd, J= 7.6, 1.5 Hz, 1H, CcHy), 7.00
(d, J=19.4 Hz, 1H, NH), 5.42 (d, J = 9.3 Hz, 1H, CH), 3.92 (s,
3H, OCHj3), 3.75 (s, 3H, OCHj3); 13C NMR (75 MHz, CDCls) &
168.89 (s, CO), 168.43 (s, CO), 137.53 (s, C), 133.86 (s, C),
132.59 (s, CH), 132.01 (s, CH), 129.68 (s, CH), 127.30 (s, CH),
119.53 (q, J = 320.7 Hz, CF3), 61.35 (s, CH), 53.42 (s, OCHjy),
53.03 (s, OCH3); !9F NMR (282 MHz, CDCl3) § —77.53 (s,
CF3); IR (v, cm™1): 3282 (br, N-H), 1747 (COO0), 1711 (COO);
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ESIMS (positive mode) (m/z): 324.2 [M — OMe]*, 356.0 [M +
H]*; anal. caled for C1oH,F3NOgS (355.03): C, 40.57; H, 3.40;
N, 3.94; S, 9.03; found: C, 40.42; H, 3.24; N, 3.82; S, 8.93.

Supporting Information

Supporting Information File 1

General methods and experimental and analytical data of
compounds 2b—j.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-179-S1.pdf]
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The use of [Pd(NHC)(cinnamyl)CI] precatalysts in the direct arylation of heterocycles has been investigated. Among four different

precatalysts, [Pd(SIPr)(cinnamyl)Cl] proved to be the most efficient promoter of the reaction. The C—H functionalization of sulfur-

or nitrogen-containing heterocycles has been achieved at low catalyst loadings. These catalyst charges range from 0.1 to

0.01 mol % palladium.

Introduction

As a powerful addition to the classic palladium cross-coupling
reactions, C—H bond functionalization has become a growing
field of research over the last few years. The ubiquity of C-H
bonds makes them a convenient and cost-effective anchoring
position within viable substrates, as no derivatisation to form an
organometallic reagent is required. Moreover, among the
plethora of C—H bonds present on a molecule, it is often
possible to target one C—H linkage specifically, taking advan-
tage of directing groups or particular catalyst selectivity [1-5].
Thus, heteroaromatic scaffolds, which are a common feature in
biologically relevant compounds and in materials science [6,7]
can be selectively arylated as the heteroatom can act as an

intrinsic orientating group [8].

Despite the efficiency of well-defined palladium catalysts
bearing NHC (N-heterocyclic carbene) ancillary ligands in clas-
sical cross-coupling reactions, they have rarely been applied to
direct arylation procedures [9-16]. Among the family of
[PA(NHC)] complexes, the [PA(NHC)(cin)Cl] (cin = cinnamyl)
species are known for their ease of activation through the reduc-
tion of the metal centre from Pd(II) to Pd(0) [17]. Therefore, we
have investigated the use of such precatalysts in the direct aryl-
ation of heteroaromatic compounds in order to compare them to
ligand-free or phosphine-bearing catalytic systems, and in the
end to see whether the reactivity and application scope of these
commercially available complexes could be broadened to

include C—-H bond functionalization transformations.
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We now report the activity of the [Pd(NHC)(cin)Cl] complexes
1-4 in the direct arylation of heterocycles with NHC ligands
being SIPr (1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimi-
dazol-2-ylidene), IPr (1,3-bis(2,6-diisopropylphenyl)imidazol-
2-ylidene), IPr* (1,3-bis(2,6-bis(diphenylmethyl)-4-
methylphenyl)imidazol-2-ylidene) and IPr*T°! (1,3-bis(2,6-
bis(di-p-tolylmethyl)-4-methylphenyl)imidazol-2-ylidene)
(Figure 1). Complexes 1 and 2 are commercially available and
have proven to be highly efficient in Suzuki-Miyaura coupling
and Buchwald—Hartwig amination reactions [17-20]. We have
also evaluated the recently reported [Pd(IPr*)(cin)Cl] (3), which
has shown potency in Suzuki-Miyaura couplings [21] and
Buchwald—Hartwig N-arylations [22] even with challenging
substrates. To complete this study and to examine the effect of
bulky ligands about the metal centre, we have synthesised a
new complex [PA(IPr*ToY(cin)Cl] (4), which is a IPr* congener.

Results and Discussion

The study begins with the preparation of the palladium com-
plex 4. Following the strategy recently reported by Marké [23],
we were successful in the synthesis of the IPr*T°l-HCI imida-
zolium salt 5 in a 53% overall yield (see Supporting Informa-

iPr
" &
A

[Pd(SIPr)(cin)CI] [Pd(IPr)(cin)CI]

S %NTNﬁ %T?@
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tion File 1). Subsequently, § was treated with KO#-Bu in dry
THF to generate the corresponding free carbene in situ. The
expected [Pd(IPr*TOl)(cin)Cl] was then obtained in an excellent
yield (97%) by a simple fragmentation of the palladium dimer
[{Pd(cin)(n-Cl)},] using the free carbene solution (Scheme 1).

The newly synthesized complex 4 was unequivocally charac-
terised by X-ray diffraction [24] (Figure 2, Supporting Informa-
tion File 2 and Supporting Information File 3) after suitable
crystals were grown from slow diffusion of hexane in
dichloromethane. Based on this crystal structure, the percentage
buried volume (%Vgy,) of the IPr*To! ancillary ligand was
determined by using the “Sambl’ca” web application [25] and
compared to complexes 1-3 (Table 1) [21]. IPr*T°! featured a
%Vpyr in the same range as [Pr* (+0.4% difference). SIPr and
IPr have been reported as less hindered ligands with % Vg, of
37.0 and 36.7, respectively. The length of the Pd—C1 bond in 4
was also examined and is close to the one observed in 3.

With complexes 1-4 in hand, their catalytic activity towards the
direct arylation of heteroaromatic compounds was evaluated.

For this purpose, the arylation of benzothiophene (6) with

p-Tol

p-Tol
-Tolq

I/p -Tol

o

Ph Ph

[Pd(IPr*)(cin)CI] [Pd(IPr*To)(cin)CI]

1 2 3 4
Figure 1: [Pd(NHC)(cin)CI] catalysts examined in direct arylation.
p-Tol p-Tol
p- Tolq __ L-p-Tol
p-Tol p-Tol N/ o \N
p-Tol — o LP-To 1) KOt-Bu, THF
o m4h
NN ’ p-Tol p-Tol
2) [{Pd(cin)(u-Cl)},] p-Tol Pd_ p-Tol
p-Tol C|@ p-Tol r, 16 h k Cl
p-Tol p-Tol
5 Ph
97%
4

Scheme 1: Synthesis of [Pd(IPr*T°)(cin)CI] (4).
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Figure 2: Molecular structure of 4. H atoms were omitted for clarity.
Selected bond lengths (A) and angles (°): Pd1-C1 2.034(0), Pd1-Cl1
2.352(5), Pd1-C85 2.132(8), Pd1-C86 2.119(7), Pd1-C87 2.226(6);
C1-Pd1-C85 102.9(5), C85-Pd1-C87 71.2(6), C87—-Pd1-CI1 93.3(8),
Cl1—-Pd1-C1 91.8(6).

Table 1: Comparison of the % Vg, and d(Pd—C1) in the
[PA(NHC)(cin)CI] family.

NHC % Vaur? Pd-C1 (A)
SIPr 37.0 2.025(7)
IPr 36.7 2.041(9)
IPr* 44.6 2.038(6)
|Pr+Tol 45.0 2.034(0)

8% Vg, calculated for a 2.00 A Pd—C1 length.

4-bromotoluene (7) was selected as a benchmark reaction
(Table 2). This C—H functionalization, initially described by
Ohta [26], was then reported by Bhanage and Mori using
2—10 mol % of well-defined palladium catalysts [27,28]
(Figure 3). Alternatively, Fagnou and Kappe proposed a
Pd/phosphine system involving 1-2 mol % of palladium and
2-4 mol % of phosphine [29,30], but no example of this reac-
tion involving a well-defined [Pd(NHC)] complex has been
described. However, it is noteworthy that variously substituted
benzothiophene cores have been extensively studied in the
direct arylation process [4,31-37].

Initial screening of precatalysts 1-4 was performed with a

2 mol % loading, by using KO#-Bu as the base, which is known

Beilstein J. Org. Chem. 2012, 8, 1637-1643.

Table 2: Catalyst screening for the direct arylation of benzothiophene

(6).

Br
©\/\> . [Pd] (2 mol %) O A O
s KOt-Bu, DMA g
140 °C, 16 h
6 7 8a
Catalyst Conversion (%)2
[Pd(SIPr)(cin)CI] (1) 76
[Pd(IPr)(cin)CI] (2) 50
[Pd(IPr*)(cin)Cl] (3) 8
[Pd(IPr*Tol)(cin)CI] (4) 49

aConversion of the starting material into C-H arylated product deter-
mined by GC, [6] = 0.3 M.

7 tBu o_ .0
o) 0 t—BU\P/t-Bu Np O
Pd P (pd )
O/ o ,d (0] . (0]
_Bu—P~t
Bhanage [27] Mori [28] Fagnou [29]

Kappe [30]

Figure 3: Previously reported catalytic systems in the direct arylation
of benzothiophene (6).

to efficiently activate the [Pd(NHC)(cin)Cl] precatalysts [17].
DMA was selected as the solvent and the reaction was
conducted at 140 °C.

This survey showed that 1 is the most efficient precatalyst under
these reaction conditions with 76% conversion of the starting
material. Precatalysts 2 and 4 exhibited closely related activity,
with 50 and 49% conversion, respectively. However, complex 3
gave relatively poor conversion of the benzothiophene (6).

Thus, selecting 1 as the best precatalyst, the use of other
solvents, bases and additives was evaluated to optimize the
reaction (see the Supporting Information File 1). From this opti-
mization study, it was found that 0.1 mol % of 1 with K,COj3 in
DMA as solvent at 140 °C in the presence of a catalytic amount
of pivalic acid (30 mol %) generated the best reaction condi-
tions. Under these optimized parameters, a second precatalyst
screening was performed. As shown in Table 3, better activity
was observed for precatalysts 1 and 2, which have smaller

ligands when compared to the NHCs in 3 and 4. This result
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Table 3: Catalyst screening under optimised conditions.

Br [Pd] (0.025 mol %)

PivOH (30 mol %
pafpltlissTy
Z s KOt-Bu, DMA s

140°C, 16 h
6 7 8a
Catalyst Conversion (%)
[Pd(SIPr)(cin)CI] (1) 80
[PA(IPr)(cin)CI] (2) 75
[Pd(IPr*)(cin)CI] (3) 57
[Pd(IPrToN(cin)CI] (4) 58

aConversion of the starting material into C—H arylated product deter-
mined by GC, [6] = 0.3 M.

Beilstein J. Org. Chem. 2012, 8, 1637-1643.

suggests a strong dependence of the activity on the steric prop-
erties of the NHC ligand. Moreover, the small difference
between 1 and 2 underlines the fact that the difference in the
o-donation properties of the NHC ligands [38-41] is not likely
to play a crucial role in the catalytic activity.

In comparison with the previously mentioned methodologies to
perform this C—H functionalization [27-30], the catalyst loading
can be decreased by at least 10-fold without drastically
affecting the yield (Table 4, entry 1). Using the optimized reac-
tion conditions, we examined the scope and the limitations of
this catalytic system using various aryl bromides and hetero-
cycles (Table 4). It appeared that the sterics of the aryl bromide
had almost no impact on the reaction. Indeed, para-, meta- and
ortho- substituted aryl bromides could be employed to arylate 6
in good yields. (Table 4, entries 1-3, 77-89%). However, ortho-
disubstituted aryl bromide, such as bromomesitylene appeared

Table 4: Palladium-NHC catalysed direct arylation of heterocycles with arylbromides.

[PA(SIPr)(cin)CI]

Entry? Heterocycles Products

10
2C
3C
4°¢
5¢
GC
7¢

PR
S
6
8
! I
10 S
9
i o
S

12

13 1

14

154

169 7NN

174 XN
13

R
PivOH @ X
K,CO3, DMA =

140 °C, 16 h
R YieldP
4-Me, 8a 89%
3-Me, 8b 80%

R 2-Me, 8¢ 77%
4-OMe, 8d 70%

4-Cl, 8e 49%
4-F, 8f 53%
4-CHO, 8g 37%

N\ —x
s \ 7/
8
4-Me, 10a 85%
A — R 2-Me, 10b 83%
s N\ 7/ 4-F, 10c 52%
10
N —\ R 4-Me, 12a 90%
|S \ 4-OMe, 12b 75%
12

4-F, 12¢ 57%

74%

i /\\R 4-Me, 14a 59%

4-OMe, 14b 53%

ZON 4-F, 14c 76%
XN
14

aUnless noted, reactions were performed on 0.6 mmol scale with: Heterocycle (1 equiv), aryl bromide (1 equiv), [Pd(SIPr)(cin)CI] (0.1 mol %), PivOH
(30 mol %), K2CO3 (1.5 equiv), DMA (2 mL), 140 °C. PIsolated yields, average of two independent runs. 6 (1.2 equiv). 9[Pd(SIPr)(cin)Cl]

(0.01 mol %).
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to be too sterically demanding and led to no conversion (data
not shown). Concerning the electronic properties of the aryl
bromide, electron-withdrawing (EWG) and electron-donating
groups (EDG) were tolerated, although the presence of EWGs
resulted in decreased yields (Table 4, entries 4—6, 49—70%). The
substrate 4-bromobenzaldehyde was also successfully involved
in the direct arylation of 6. Despite its electron-withdrawing
nature as well as its high reactivity, the expected biaryl was
obtained in moderate yield (Table 4, entry 7). The limits of the
scope were determined by switching from benzothiophene (6)
to the more sterically demanding 3-methylbenzothiophene (9)
(Table 4, entries 8—10). Closely related reactivity was observed
for 6 and 9, as these were arylated in comparable yields
(Table 4, entry 1 vs 8, 3 vs 9 and 6 vs 10).

A more challenging heterocycle, 2-methylthiophene (11), was
investigated. Simple thiophene rings are known to be less reac-
tive in C—H functionalization reactions [42]; nevertheless, 11
was successfully arylated in moderate to good yields, depending
on the electronic properties of the bromobenzene substituents
(Table 4, entries 11-13, 57-90%). Electron rich 4-methoxy-
bromobenzene reacted more efficiently than the electron poor
4-fluorobromobenzene. An opposite effect of the electronics
was observed by Doucet et al. in their ligandless procedure at
low catalyst loadings [43,44]. This is surely due to the nature of
the catalyst and thus offers complementary direct arylation

methods for thiophene derivatives.

To complete the study, experiments were performed at lower
catalyst loading using imidazopyridine (13). This class of sub-
strate has recently been involved, by Doucet et al. [45], in direct
arylation with a catalytic charge of Pd(OAc), ranging from 0.1
to 0.01 mol %. In our case, comparable yields were obtained
when the catalyst loading was decreased from 0.1 to
0.01 mol %, highlighting the high efficiency of the catalytic
system (Table 4, entries 14 and 15). Following the same trend
as reported by Doucet [45], a better reactivity was observed
with bromobenzenes substituted with EWGs compared to with
EDGs (Table 4, entries 16 and 17).

Conclusion

In summary, we report here the synthesis and characterization
of a new member of the [Pd(NHC)(cin)Cl] family,
[PA(IPr*Tol(cin)Cl]. The catalytic activity of this family of
complexes was surveyed in the direct arylation of heterocycles.
The bulkiness of the NHC ligand appears to play a major role in
the catalytic efficiency, whereas the c-donation properties
(within the small electronic space examined) have little influ-
ence. Among the four complexes, [Pd(SIPr)(cin)Cl] exhibited
the highest catalytic efficiency and was investigated for the

arylation of various benzothiophenes, thiophene and imidazo-

Beilstein J. Org. Chem. 2012, 8, 1637-1643.

pyridine. C—H functionalization of such heterocycles was
performed in moderate to good yields by using only
0.1-0.01 mol % of precatalyst. This study highlights the fact
that [Pd(NHC)(cin)Cl] complexes are multipurpose precata-
lysts as they may be utilised in various cross-coupling and, now,
C—H-bond-functionalization reactions.

Experimental
General procedure for the direct arylation of

heterocycles

In a glovebox, a vial containing a stirring bar was charged with
K,COj3 (124 mg, 0.9 mmol, 1.5 equiv) and pivalic acid
(0.18 mmol, 18 mg, 30 mol %), and sealed with a screw cap
fitted with a septum. The heterocycle (0.6 mmol, 1.0 equiv)
and/or the arylbromide (0.6 mmol, 1.0 equiv) were added at this
point if in solid form, and DMA (1.9 mL) was poured into the
vial. Outside of the glovebox, the heterocycle and/or the aryl
bromide were added at this point if in liquid form. Finally,
[PA(SIPr)(cin)Cl1] (1) was added as a 0.06 M solution in DMA
(0.6—6 pmol, 10-100 pL, 0.01-0.1 mol %), and the vial was
heated to 140 °C for 16 h. The solution was then cooled down
to room temperature, diluted with 40 mL of ethyl acetate, and
washed with water (2 x 20 mL) and brine (20 mL). The organic
layer was dried over MgSOy, filtered and concentrated in
vacuo. The crude residue was finally purified by either tritura-
tion in pentane (if not soluble) or silica-gel column chromatog-

raphy using pentane as the eluent.

Supporting Information

Supporting Information File 1

Synthesis and characterization of complex 4; compound
characterization data for all the direct arylated products and
copies of their 'H and 13C NMR spectra.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-187-S1.pdf]

Supporting Information File 2

CIF-Check for compound 4.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-187-S2.pdf]

Supporting Information File 3

Crystal structure data for compound 4.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-187-S3.cif]
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This review highlights the development of palladium-catalyzed C—H and N-H functionalization reactions involving indole deriva-

tives. These procedures require unactivated starting materials and are respectful of the basic principle of sustainable chemistry tied

to atom economy.

Introduction

The development of mild and selective reactions for the direct
conversion of carbon—hydrogen bonds into carbon—carbon and
carbon—heteroatom bonds is a challenging goal in organic
chemistry [1-3]. The coupling of C—-H/C-H or C—-H/N-H bonds
in an oxidative system is an attractive target since hydrogen or
water would be the only formal byproduct. In this field,
(hetero)aryl—(hetero)aryl, (hetero)aryl-alkenyl, and
(hetero)aryl—alkyl reactions represent some of the most impor-
tant tools for planning the synthesis of a wide range of different
kinds of molecules. Synthetic approaches using unfunctional-
ized reagents rather than halogenated compounds have attracted
strong attention, above all due to their atom- and step-econom-

ical characteristics.

Thus, the applicability of these transformations on the multi-
scale level paves the way to cheaper processes, resulting in
minimal waste production and raising the possibility of applica-
tion in multistep synthetic sequences. Many transition metals,
including Pd, Au, Ru, Rh, Cu, and Pt, have been proven to be
highly efficient for the formation of new bonds without
prefunctionalized starting materials [4-10]. Among the tran-
sition metals suitable for this purpose, palladium plays a pivotal
role due to its versatility in different synthetic protocols and
tolerance towards many functional groups, often avoiding the
need for protecting-group chemistry [11-16]. Moreover, palla-
dium-catalyzed reactions involving ethylenic double bonds can

also lead to domino processes such as carboaminations [17-19],
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diaminations [20,21], aminooxygenations [22,23], and amino-
halogenations [24,25]. The most common reactions of C—H
functionalization on unactivated substrates typically occur with
electrophilic Pd(II) catalysts and require an oxidizing agent in
order to make possible the reoxidation of the Pd(0) species,
generated in the final elimination step, for a new catalytic cycle
[12-15].

The well-established features of natural or man-made com-
pounds containing an indole backbone are of wide interest in
pharmacological and agrochemical fields [26-28]. Thus, indole
and carbazole nuclei are used in medicine for their antibacterial,
antimicrobial, and anti-inflammatory effects and occupy a rele-
vant role in the discovery of active antitumor drugs [29-31].
Carbazole derivatives also find applications in organic ma-
terials as chromophores and photoconductors [32]. For several
years, the development of methodologies concerning indole
synthesis and functionalization has been one of the most attrac-
tive goals in organic chemistry [33-39]. In the search for clean
and sustainable synthetic protocols suitable to construct and
convert the indole core motif into more complex structures,
palladium-based catalytic systems were proven to be fruitful
tools for organic chemists [40-42].

This review highlights methodologies based on the use of palla-
dium catalysts, devoted to the functionalization of indole
derivatives involving carbon-hydrogen and nitrogen-hydrogen
bonds. The synthetic procedures are classified as intermolec-
ular and intramolecular alkenylations, arylations, and domino
processes.

Pd(0)

alkene activation

Scheme 1: Typical catalytic cycle for Pd(ll)-catalyzed alkenylation of indoles.

oxidant

e

Pd(I)X,

-
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Review

Intermolecular reactions involving alkenes
Alkenylation reactions of indoles run through a key C—H acti-
vation step involving an electrophilic palladation and an elec-
tron-deficient Pd(II) catalyst. The mechanism of these reactions
involves the generation of a c-alkyl complex I, which is the
rate-determining step of the reaction, and conversion into the al-
kenylindole by a syn-B-hydride elimination process (Scheme 1)
[43-45]. Beside the formation of the final product, the last step
results in the elimination of HX and Pd(0) species, justifying
the need for an oxidant agent to regenerate a Pd(II) species as
active catalyst. Although seldom unambiguously determined,
two alternative pathways, based either on “alkene activation” or
“indole activation”, have been proposed to explain the forma-
tion of the c-alkyl complex I. The former involves the coordina-
tion of the Pd(II) catalyst to the olefin, giving the n-olefin com-
plex I1, which is converted by nucleophilic attack of the indole
into the intermediate I. On the other hand, an electrophilic
attack of the Pd(Il) catalyst on the indole to generate the
indolyl-palladium(II) complex III, in turn susceptible to attack
by the olefin, may be hypothesized as a plausible way to form
the o-alkyl complex I. In both pathways, indole may be
involved directly at the C-2 or C-3 positions as well as preferen-
tially at the C-3 position, in the latter case affording the final
2-substituted product by the intrinsic tendency toward C-3/C-2
rearrangement that is operative during the alkylation of indoles
[46].

In 1969, Fujiwara and Moritani reported the alkenylation of
arenes catalyzed by Pd(OAc),, using Cu(OAc), or AgOAc as

Pd(0)

indole activation
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oxidants [47]. This strategy provides a convenient method for
the synthesis of olefins linked to heteroarenes, including indole,
furan, and benzofuran rings (Scheme 2) [48]. Working with
indole and methyl acrylates in the presence of Pd(OAc), and
1,4-benzoquinone in catalytic quantity with zert-butyl hydroper-
oxide as oxidant, 3-alkenyl-substituted products were obtained.

ZR
Pd(OAC), (0.5 mol %)
1,4-BQ (5 mol %)
t-BUOOH (1.3 equiv) ..
AcOH/Ac,0 (3:1)
50 °C

X=0,NH

Scheme 2: Application of Fujiwara’s reaction to electron-rich hetero-
cycles.

The synthetic value of the direct catalytic C—H alkenylation of
the C-2 and C-3 positions of the unprotected indole nucleus was
recognized under different conditions published several years

ago. In 2005, Gaunt and co-workers disclosed a general method

Pd(OAc), (10 mol %)

Cu(OAc);, (1.8 equiv)
) DMF/DMSO
N 70 °C

1
R = COzt-BU, CONMez, PO(OEt)Q, Ph, COzBU

Scheme 3: Regioselective alkenylation of the unprotected indole.

(i(\g/ oxidant
—  am
ZNH  Pd(0) PdX,

A\

N
H

B
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for the selective intermolecular alkenylation of the unprotected
indoles through an oxidative palladium-catalyzed reaction
(Scheme 3) [49]. The reaction can involve the formation of
carbon—carbon or carbon—-nitrogen bonds, which is strongly
dependent on the solvent used. When the reaction is carried out
in aprotic polar solvents, such as DMSO and DMF, with
Cu(OAc); as reoxidizing agent, the alkenylation occurs at the
3-indolyl position, yielding products 1. Conversely, the use of
dioxane with the addition of acetic acid as a polar coordinating
co-solvent in the presence of fert-butyl benzoyl peroxide,
directs the selectivity in favor of the C-2 substituted indoles 2. It
should be noted that the same chemistry has been successfully
extended to the pyrrole ring [50].

A rational explanation for the outcome of these reactions is
described in Scheme 4. In both cases, intermediate 1V is
involved as the result of a direct palladation at the C-3 position.
Working under neutral conditions, a proton can be easily
removed from IV by the anion formed from the initial palla-

dium salt with generation of the 3-indolyl-palladium complex

Pd(OAc), (20 mol %) R

t-BuOOBz (0.9 equiv) (\ A
dioxane/AcOH (3:1) Z N
70 °C H

2

oxidant (WR

PdX,

1 2
Z>R
R C-3 functionalization C-2 functionalization
H
H
PdX % pdX <
N H X PdX
| x NF)
NH AN
vil
X /{ \ HX
N
Cré E/ !
Z R

\'

Scheme 4: Plausible mechanism of the selective indole alkenylation, adapted from [49].
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CO,Me Z>C0o,Me Z>C0o,Me
— X CO,Me
PdCl, (10 mol %) (p PdCl, (10 mol %) W 2
A\ Cu(OAc), (2 equiv) Z N Cu(OAc); (2 equiv) N
N

N MeCN, 60 °C _ MeCN, 60 °C \\Ej

\\© Z=CH, 95% \ /% Z=N, 99% =
3:Z=CH
4:7=N

Scheme 5: Directing-group control in intermolecular indole alkenylation.

V, which evolves a Heck-type reaction to give the 3-alkenylin- Cu(OAc), (1 equiv) in DMA, furnishes the product 6 in
doles 1. Conversely, the deprotonation of the C-3 position is moderate to good yield (Scheme 6). A mechanism including an
difficult in acidic medium, favoring the transfer of metal species  electrophilic palladation involving the pyridinyl chelation was
to the 2-indolyl carbon of IV, activated as an iminium carbon. thought to be plausible taking into account the outcome of the
The so-formed intermediate VI undergoes loss of HX with  reaction performed on isotopically labeled substrates as well as
generation of the complex VII, which finally reacts with by kinetic studies of variously substituted indoles. This N-(2-
alkenes giving the 2-alkenylindoles 2 and a Pd(0) species. pyridyl)sulfonyl-directing strategy has also been extended to the
development of a protocol for the intermolecular, dehydrogena-
An alternative approach to address the regioselective alkenyla-  tive homocoupling of indole, providing 2,2’-bisindoles 7.
tion of the C-2 position is based on the directing control of a
group attached to the indole nitrogen. Under the same condi- Intermolecular Pd(II)-catalyzed N-H functionalization has also
tions, i.e., PdCl, as catalyst and Cu(OAc); as oxidant in aceto- been successfully used to achieve N-substituted indoles.
nitrile at 60 °C, alkenylation of N-benzyl-protected indole 3  Coupling of indole and 2-methyl-2-butene in the presence of
took place selectively at the C-3 position, while the reaction of  Pd(OAc); (40 mol %), Cu(OAc), and AgOTf as the co-oxidants
the N-(2-pyridylmethyl)-substituted indole 4 resulted in the in MeCN constitutes a simple route to N-prenylated indoles 8
functionalization of the C-2 position by directing coordination  (Scheme 7) [54]. This mild reaction, which exhibits broad func-
to the pyridyl nitrogen (Scheme 5) [51]. tional-group tolerance, can be successfully performed for the
prenylation of tryptophan and tryptamine derivatives, as well as
The control of the regioselectivity in the Pd(Il)-catalyzed C-H  peptides containing tryptophan.
alkenylations towards the indole C-2 position can be exerted by
the N-(2-pyridyl)sulfonyl group, which can be easily installed — Taking into account some experimental evidence obtained from
and removed [52,53]. The reaction of 5 with a wide range of  the use of 2-methyl or 2-deuterium-substituted indoles and from
mono-, 1,1- and 1,2-disubstituted alkenes in the presence of a [1,1,1-D3]3-methyl-2-butene, the mechanism shown in
catalytic system based on PdCl;(MeCN), (10 mol %) and Scheme 8 was thought to explain the outcome of the reaction.

R2
R! R3\/\ 1
R? R \ 34
N/ PdCl,(MeCN), (10 mol %) \ Pd(OAC), (10 mol %) N
N R3 Cu(OAc),"H,0 (1 equiv) 5. N Cu(OTf), (1.5 equiv) 5 é;O
- N
5. N DMA, 110 °C o~ X AcOH, 90-100 °C o Re)
oO” N o) | X
T g
4
6 (40-85%) 5 7 (68%)

= COOMe, CONMe,, COP(O)(OMe),, alkyl, aryl, CH=CH-Ph, CH=CH-COOMe
R? = H, COOMe, CHO, Ph
R3=H, Me

Scheme 6: Direct C—H alkenylation of N-(2-pyridyl)sulfonylindole.
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Pd(OAc);, (40 mol %)
AgOTf (2 equiv)

R2 R
q\g Me Cu(OAG), (2 equiv) Q(\g
N \ Me MeCN, air N

3540 °C /}\/
8
QN COzMe
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Me Me 2
= 76% 60%
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Me — t-Bu
61% cl 60%
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I I
N
Me Me
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<

Scheme 7: N-Prenylation of indoles with 2-methyl-2-butene.

Firstly, Pd(II) catalyst promotes the formation of the n-allyl-
palladium complex VIII, which can evolve by coordination of
the N-1 or C-3 positions of the indole nucleus giving the palla-
dium complexes IX and X, respectively. The latter quickly
converts into the o-alkyl-palladium intermediate XI by a
Claisen-type rearrangement that involves the metal species. A
mechanism through the typical n-olefin-palladium complex as
the precursor of the o-alkyl-palladium complex XI cannot,
however, be ruled out. In every case, a Pd(0) species was
released from XI and reoxidized with the Ag(I) and Cu(ll) salts.

Intermolecular reactions involving arenes
The formation of homo-coupling products is one of the most
common drawbacks in intermolecular reactions between arenes

without preactivation of the substrates. In 2006, Lu and

Beilstein J. Org. Chem. 2012, 8, 1730-1746.

Me
AgX Me™ X—Me
Cu(OAc), Pd(OAc),
Pd(OAC)L,,
Pd(0)L, Me— . | .
n Me>\/
vl
R
O (
X
\ O
%\/ IX or X Z~N
= H
Me
12

Possible intermediates:

@
. KIE\)) " /~\(Me

Me—. ' Me PdL,,
Me>\‘/

IX X X1

Z /3\;U

=
®

Scheme 8: Proposed mechanism of the N-indolyl prenylation.

co-workers reported one of the first articles providing condi-
tions to access asymmetric biaryl compounds by dual C-H
functionalization [55].

In 2007, Fagnou and co-workers combined, in a single catalytic
cycle, the reactivity of electron-deficient palladium(II)
complexes with electron-rich arenes (through an electrophilic
C-H activation mechanism) and the reactivity of some
Ar-Pd(II) complexes with arenes (through a proton-transfer
palladation mechanism), depending on the C—H acidity rather
than the arene nucleophilicity. Synthetic procedures based on
this strategy allowed the direct arylation at C-2 and C-3 posi-
tions of indoles 9 with a high degree of regioselectivity
(Scheme 9) [56,57]. 3-Arylindoles 10 were selectively achieved
on N-acylindoles by using catalytic PdA(TFA), and a stoichio-
metric amount of Cu(OAc),. The use of additives, such as
3-nitropyridine and caesium pivalate, was proven essential to

achieve optimized conditions.

It is plausible that the presence of pyridine can stabilize the
final Pd(0) species favoring its reoxidation and avoiding the
precipitation of palladium black. The use of AgOAc as oxidant
induces an inversion of selectivity, improving the C-2 arylation
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PA(TFA) (10 mol %) Ar
3-nitropyridine (10 mol %) X N

Cu(OAc); (3 equiv)

Z N
PivOH )%
CsOPiv (40 mol %) Mé (@)
140 °C
R , 10 (45-84%)
R4 = Me
|\ A A
Z N
go Ar—H R’

2
R Pd(TFA), (10 mol %) |\ g
9 AgOACc (3 equiv) Z~N
PivOH >€<O

110 °C
(55-90%)

R2=t-Bu

Scheme 9: Regioselective arylation of indoles by dual C—H functional-
ization.

process. A high level of C-2 selectivity was achieved by using
the N-pivalyl-substituted indole in the absence of additives.
From the mechanistic point of view, as depicted in Scheme 10,
the C—H activation on the electron-rich indole, selectively
directed by the strongly electrophilic behavior of the Pd(TFA),
catalyst, is plausible giving the Pd(II) intermediate XII. The
subsequent selective coordination of the arene generates the
complex XIII, which in turn undergoes reductive elimination
providing the final product and a Pd(0) species. The reoxida-
tion of the latter giving the active Pd(Il) catalyst completes the
catalytic cycle.

In addition to the effect of Cu(OAc), and AgOAc as oxidant, a
determinant role on the selectivity of direct C—H to C—H cross-
coupling reactions was played by the acidity of the medium, as
shown by reactions carried out in the presence of AcOH
[58,59]. Based on experimental and computational data, a
concerted metalation—deprotonation of the arene was hypothe-
sized to explain the mechanism for C—H palladation.

Beilstein J. Org. Chem. 2012, 8, 1730-1746.

RLZN\
_ \
Pd(TFA
Cu(OAc), ( 2
CF3CO,H
Ar-H/Ar-H 1 Pd(TFA)L,
coupling R\/' N \
Q &
\ P ) — R?
CF3CO,H

X Ac

Scheme 10: Plausible mechanism of the selective indole arylation.

Intramolecular reactions involving alkenes

The first example of intramolecular indole alkenylation was
reported in 1978 by Trost, who applied reaction conditions
based on stoichiometric amounts of PdCl,(MeCN), and silver
ions in the key step of the total synthesis of ibogamine alka-
loids [60].

Palladium-catalyzed cyclization of N-allyl-1H-indole-2-carbox-
amides 11 is a fruitful procedure to access f-carbolinones 12 or
pyrazino[1,2-a]indoles 13 (Scheme 11) [61,62]. The use of
PdCl,(MeCN), as the catalyst with 1,4-benzoquinone as the
oxidant in a mixture of DMF/THF resulted in the C-3 function-
alization of the indole nucleus. Conversely, switching to
Pd(OAc), with NayCOj3 as a base and BuyNCl as an additive in
DMEF provided the indole N—H functionalization. This strategy
has also been proven to be operative in effecting intramolecular
alkenylation on a range of other electron-rich heterocycles,
including pyrroles, furans and thiophenes [63,64].

The intramolecular Pd(II)-catalyzed reaction of the 3-alkenylin-
doles 14 gave rise to the carbocyclic 5-membered ring-fused

N\
Me, Pd(OAc), (5 mol %)
= PdCl2(MeCN), (10 mol %) H Na,CO; (1 equiv) A o}
N-R 1,4-BQ (1 equi N-R i | N
(\ Q 4-BQ (1 equiv) A n-Bu4NCI (1 equiv) PN
Z~N 0 THF/DMF, 80 °C N o) DMF, 100 °C __N-R

H Me

12 (98%) 13 (74%)

Scheme 11: Chemoselective cyclization of N-allyl-1H-indole-2-carboxamide derivatives.
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Rd R3 Pd(OAc); (10 mol %) R4
ethyl nicotinate R3
= “Me (40 mol %)
(\ N\ R2 0, N\
Z N t-AMOH/ACOH (4:1) N R? N
R 80 °C R
14 15 (64-82%)
R' = Me, Bn
R2 = Me, Et, CH,OBn
R%, R*=H, Me

Scheme 12: Intramolecular annulations of alkenylindoles.

products 15 (Scheme 12) [65,66]. This procedure involves O,
as the sole oxidant. Among the various pyridine ligands and
solvents tested to optimize the conditions, 3-carbethoxypyri-
dine in a polar solvent (i.e., tert-amyl alcohol/AcOH in 4:1
ratio) was proven to be the most effective in providing satisfac-
tory yields. The oxidative cyclization led also to a new
6-membered ring, once again producing vinyl-substituted prod-
ucts. An analogous process for the direct intramolecular C—H
functionalization of inactive alkenyl aryl ethers, giving benzo-
furan and dihydrobenzofuran derivatives, was successfully
developed [67].

Beilstein J. Org. Chem. 2012, 8, 1730-1746.

Both possible mechanistic pathways based on the initial coordi-
nation of the Pd(II) catalyst to the 2-indolyl position or to the
carbon—carbon double bond, can be hypothesized for this reac-
tion. Elucidation of the outcome of the reaction was achieved
by cyclization of the diastereoisomerically pure cyclohexenylin-
dole 16, which could give the spiro-products 17 and 18
(Scheme 13). The sole formation of the annulated indole 18 as a
single diastereoisomer suggests a mechanism that is strictly
closer to the classical oxidative Heck reaction (pathway B)
rather than to a Wacker-type reaction (pathway A). In fact, the
formation of the product 18 is explainable by an indolyl palla-
dation and a B-hydride elimination, which typically occurs in
syn manner. The formation of the diastereoisomeric product 17
would have been justified by a nucleophilic attack of the indole
on the m-olefin complex, which is known to occur in anti

fashion, before the B-hydride elimination.

Palladium—pyridine systems were subsequently investigated
with chiral ligands to catalyze enantioselective processes
involving alkenylindoles. Several enantioselective indole annu-
lations with formation of a stereogenic quaternary carbon atom
were performed by using chiral oxazoline ligands with pyridine
or nicotine platforms (PyOx and NicOx, respectively) [68,69].
A moderate level of enantiocontrol (up to 51 % ee) was seen in
S-exo-trig cyclization of the 3-alkenylindole 19 (n = 1) in the

Me
H Me
OBn L
Pd(OAc), ‘ OBn
I ., Pd(OAC), Pd(OAc),
zMe olefin O \ indole
activation N palladation
OB | 16 N~ ~Pd-OAc
Me |
Me
Pd(OAc),
nucleophilic path A path B olefin
attack insertion
0,
HPd(OAc)

BnO

BnO

17

BnO

Scheme 13: A mechanistic probe for intramolecular annulations of alkenylindoles, adapted from Ferreira et al. [66].
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Me Pd(OAc); (10 mol %)
o ligands 20 and 21 (30 mol %)
oxidant (1 equiv)

)n

C

\ Me

N t-AMOH/ACOH (4:1) N e

Ve 80 °C Me

19 22

(n = 1: Ligand 20, oxidant: Oy, up to 37% ee)
(n = 1: Ligand 20, oxidant: 1,4-BQ, up to 43% ee)
(n = 2: Ligand 21, oxidant: PhCOs3t-Bu, up to 4% ee)
(n = 2: Ligand 21, oxidant: O, up to 7% ee)
(n = 2: Ligand 21, oxidant: 1,4-BQ, up to 1% ee)

Pd(OAc), (10 mol %)

oxidant (1 equiv)

ligands 20 and 21 (30 mol %)

t-AmOH/ACOH (4:1)

23 80 °C
Ligands:
0
X
| Meso X
N7 O L o
. R,
20 21 %or

—

b Me

N

24
(n = 1: Ligand 21, oxidant: PhCO3t-Bu, up to 47% ee
(n = 1: Ligand 21, oxidant: Oy, up to 51% ee)
(n = 2: Ligand 21, oxidant: 1,4-BQ, up to 39% ee)
(n = 2: Racemic)

Scheme 14: Asymmetric indole annulations catalyzed by chiral Pd(ll) complexes.

presence of ligands 20 and 21, to yield 22, whilst the outcome
of the 6-exo-trig cyclization of indole 19 (n = 2) resulted essen-
tially in racemic products (Scheme 14). The same behavior, in
terms of the degree of enantioselectivity depending on the ring
size of the newly formed ring, was observed in the cyclization
of the N-alkenylindole 23 to give the pyrrolo[1,2-a]indole 24
(up to 51% for 5-exo-trig cyclization).

A strategy involving an intramolecular C—H bond alkenylation
of trisubstituted alkenes, followed by ring opening of the
so-formed ring, was planned to achieve the diastereocontrolled
formation of tetrasubstituted double bonds tethered to C-2

Pd(OAc), (2.5-10 mol %)

indole. The Pd(Il)-catalyzed 5-endo-trig cyclization of
N-alkenoylindoles 25 in the presence of 3-cyanopyridine as the
ligand and under aerobic conditions afforded the tricyclic prod-
ucts 26 (Scheme 15) [70]. The subsequent amide cleavage
carried out in aqueous NaOH and following ester formation by
treatment with Me3SiCHN; in methanol led to the 2-alkeny-
lated indoles 27.

The pyrimido[3,4-a]indole skeleton 29 was proven to be acces-
sible by intramolecular 6-exo-trig cyclization of the N-alkenyl-
indole 28 with PdCl,(MeCN), as catalyst and 1,4-benzo-
quinone as oxidant in THF/DMF at 80 °C (Scheme 16) [51].

R 3-cyanopyridine (10-40 mol %) R 1) aq NaGH R’
@E\g O,, mesitylene A\ RS THF/EtOH/H,0, rt (\ N R3
N t-BuCOOH, 110 °C or 150 °C N | 2) Me3SiCHN,, MeOH, rt 4 H \\_R?2
'l e
0 R2 o} MeO™ Xy
25 26 (40-70%) 27 (30-93%)

R' = Me, Ph; RZ=Me, Ar; R®=H, Me, Ar

Scheme 15: Aerobic Pd(ll)-catalyzed endo cyclization and subsequent amide cleavage/ester formation.

1737



PdCly(MeCN), (10 mol %)
1,4-BQ (1 equiv)

THF/DMF, 80 °C

o

e

28

)

N
Me

Scheme 16: Synthesis of the pyrimido[3,4-a]indole skeleton by
intramolecular C-2 alkenylation.

Catalytic oxidative Heck reactions allowed also the construc-
tion of seven-membered ring-fused indoles. Readily available
N-alkenyl-3(1H)-indoleacetic amides 30 were converted into
the azepinoindole derivatives 31 or 32 by using the combina-
tion of PdCly;(MeCN),, 1,4-benzoquinone and dioxane at
110 °C (Scheme 17) [71]. Although these reactions achieve
only moderate yields, this strategy constitutes an alternative
choice to the palladium-catalyzed cyclization of indole amides
bearing a carbon—halogen bond to give medium and large ring-
fused indoles [72].

(0]
N-R PdCly(MeCN), (10 mol %)
A\ Ré 1,4-BQ (1.5 equiv)
N — dioxane, 110 °C
H Rr2 Re
30

R'= Me, iPr, Bn, Ac
R2, R3 = H, Me, —(CHy)4—
R4 =H, Me

Scheme 17: Synthesis of azepinoindoles by oxidative Heck cyclization.

MeO,CO
R2 o R? 1
[PdClI(z-allyl)], (5 mol %) R3 R
R3 » 35 (11 mol %)
Li,COj3 (2 equiv) 7 \\_ NBn
7\ NBn CH,Cly, 1t N
N H
N PPh, Ph,P
33 34 35

R = H, OMe, CI, Me, pyrrole
R'=H, Me
RZ=H, Me

Beilstein J. Org. Chem. 2012, 8, 1730-1746.

Although a stoichiometric amount of Pd(OAc), is needed,
intramolecular alkenylations of suitable 3-alkenylindoles in an
atmosphere of molecular oxygen provided dihydroindoloa-
zocine compounds that are key intermediates in the total syn-
thesis of the austamide derivatives and the okaramine family of
polycyclic bisindole alkaloids [73,74].

Enantioselective synthesis of vinyl-substituted tetrahydro-f-
carbolines and tetrahydro-y-carbolines was performed starting
from 2- and 3-alkenylindoles by Pd-catalyzed asymmetric
allylic alkylation. A series of (E)-5-substituted indolylcarbon-
ates 33, easily available from the 2-indolylcarbaldehyde,
undergo cyclization through a m-allyl-palladium complex by
treatment with [PdCl(n-allyl)], as the catalyst and Li,COj3 in
CH,Cl; in the presence of C1- and C2-symmetrical P/P and P/N
ligands to yield 4-vinyl-tetrahydro-B-carbolines 34 (Scheme 18)
[75,76]. The best results in terms of enantioselectivity were
achieved by using 35 as a ligand, which provided products with
(R)-configuration of the newly formed stereocenter in enan-

tiomeric excesses up to 97%. Remarkably, the same catalytic

O
R Q
N’ R
N
A
( D R2 or Y
Z N
H N\ N
H R3 R4
R4

31 (20-53%) 32 (13-56%)

Scheme 18: Enantioselective synthesis of 4-vinyl-substituted tetrahydro-B-carbolines.
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system was successfully applied to 3-indolylcarbonates, giving
1-vinyl-tetrahydro-y-carbolines with high enantiomeric

€XCECSSes.

The intramolecular reaction of 3-(alken-4-yl)indoles 36 was
achieved with Pd(OAc), as the catalyst and 1,4-benzoquinone
as the oxidant, providing carbazole derivatives 38 (Scheme 19)
[77]. The products arise from an endo-cyclization which gives
the initially formed dihydrocarbazoles 37, which are easily
oxidized to the products 38 by the excess of 1,4-benzoquinone.
Although better yields were obtained with electron-donating
groups, this synthetic approach tolerates a range of substituents
on the indole ring.

Pd(OAc), (5 mol %)
W A N\ R3 1,4-BQ (2.1 equiv)
R Z~N tquene/AcOH (4:1) \/ N
R2 80 °C, 8
36 38
‘1,4-BQ
d(ll)
DN N R3
Pd(0) ril_ N
Ay
R3 R2
37
X
RIL T S—pdoac)
Z N dOAc
R2
R \/ N

Scheme 19: Pd-catalyzed endo-cyclization of 3-alkenylindoles for the
construction of carbazoles.

In 2010, our group disclosed a general route towards 3-vinylim-
idazo[1,5-alindole derivatives 40 by the unusual and atom-
economical intramolecular Pd-catalyzed hydroamination of the
allenes 39, easily accessible by prototropic isomerization of the

corresponding propargylamides (Scheme 20) [78]. The selec-

H Pd(OAc), (5 mol %)
\_ N-g Na,COs (3 equiv)
N ol BusN*CI~ (1 equiv)
~— 1,4-BQ (1 equiv)

DMF, 100 °C, 24 h

Beilstein J. Org. Chem. 2012, 8, 1730-1746.

tive 5-exo-allylic hydroamination occurs in mild conditions in
the presence solely of Pd(PPh3)4 under microwave irradiation
by an initial coordination of the Pd(0) catalyst to the indole
nitrogen giving the Pd(II)-hydride complex XIV. Such an inter-
mediate would be susceptible to insertion of the allene group
into the Pd—H bond to generate the n-allyl-Pd(II) complex XV,
which in turn would undergo the intramolecular formation of

the new carbon—nitrogen bond, which regenerates the Pd(0)

species.
=z RGN
R2N\ (/ Pd(PPh)s (5mol %) o= ) o
_ \ N~R1 toluene, 150 °C,1h N N
:)7 \R1
40 (58-89%)
L,Pd(0)
RZI N \
I ’ — O
_ \ 0 N
gdL HN-R’ Lpd MR
1
Xv = \/( XV

\_/f

Scheme 20: Pd-catalyzed hydroamination of 2-indolyl allenamides.

The intramolecular Pd(II)-catalyzed reaction of the 1-allyl-2-
indolecarboxamides 41 leads to the pyrazino[1,2-a]indoles 43
through the conversion of the olefinic C—H bond into a C—N
bond (Scheme 21) [79]. The cyclization process resulted in the
initially formed exomethylenic tricyclic derivatives 42, which
undergo an inside double-bond migration to give the final prod-
ucts 43. This synthetic protocol is founded on two established
features: the presence of a base and tetrabutylammonium chlo-
ride, essential for the cyclization step, and the stoichiometric
amount of an oxidant in order to achieve reoxidation of the
Pd(0) species to Pd(II).

V. o V. o
N - N
K\\/N\R \\(N\R
Me
42 43 (26-83%)

R = phenyl, 4-methylphenyl, 4-methoxyphenyl, 4-nitrophenyl,
cyclohexyl, (ethoxycarbonyl)methyl, benzyl, (2-furyl)methyl

Scheme 21: Amidation reaction of 1-allyl-2-indolecarboxamides.
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Intramolecular reactions involving arenes

Intramolecular arylations by oxidative coupling were investi-
gated by DeBoef and co-workers as a tool for synthesizing
heteropolycyclic compounds [80]. The aerobic Pd(II)-catalyzed
reaction of the N-benzoylindole 44 occurred in the cyclization
providing the tetracyclic compound 45 (Scheme 22). The pres-
ence of an electron-donating group on the linked arene was

proven to be essential for obtaining the product in high yield.

A\
@ Pd(OAc), (20 mol %)

o CuOAc (1 equiv)

Co
(T
AcOH, 120 °C OMe

0, (3 atm) 0

OMe
44 45 (82%)

Scheme 22: Intramolecular cyclization of N-benzoylindole.

Alkenylation reactions involving domino

processes

In 2004, Widenhoefer described the cyclization of alkenylin-
doles by Pd(II) catalysis under carbonylative conditions [81,82].
This approach, based on the use of copper(Il) chloride as
oxidant, has been applied to 2- and 3-alkenylindoles, resulting
in a domino process that involves an alkenylation/carboxyla-
tion sequence (Scheme 23). Thus, exploiting the nucle-
ophilicity of the C-2 and C-3 indolyl positions and the subse-
quent addition of carbon monoxide and the proper alcohol, a
broad range of alkoxycarbonyl-substituted indoles fused to

various sizes of rings has been achieved under mild conditions.

CO,Me
AN
PdCIy(MeCN), (10 mol %)
N\ CuCl; (3 equiv), 1 atm CO N\
N MeOH/THF (1:1), 25 °C N
be % be

PdCly(MeCN), (10 mol %)
\ CuCl; (3 equiv), 1 atm CO

A\ A\
l\{ 4A-MS l\{
M M

2,6-di-tert-butylpyridine
MeOH/THF (4:1), 25 °C
85%

e

Scheme 23: Intramolecular alkenylation/carboxylation of alkenylin-
doles.

A similar intermolecular version of the alkenylation/carboxyla-

tion sequence was successfully performed by reaction of styrene

Beilstein J. Org. Chem. 2012, 8, 1730-1746.

compounds with 2-substituted indoles to give 3-benzylindoles
bearing an ester group (Scheme 24). It should be pointed out
that the presence of a functional group at the C-2 indolyl pos-
ition is essential to obtain a satisfactory outcome of the reaction.
Conversely, different substituents on the styrene substrates
affected only the yield of the reaction.

PdCl,(MeCN), R2
(10 mol %) e
CuCl, (3 equw)/ N

FeCI3 (1 equiv)
( N R1

1 atm CO
MeOH/THF (

Scheme 24: Intermolecular alkenylation/carboxylation of 2-substituted

indoles.

CO,Me

25°C
40-78%

The intramolecular reaction has a stereospecific outcome, as
demonstrated by the cyclization of the (Z) and (£)-deutero-
indoles 46 (Scheme 25). In fact, (Z) and (E)-substrates
furnished the cis and trans-products 47, respectively, as single
diastereoisomers. This behavior is the result of an anti-addition
of the indolyl nucleus and the alkoxycarbonyl group to the
ethylenic bond.

M602C MGOZC
MeO,C PdCIZ(MeCN (20 mol %) MeO,C
CuCl; (3 equiv) CO,Me
o \
1 atm CO
MeOH, 25 °C, 37%
(Z)- 46 cis- 47
MeOZC
MeO,C PdCly(MeCN), (20 mol %)
CuCl; (3 equiv)
N D
1 atm CO
N MeOH, 25 °C, 37%
Me
(E)-46

Scheme 25: Mechanistic investigation of the cyclization/carboxylation
reaction.

The stereochemical findings obtained with the cyclization of the
(Z)-alkenylindoles (as depicted in Scheme 26) give evidence for
a mechanism based on the initial coordination of the metal to
the olefin with generation of the m-olefin-intermediate XVI. The
latter is able to undergo an outer-sphere attack by the indole,
occurring in the cyclization step with the c-alkyl-palladium
complex XVII. The subsequent transfer of carbon monoxide
with stereochemical retention determines the generation of the

c-acyl-palladium complex XVIII, which in turn is converted in
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Scheme 26: Plausible catalytic cycle for the cyclization/carboxylation of alkenylindoles, adapted from Liu et al. [81].

the final cis-substituted tetrahydrocarbazole by methanolysis
giving the carboxylation step. Again, the released Pd(0) species
requires an oxidation by the copper(Il) salt to the Pd(II) species,
which is then suitable to restart a new catalytic cycle.

Recently, the oxidative Pd(Il)-catalyzed strategy for the cycliza-
tion of alkenylindoles has been extended to the intramolecular
domino reactions of indolylallylamides by using the same
couple PdCl,(MeCN),/CuX, as catalyst and oxidant, respect-
ively. 2-Indolylallylcarboxamides 48 have been found to be

RZ

PdCl>(MeCN), (5 mol %)

\\j

suitable substrates to access variously substituted B-carboli-
nones 49 and 50 through alkenylation/halogenation or alkenyla-
tion/esterification processes selectively obtained by switching
reaction solvent and temperature (Scheme 27) [83].

The unforeseen formation of alkenylation/esterification prod-
ucts plausibly arises from a direct intervention of dimethylfor-
mamide or dimethylacetamide used as the solvent. The pres-
ence of CuCl, slows the B-hydride-elimination process from the
c-alkyl-palladium complexes, favoring a transient palladium

R

PdCly(MeCN), (5 mol %)

—R1 . _R1 -R!

L MR CuX, (3 equiv) %"‘ R CuCly (3 equiv) (\ 8 A

(0] %%
N (0] THF, reflux N (0] N o}
H H me. L H
N" “H(Me)

49 (71-88%) 48 Vo 50 (62-86%)

R2=Cl, Br R' = cyclohexyl, phenyl, allyl, 150 °C R2 = OCOH, OCOMe

cyclopentyl, methyl

Scheme 27: Intramolecular domino reactions of indolylallylamides through alkenylation/halogenation or alkenylation/esterification processes.
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(Me)H O
\N*/ O"/<
o\ H(Me)
— N-R!
N-R! )
\ N O
N O
H
XIX - 50

Scheme 28: Proposed mechanism for the alkenylation/esterification process through iminium intermediates.

oxidation or the generation of hetero-bimetallic palladium/
copper intermediates, which may undergo nucleophilic attack
by the solvent on the exocyclic carbon to give the iminium
intermediates XIX (Scheme 28). Finally, the latter may be
converted into the esters 50 by hydrolysis.

The same reactivity was satisfactorily tested also on the
3-indolylallylcarboxamides 51, giving, however, compounds 49
and 50 already obtained from the substrates 48 (Scheme 29).
The formation of 49 and 50 may be reasonably justified by the
intervention of the spiro-intermediates XX, arising from a
cyclization involving the C-3 indolyl position, and which
evolve by selective transfer of the acyl group from the quater-

nary center.

o f\” PdCI
N PdCl,(MeCN), (5 mol %)
CuX; (3 equiv)
N N\ solvent P
H N
H
51 - XX

R = cyclohexyl, phenyl, allyl,
cyclopentyl, methyl

R1
7

The cyclization of 2-indolylallylamides 48, performed with
PdCl,(MeCN), as the catalyst in the presence of CuX; in a
large excess and K,CO3 with acetonitrile as the solvent,
allowed the formation of the dihalogenated pyrazino[1,2-
alindole derivatives 52 by an unusual aminohalogenation/halo-
genation sequence (Scheme 30). The formation of the
3-haloderivatives XXI, ascribable solely to the action
of the Cu(Il) salt [84], and the cyclization of the m-olefin
complexes XXII by aminopalladation leading to the intermedi-
ates XXIII, are involved as independent steps in the mecha-
nism of the reaction. The final compounds 52 arise from the
halide migration on the c-alkyl-palladium complexes XXIV,
stabilized by the presence of CuXj in the medium of the reac-
tion [85].

solvent = THF

solvent = DMF or DMA \

R2=H, Me

Scheme 29: Cyclization of 3-indolylallylcarboxamides involving 1,2-migration of the acyl group from spiro-intermediates.
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PdCI,(MeCN), (5 mol %)
CuX; (5 equiv)

Beilstein J. Org. Chem. 2012, 8, 1730-1746.

: \/\ o)
:
N N-R’
H

K2COj3 (1 equiv)
MeCN, reflux f/
/ X
48 52
R = methyl, cyclohexyl, X =Cl, Br

phenyl, allyl

\
N R?
H

A Pd(Il)
<
N N
H
§ >/ -
X

XXIl XXIV
/,\ e /
SN
= N

XX

Scheme 30: Domino reactions of 2-indolylallylcarboxamides involving N-H functionalization.

A mild cyclization of 2-alkenylindoles 53 involving an alkeny-
lation/acyloxylation process resulted in the formation of the
1,2,3,4-tetrahydrocarbazoles 54 bearing oxygen-containing
functionalized groups (Scheme 31) [86]. Reactions were carried
out by using 1,4-benzoquinone as the oxidizing agent in the
presence of different nucleophiles suitable to generate the

c-alkyl-palladium complexes, which give the final products 54

by reductive elimination.

The amide of 2-indolecarboxylic acid bearing two allylic groups
(55) undergoes a domino process with generation of the tetra-
cyclic product 56 (Scheme 32) [79]. Indeed, the reaction carried

Me
Me Pd(OAc), (5 mol %) Nu
1,4-BQ (1.8 equiv
A\ + NuH ( quiv) AN
toluene, rt
N N
R R
53 54 (32-74%)

R =Me, H, Bn, COPh

Scheme 31: Cyclization/acyloxylation reaction of 3-alkenylindoles.

Nu = MeCOg, BTCH2COQ,
ClCHzCOz, CH2=CHCOZ,
n-C 3H7C02, CeH5C02,
0-NO 2'C6H4COZ, C6F5O
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PACl,(MeCN), (10 mol %) \
\ NH 1,4-BQ (1 equiv) N
N DMF/THF (1:2)
l_© 80°C,2h
CI—Pd
55

Beilstein J. Org. Chem. 2012, 8, 1730-1746.

Me

Cl—Pd
56 (28%)

Scheme 32: Doubly intramolecular C—H functionalization of a 2-indolylcarboxamide bearing two allylic groups.

out with 10 mol % of PdCl,(MeCN), as catalyst and a stoichio-
metric amount of 1,4-benzoquinone in DMF/THF as solvent
underwent an oxidative cascade process involving the sequen-
tial intramolecular formation of C—N and C—C bonds, with an
oxidative coupling triggered after the initial amidation step.

Conclusion

Palladium-catalyzed reactions to construct bonds by coupling of
C-H/C—H or C-H/N-H bonds have been widely investigated in
recent years. This interest arises from the need for unfunctional-
ized starting materials and from the presence of waste products
that are easy to handle, such as hydrogen or water. This
strategy, usually tolerant of a wide range of functionalities, has
become a very powerful tool in the relevant field of indole
chemistry, opening new perspectives for the functionalization of
complex molecules avoiding protecting-group chemistry.
Despite the results already obtained, many challenges
remain, above all related to the improvement in scope and mild-
ness of the reaction conditions for many synthetic protocols
described.
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Step-economical syntheses of annulated 1,2,3-triazoles were accomplished through copper-catalyzed intramolecular direct aryla-

tions in sustainable one-pot reactions. Thus, catalyzed cascade reactions involving [3 + 2]-azide—alkyne cycloadditions (CuAAC)

and C—H bond functionalizations provided direct access to fully substituted 1,2,3-triazoles with excellent chemo- and regioselectivi-

ties. Likewise, the optimized catalytic system proved applicable to the direct preparation of 1,2-diarylated azoles through a one-pot

C—H/N-H arylation reaction.

Introduction

Transition-metal-catalyzed C—H bond functionalizations are
increasingly viable tools for step-economical syntheses of
various valuable bioactive compounds [1-3], which avoid the
preparation and use of preactivated substrates [4-16]. This
streamlining of organic synthesis has predominantly been
accomplished with palladium [4-16], thodium [17-19] or ruthe-
nium [20-22] complexes [4-16]. However, less expensive
nickel, cobalt, iron or copper catalysts bear great potential for
the development of economically attractive transformations [23-
50]. In this context, we previously reported on the use of cost-
effective copper(l) catalysts for direct arylations of 1,2,3-tria-
zoles. Thus, we showed that intermolecular copper-catalyzed

C-H bond functionalizations could be combined with the
Huisgen [51] copper(I)-catalyzed [52,53] [3 + 2]-azide—alkyne
cycloaddition (CuAAC)[54], while C-H bond arylations of
1,2,3-triazoles were previously only accomplished with more
expensive palladium [55-62] or ruthenium [63-66] catalysts.
Notably, this strategy allowed for the atom-economical syn-
thesis of fully substituted 1,2,3-triazoles in a highly regioselec-
tive fashion [54,67]. While the research groups of Rutjes [68] as
well as Sharpless [69] elegantly devised alternative approaches
exploiting 1-haloalkynes [70], we became interested in
exploring a single [71-73] inexpensive copper catalyst for one-

pot reaction sequences comprising a 1,3-dipolar cycloaddition

1771

O


http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:lutz.ackermann@chemie.uni-goettingen.de
http://dx.doi.org/10.3762%2Fbjoc.8.202

Beilstein J. Org. Chem. 2012, 8, 1771-1777.

R1 R1
X
Hal X\ cat. [Cu] NI!\I | )

) H + R2-Hal + NaNj \ n
n base, solvent N

X=0,NR3 CHR? g2

1 2 4
R1
cat. [Cu] ,!\l X* n cat. [Cu]
N |
) Hal

N
i

H

Scheme 1: Copper-catalyzed step-economical C—H arylation-based cascade reaction.

along with an intramolecular C—H bond arylation; in particular,
because of the notable biological activities exerted by fully
substituted 1,2,3-triazoles [74-88]. As a consequence, we wish
to present herein novel cascade reactions, in which cost-effec-
tive copper(I) compounds serve as the catalyst for two mecha-
nistically distinct transformations for the synthesis of fully
substituted annulated 1,2,3-triazoles as well as for twofold
N-H/C—H bond arylations. Notable features of our strategy
include (i) the development of a chemoselective C—H arylation-

based three-component reaction, as well as (ii) the use of inex-

pensive Cul for the formation of up to one C—C and three C-N
bonds in a site-selective fashion (Scheme 1).

Results and Discussion

We initiated our studies by exploring reaction conditions for the
key copper-catalyzed intramolecular direct C—H bond arylation,
employing substrate 3a (Table 1). Notably, the envisioned C—H
bond functionalization occurred readily with the aryl iodide 3a
when catalytic amounts of Cul were used, even at a reaction

temperature as low as 60 °C, with optimal yields being obtained

Table 1: Optimization studies for the intramolecular direct arylation of triazole 3a.2

N 0 Cul (10 mol %) N |
N’ j\(\ i ligand (10 mol %) N
N /
N7 ™y base, DMF, 7,20 h n-Oct
n-Oct 3a 4a
entry base ligand T[°C] isolated yield [%)]
1 LiOt-Bu - 140 82
2 LiOt-Bu - 120 97
3 LiOt-Bu - 100 91
4 LiOt-Bu - 80 93
5 LiOt-Bu - 60 72
6 LiOt-Bu - 20 <2b
7 K3POy DMEDA 140 5b
8 K3POgyg N,N-dimethylglycine 140 5b
9 K3POy4 2,2-bipyridyl 140 40
10 K3POy4 1,10-phenanthroline 140 11

3General reaction conditions: 3a (1.00 mmol), Cul (10 mol %), ligand (10 mol %), DMF (3.0 mL).

bBy 'H NMR spectroscopy.
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Scheme 2: Copper-catalyzed sequential catalysis with alkyne 1a.

at 80 °C (Table 1, entries 1-6). While the transformation

proceeded efficiently with LiOz-Bu as the stoichiometric base,

K3POy4 only led to unsatisfactory results, even when additional

stabilizing ligands were used (Table 1, entries 7—10).

With optimized reaction conditions for the intramolecular direct

arylation in hand, we tested the possibility of its implementa-
tion in a sequential synthesis of 1,4-dihydrochromeno[3,4-
d][1,2,3]triazole (4b, Scheme 2). We were delighted to observe
that the desired reaction sequence consisting of a copper-
catalyzed 1,3-dipolar cycloaddition and an intramolecular C—H
bond arylation converted alkyne 1a to the desired product 4b
with high catalytic efficacy.

Beilstein J. Org. Chem. 2012, 8, 1771-1777.

N (¢} ) )) O
N | LiOt-Bu N
N7y 80°C,20h N
/ /
Bn Bn
3b 4b: 72%

Subsequently, we explored the extension of this approach to the
development of a chemoselective three-component one-pot
reaction. Thus, we found that alkyl bromides 2 could be directly
employed as user-friendly substrates for the in situ formation of
the corresponding organic azides (Scheme 3). Notably, the
catalytic system proved broadly applicable, and a variety of
organic electrophiles 2, thereby, delivered differently decorated
N-substituted 1,4-dihydrochromeno[3,4-d][1,2,3]triazoles 4.

Importantly, performing the one-pot reaction in a sequential
fashion was not found to be mandatory. Indeed, our strategy
turned out to be viable in a nonsequential manner by directly
employing equimolar amounts of the three substrates. Hence,

H
I /
Cul (10 mol %) N 0 LiotBu N 0
O 4+ Ak-Br N | N
NaN3 N™™H go°c,20n N
DMF,20°C,2h | Ak Alk
1 2 3 4
7, O ’, O /, O
N N N |
N N N
n-Oct n-Bu n-Hex
4a: 79% 4c: 76% 4d: 58%
2 0 ! o h) o
N N N |
N N N
n-Dec n-Undec V
4e: 86%?2 4f: 73% 4g: 15%

Scheme 3: Copper-catalyzed reaction sequence using alkyl bromides 2. General reaction conditions: 1 (1.00 mmol), 2 (1.00 mmol), NaN3
(1.05 mmol), Cul (10 mol %), DMF (3.0 mL), LiOt-Bu (2.00 mmol); yields of isolated product. 260 °C in the first step.
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inexpensive Cul allowed the direct assembly of aryl iodides 1,
alkyl bromides 2 and NaN3 with excellent chemo- and regiose-
lectivities (Scheme 4). Thereby, a variety of annulated 1,2,3-
triazoles 4 were obtained, featuring six- or seven-membered
rings as key structural motifs. It is particularly noteworthy that
the copper-catalyzed transformation enabled the formation of
one C—C and three C-N bonds in a chemoselective manner, and
thereby provided atom- and step-economical access to annu-

lated carbo- as well as O- and N-heterocycles.

Finally, we found that the catalytic system also proved to be
applicable to the one-pot copper-catalyzed direct arylation of
various azoles 5 through N-H/C—H bond cleavages with aryl

iodides 6 as the organic electrophiles (Scheme 5).

Conclusion

In summary, we have reported on the use of inexpensive
copper(I) complexes for step- and atom-economical sequential
catalytic transformations involving direct C—H bond arylations.
Thus, Cul enabled the synthesis of fully substituted 1,2,3-tria-

Beilstein J. Org. Chem. 2012, 8, 1771-1777.

zoles through cascade reactions consisting of copper(l)-
catalyzed [3 + 2]-azide—alkyne cycloadditions (CuAAC) and
intramolecular C—H bond arylations. Notably, the optimized
copper catalyst accelerated two mechanistically distinct trans-
formations, which set the stage for the formation of up to one
C—C and three C—N bonds in a chemo- and regioselective
fashion, and also allowed for twofold C—H/N—H bond aryla-

tions on various azoles.

Experimental

General information

Catalytic reactions were carried out under an inert atmosphere
of nitrogen using predried glassware. All chemicals were used
as received without further purification unless otherwise speci-
fied. DMF was dried over CaH;. Alkynes 1 [89-92] and tria-
zoles 3 [93] were synthesized according to previously described
methods. Cul (99.999%) was purchased from ABCR with the
following specifications: Ag <3 ppm, Ca =2 ppm, Fe = 1 ppm,
Mg <1 ppm, Zn <1 ppm. Yields refer to isolated compounds,
estimated to be >95 % pure, as determined by 'H NMR. Thin-

R R
' X)\ cul(1omol%) N )(( )
) H 4+ AKk—Br + NaNs : N | n
LiOt-Bu N
DMF, 80°C,20h , /
X =CH,, O, NMe
1 2 n=01
) o) N (0] (0] N 0]
N N \ N \ N ] \
N N N N
n-Oct n-Oct n-Bu n-Hex
R =n-Oct (4a): 68% 4h: 75% 4i: 51% 4j: 62%
R=n-Bu(4c): 75%
R =n-Hex (4d): 72%
R = n-Undec (4f): 78%
Me
_Me
) o N ] N
N | N N
N N N
n-Oct n-Oct n-Oct
4k: 30% 41: 70% 4m: 65%

Scheme 4: Nonsequential cascade synthesis of fully substituted triazoles 4. General reaction conditions: 1 (1.00 mmol), 2 (1.00 mmol), NaN3
(1.05 mmol), Cul (10 mol %) DMF (3.0 mL), LiOt-Bu (2.00 mmol); yields of isolated product.
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Scheme 5: Copper-catalyzed one-pot twofold C—H/N-H arylation with azoles 5. 2Reaction performed at 120 °C.

layer chromatography (TLC) was carried out on silica gel 60
F254 aluminum plates (Merck). Chromatography: Merck silica
gel 60 (40—63 um). NMR: Spectra were recorded on Varian
Unity 300, Mercury 300 or Inova 500 in the solvent indicated;
chemical shifts (8) are given in parts per million (ppm). All IR
spectra were taken on a Bruker FTIR Alpha device. MS: EIMS-
spectra were recorded with Finnigan MAT 95, 70 eV; high-
resolution mass spectrometry (HRMS) with APEX IV 7T
FTICR, Bruker Daltonic. Melting points were determined with
a Stuart melting-point apparatus SMP3, Barlworld Scientific;

values are uncorrected.

General procedure for the synthesis of triazoles 4
NaN3 (1.05 equiv), Cul (10 mol %), LiO#-Bu (2.00 equiv),
alkyne 1 (1.00 equiv) and alkyl bromide 2 (1.00 equiv) were
dissolved in DMF (3.0 mL) and stirred at 80 °C for 20 h. Then,
H,0 (50 mL) was added at ambient temperature, and the
resulting mixture was extracted with EtOAc (3 x 50 mL). The
combined organic layers were washed with saturated aq NH4Cl
(50 mL), H,O (50 mL) and brine (50 mL), dried over Na;SQOy,
filtered and concentrated in vacuo. The remaining residue was
purified by column chromatography on silica gel (n-hexane/
EtOAc).

Supporting Information

Supporting Information containing all experimental details
and analytical data of new compounds as well as their 'H
and 13C spectra are provided.

Supporting Information File 1

Experimental procedures, characterization data, and NMR
spectra for new compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-8-202-S1.pdf]
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[RhCp*(OAc),(H,0)] [Cp* = pentamethylcyclopentadienyl] catalyzed the C—H bond amidation of ferrocenes possessing directing

groups with isocyanates in the presence of 2 equiv/Rh of HBF4OEt;. A variety of disubstituted ferrocenes were prepared in high

yields, or excellent diastereoselectivities.

Introduction

Ferrocene and its derivatives are among the most useful
organometallic compounds because of their chemical and
thermal stabilities, structures, and redox activity [1,2]. One of
the most remarkable applications of ferrocene derivatives is as
chiral ligands [3,4]. A variety of chiral ferrocenyl ligands with
several substitution patterns have been successfully utilized for
enantioselective catalysis in both academia and industry. In par-
ticular, planar chiral 1,2-disubstituted ferrocenyl scaffolds have
been extensively studied, and are among a few premier chiral
ligand structures. For instance, a 1,2-disubstituted ferrocenyl
ligand, Xyliphos ((R)-1-[(S)-2-(diphenylphosphanyl)ferro-
cenyl]ethyl bis(3,5-dimethylphenyl)phosphane) is used for
iridium-catalyzed enantioselective hydrogenation to produce the

herbicide (S)-metolachlor on a scale of more than 10000 tons/
year [5].

Planar chiral 1,2-disubstituted ferrocene derivatives are usually
synthesized by using diastereoselective ortho-lithiation of
monosubstituted ferrocenes with an appropriate chiral ortho-
directing substituent such as chiral amines, sulfoxides, and oxa-
zolines [3]. However, this method suffers from low atom
economy, and requires stoichiometric amounts of metal
reagents. Functionalization of ferrocene derivatives by tran-
sition-metal-catalyzed enantioselective C—H activation is a
potentially more atom-economical alternative. However, only a

few catalytic C—H activation reactions of ferrocenes have been
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reported to date, and there is only one report of enantioselective
C-H activation of ferrocenes [6-9]. Schmalz et al. reported the
first catalytic C—H activation of ferrocenes using a Cu-catalyzed
intramolecular carbene insertion into a Cp—H bond [6]. Further,
they showed that the reaction could be enantioselective if chiral
bisoxazoline ligands were used. However, the substrate scope of
this reaction is narrow because of intramolecular reaction. More
recently, chiral oxazoline-directed diastereoselective arylation
of ferrocenes was reported based on a Pd(II)-catalyzed oxida-
tive coupling reaction [8]. Most of the reactions in this report
are, however, stoichiometric, and the yields of the catalytic
reactions were low. Although there are a number of reports on
stoichiometric directed C—H activation of ferrocenes by using
electrophilic metal centers such as Pd(II), Pt(Il), and Ru(II) [10-
12], this communication describes a metal-catalyzed directed
electrophilic C—H activation of an electron-rich Cp ring of

ferrocene.

Pentamethylcyclopentadienyl (Cp*)Rh(III) is known to catalyze
electrophilic activation of aryl C—H bonds, typically in the pres-
ence of an acetate ligand, and is used for oxidative C—C-bond-
formation reactions [13]. Recently, several reports of cationic
Cp*Rh(III)-catalyzed nonoxidative C—C-bond-formation reac-
tions have been disclosed [14-22]. For example, Ellman et al.
and Shi et al. reported that Cp*Rh(I1I) complexes catalyzed the
reaction of aryl C—H bonds to imines, isocyanates, and alde-
hydes by directed electrophilic activation of aryl C—H bonds at
relatively low temperature and under oxidant-free conditions
[15-21]. We also reported that cationic Cp*Ir(IIl) complexes,
combined with 1 equiv/Ir of Cu(OAc),, catalyzed the directed
C-H activation of aryl C—H bonds at room temperature [23]. In

Table 1: Screening of catalysts.

@/L\N/Ph . \_/ N

Fe H \\C\\
S
1a (2 equiv)
entry catalyst (mol %)
18 [IrCp*Cly]2 (5)
2 [IrCp*Cly]2 (2.5)
3b [RhCp*Cly], (2.5)
40 [RhCp*Cly]2 (2.5)
5b [RhCp*Cly], (2.5)
6 [RhCp*(MeCN)3](BF4)2 (10)
7 [RhCp*(OAc)2(H20)] (10)

Beilstein J. Org. Chem. 2012, 8, 1844-1848.

this manuscript, we report application of this nonoxidative
Rh(III) catalysis to synthesize planar chiral 1,2-disubstituted

ferrocene derivatives.

Results and Discussion

We chose the reaction of ferrocenyl imine 1a and phenyl
isocyanate as a model reaction and screened several catalysts
(Table 1). The cationic Cp*Ir(IIl) catalyst, which was used in
our previous report [23], did not catalyze the reaction at all
(Table 1, entry 1). Under copper-salt-free conditions, cationic
Cp*Ir(IIl) catalyst did not give the product, but cationic
Cp*Rh(III) selectively afforded monoamidated 1,2-disubsti-
tuted ferrocene derivative 2a, albeit in low yield (Table 1,
entries 2 and 3). The catalyst with BF4~ anion showed the
highest activity (Table 1, entries 3—5). The reaction also
proceeded in the presence of an isolated cationic Cp*Rh cata-
lyst, which simplifies the reaction setup and is required to
prevent the redox reaction between AgBF4 and 1a [24].
However, the use of [RhCp*(MeCN)3](BF4), [17] resulted in
lower yield likely due to the coordination of MeCN (Table 1,
entry 6). The yield significantly increased when the combina-
tion of [RhCp*(OAc),(H,0)] [25] and 2 equiv/Rh of
HBF 4 OEt, was used to form dicationic Cp*Rh species in situ
(Table 1, entry 7) [26].

We examined a variety of isocyanates under the same reaction
conditions given in entry 7 in Table 1 except with a lower cata-
lyst loading of [RhCp*(OAc),(H,0)]. The reaction proceeded
smoothly with 5 mol % of [RhCp*(OAc),(H,0)] along with a
slight decrease of yield (Table 2, entry 1). Both electron-rich
and -poor aryl isocyantes showed similar reactivity in the

1) X mol % catalyst
Y mol % additive

2) 1 N HCI 00
° Fe
THF,75°C,2h NHPh
2a
additive (mol %) yield (%)
AgSbFg (20), Cu(OAc)-H,0 (20) 0
AgSbFg (10) 0
AgSbFg (10) 30
AgOTf (10) 20
AgBF4 (10) 42
none 29
HBF4-OEt; (20) 86

aThe reaction was examined at 100 °C for 1 h in 1,2-dichloroethane using 4-methoxyphenyl isocyanate. PThe reaction time was 24 h.
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Table 2: Scope of isocyanates.
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1) 5 mol % [RhCp*(OAc)»(H,0)]

@/L\N/Ph

10 mol % HBF4 OEt,

H 2) 1 N HCl 0%
Fe + RNCO c Fe
; THF, 75° NHR
@ (2 equiv) ) @
1a 2a-f
entry R time (h) product yield (%)

1 Ph 3 2a 74
2 4-MeOCgH4 3 2b 85
3 4-CICgHg4 3 2c 87
4 benzyl 3 2d 84
5 n-butyl 24 2e 41
6 cyclohexyl 24 2f 19

present reaction (Table 2, entries 2 and 3). The use of benzyl
isocyanate also formed the monoamidated product 2d (Table 2,
entry 4). It required a longer reaction time, but alkyl isocyanates
were also available.

We next examined a diastercoselective reaction using a
commercially available chiral oxazolyl ferrocene 1b, and the
reaction was conducted under the same reaction conditions used
in Table 2. Several isocyanates were submitted to the reaction
with 1b, and planar chiral 1,2-disubstituted ferrocenes 3a—f
were obtained with high diastereoselectivity, but the yields in
all cases were moderate because of a low conversion ratio
(Table 3). Lower coordination ability of the oxazolyl group

compared to the imino one probably decreased the reactivity.

Table 3: Diastereoselective reaction by using chiral oxazolyl ferrocene 1b.

The absolute configuration of planar chirality in 3¢ was deter-
mined to be S by X-ray crystallography (Figure 1). The absolute
configuration is consistent with the previous report of diastereo-
selective ortho-lithiation of 1b [27].

Conclusion

In conclusion, a Cp*Rh(I1l)-catalyzed reaction between ferro-
cenyl C—H bonds and isocyanates was developed to synthesize
a variety of 1,2-disubstituted ferrocenes. The use of the
commercially available chiral oxazolyl ferrocene enabled us to
synthesize planar chiral 1,2-disubstituted ferrocenes with excel-
lent diastereoselectivity. The present reaction is a rare example
of catalytic methods to construct planar chiral ferrocenes. We

are currently investigating an enantioselective reaction.

o) o)
LD iPr 5 mol % [RhCp*(OAG),(H,0)] D miPr
= N 10 mol % HBF 4 OEt, ON
Fe H + RNCO Fe T o
=X (2 equiv) THF. 757C =N
1b single diastereomer
3a—f
entry R time (h) product yield (%)
1 Ph 2 3a 43
2 4-MeOCgH, 2 3b 24
3 4-CICgH, 2 3¢ 38
4 benzyl 2 3d 32
5 n-buty! 24 3e 69
6 cyclohexyl 24 3f 38
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Figure 1: The ORTEP drawing of 3¢ with 30% probability ellipsoids,
and Flack absolute structure parameter of 0.003(12).
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Mono- and dinuclear gold complexes with N-heterocyclic carbene (NHC) ligands have been employed as catalysts in the intermole-

cular hydroarylation of alkynes with simple unfunctionalised arenes. Both mono- and dinuclear gold(IlI) complexes were able to

catalyze the reaction; however, the best results were obtained with the mononuclear gold(I) complex IPrAuCl. This complex, acti-

vated with one equivalent of silver tetrafluoroborate, exhibited under acidic conditions at room temperature much higher catalytic

activity and selectivity compared to more commonly employed palladium(II) catalysts. Moreover, the complex was active, albeit to

a minor extent, even under neutral conditions, and exhibited lower activity but higher selectivity compared to the previously

published complex AuCl(PPhj). Preliminary results on intramolecular hydroarylations using this catalytic system indicate,

however, that alkyne hydration by traces of water may become a serious competing reaction.

Introduction

The hydroarylation of alkynes (Scheme 1) is arguably one of
the most intensively studied reactions leading to aromatic C—H
bond functionalization [1-7]. In this reaction, the C—H bond of

R1

RZ

Scheme 1: Hydroarylation of alkynes.

an arene adds formally frans to the triple bond of an alkyne,
generally forming the thermodynamically less favoured cis-

arylalkene as the major product.

The study of this reaction was pioneered by the group of Fuji-
wara (hence the alternative name “Fujiwara reaction” for the
intermolecular hydroarylation of alkynes) using mainly palla-
dium(Il) salts as catalyst [8-10]. Palladium complexes with
N-heterocyclic carbene (NHC) ligands have since been show-

cased as highly efficient catalysts for this reaction [11-14].
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Alternative catalytic systems based on salts or complexes of
other noble metals, such as platinum [15-17], gold [18,19], or
rhodium [20], as well as of non-noble, electrophilic metals [21-
26] have also been successfully employed. Finally, an even
greater number of catalysts have been proposed over the years
to promote alkyne hydroarylation in an intramolecular fashion
[1-7]. In such reactions, often simply termed cyclisation reac-
tions, the arene and the alkyne are linked through a tether, the
nature of which can range from simple alkyl groups to ether,
amino, ester or amido groups; depending on the nature and
length of the tether, different kinds of unsaturated poly(het-
ero)cyclic compounds can be conveniently synthesized.

Recently, the unique ability of gold centres to activate C—C
triple bonds towards nucleophilic attack has clearly emerged in
the literature [27-34]. In the light of the above, it is surprising
that the number of studies on the use of gold species as cata-
lysts for alkyne hydroarylation is still quite limited. A substan-
tial number of reports on the intramolecular cyclisation of
arenes with tethered alkyne moieties using gold(I) or, to a lesser
extent, gold(III) catalysts can be found in the literature [35-46];
however, only one additional example, beyond the two early
reports by Reetz and Sommer [18] and by Shi and He [19], of
gold-catalysed intermolecular hydroarylation has been
described, albeit concerning 2-substituted oxazoles as the reac-
tion partner [47]. Investigations on the intramolecular variant
have focused mainly on the nature of the aromatic moiety that
adds to the alkyne, and on the nature and/or length of the tether,
whereas concerning the alkyne moiety, only terminal, electron-
rich alkyne groups (propargylic moieties in most instances)
were employed, with very few exceptions [36,40,44]. Finally,

N—_ |(PFe)2

—~N_ N-_-N

<]
21

[
r

NS
iPrT iPr

A]u

Cl

Vi
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concerning the nature of the employed catalysts, simple gold
salts or phosphino complexes of gold(I) were utilized in the
majority of cases, although in recent years an increasing number
of studies have been dealing with the application of NHC com-
plexes of gold for these and related reactions [48-53].

We have an ongoing interest in the development of novel cata-
lysts for the hydroarylation of alkynes and have extensively
investigated the ability of palladium(II) complexes with
chelating N-heterocyclic dicarbene ligands to promote this reac-
tion [12-14]. Recently, we have extended our interest in the
organometallic chemistry of such ligands to group 11 metals, in
particular gold(I) and gold(IIl) centers [54-56]. In the present
contribution we would like to assess the catalytic efficiency of
such gold complexes with NHC ligands for the hydroarylation
of alkynes.

Results and Discussion

We recently reported on the synthesis of dinuclear gold(I) com-
plexes with bridging dicarbene ligands [55], as well as on the
preparation of the corresponding dinuclear gold(III) analogues,
which are obtained from the former upon oxidation with
bromine [54]. Complexes I-V were now tested as catalysts in
standard intermolecular hydroarylation reactions, together with
two mononuclear gold complexes previously reported in the
literature, namely complexes VI (also termed IPrAuCl) [57] and
VII (also termed IPrAuBr3) [58] (Figure 1).

The standard reaction between pentamethylbenzene and ethyl
propiolate (Scheme 2) was initially taken as the benchmark for
catalyst evaluation. Initial attempts were performed at room

-
[ N__|PF
R-N__N<y-N__N-g|(PFe)

Br—Au-Br Br—Au-Br

R-N"ON-Y~N"N-R

II: R=Me, Y =CH,

lll: R =Me, Y = CH,CH,
IV: R = Me, Y = m-xylylene
V:R=Cy,Y=CH,

il rN N iPr,
iPrY iPr :
Br—Alu—Br
Br

Vi

Figure 1: Gold(l) and gold(Ill) NHC complexes employed as catalysts in this study.
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H
H ~ 0 H
s H—=—CO,Et Au (0.01-0.1 mol %) X
AgX, HX (X = BF4 or TFA) CO,Et
1,2-dichloroethane, 25 °C
{1} 2{1} 3{1,1}

Scheme 2: Hydroarylation of ethyl propiolate with pentamethylbenzene.

temperature (25 °C) with very low levels of complex II as cata-
lyst (0.005 mol %) by using trifluoroacetic acid (HTFA) or
HBF, as acidic medium plus 0.02 mol % AgTFA or AgBF4,
respectively, as co-catalyst to remove bromides from the coor-
dination sphere of the gold centres, thereby liberating coordina-

tion sites at the metal and boosting its electrophilicity.

The obtained results established that the complex was inactive
when HTFA was employed as the acidic medium, whereas 20%
yield of the desired product 3{1,1} was obtained after 18 h with
HBF,. Consequently, a screening of the catalytic efficiency of
the various complexes was carried out with the latter acidic
medium; the amount of catalyst was increased tenfold (to
0.1 mol % Au) in order to achieve faster reaction rates, whereas
the amount of employed AgBF, co-catalyst was always stoi-
chiometrically equivalent to the amount of bromide in the
employed complex. It should be mentioned that under these
reaction conditions neither AgBF4 nor HBF, promote the reac-
tion, as previously demonstrated by us in investigations on
related palladium(II) catalysts for the same reaction [13]. The
conversion curves obtained with the various catalysts are
reported in Figure 2.
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Figure 2: Yield in 3{1,1} versus time diagram for the reaction of
pentamethylbenzene and ethyl propiolate catalysed by complexes
1I-VIl and KAuBr4 at room temperature in HBF4 and with added
AgBF4: complex Il (black squares); complex lll (circles); complex IV
(squares); complex V (black circles); complex VI (black triangles);
complex VII (triangles); KAuBry4 (asterisks). Reaction conditions:

1 equiv arene, 1 equiv alkyne, 1 equiv tetrafluoroboric acid,

0.1 mol % Au, 0.1-0.4 mol % AgBF4, 1,2-dichloroethane, 25 °C.

As expected, the dinuclear dicarbene gold(I) complex I was
found to be inactive for the reaction, as the NHC ligands satu-
rate the coordination sphere of the gold(I) centres. On the other
hand, the dinuclear dicarbene gold(11l) complexes II-V, for
which 4 equiv of AgBF, with respect to the complex were
added, turned out to be active. All dinuclear complexes exhib-
ited very similar initial activity in the first few hours of reaction.
This observation indicates that the reactivity of the complexes is
not hampered by steric effects, as complexes with ligands of
widely different steric bulk, such as II and V, exhibit similar
performance. On the other hand, the complexes deactivate with
time at different rates, depending on the nature of the employed
dicarbene ligand. Complex IV turned out to be the catalyst most
resistant to deactivation.

When catalysts VI, VII and KAuBr4 were employed together
with the corresponding amount of AgBF, co-catalyst, higher
initial activities compared to the dinuclear dicarbene gold(III)
catalysts were recorded. However, whereas KAuBr4 was very
quickly and completely deactivated, catalysts VI and VII
retained their activity, highlighting the importance of the NHC
ligand in stabilizing the catalytically active species. Catalyst VI
(IPrAuCl) was particularly efficient and able to effect over 90%
yield in just 1 h with complete selectivity for the hydroaryla-
tion product. Remarkably, compared to the palladium(Il) com-
plexes with chelating N-heterocyclic dicarbene ligands previ-
ously investigated by us as catalysts for the same reaction under
identical reaction conditions [13], complex VI exhibits higher
catalytic activity and complete selectivity for the insertion of
only one alkyne molecule into the aromatic C—H bond, whereas
the palladium(IT) complexes predominantly yielded the product
deriving from the insertion of two alkyne molecules. The
catalytic efficiency of complexes VI and VII was evaluated
with other arene and alkyne substrates under the same reaction

conditions and the results are reported in Table 1.

The catalytic activity of the complexes remained high also with
less substituted substrates, complex VI being systematically
superior to complex VII. The selectivity of the reaction was,
however, hampered by the formation of significant amounts of
products deriving from the addition of two molecules of alkyne

to the arene (product type 4), which was invariably recorded
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when more than one C—H group was available for reaction. from insertion of more than one alkyne molecule into the same

Other by-products that were observed on using Pd catalysis, arene C—H bond, were however never detected with Au cata-

such as, e.g., products of double-bond isomerisation or deriving  lysts. Only in the case of p-xylene was the reaction again fully

Table 1: Hydroarylation of alkynes using gold NHC catalysts: screening of different arenes and alkynes.?

Catalyst

Vi

Vi

Vi

Vi

Vi

Vil

Vi

o

o

1 R? R?
R i H R H
Rl—_R? Au (0.1 mol %) |\\ A H . = |\\ A
- 2 2
AgBF, (0.1-0.3 mol %), HBF, ~* R R =~ R
2 1,2-dichloroethane, 25 °C 3 4
2{1} R' = H; R2 = CO,Et
2{2} R' = Ph; R? = CO,Et
2{3} R'=H; R%2=n-Bu
Arene Alkyne Time (h) Arene conversion, % Yield (%)P

(alkyne conversion)

2(1} 1 90 (90) 3(1,1} 90
3 >99 (>99) >99

1}
2{1} 1 68 (94) 3(2,1} 42 42,1y 26
\Ké\ 5 72 (100) 44 28
1{2}
2{1} 1 72 (95) 3(3,1} 49 43,1 23
\Q/ 5 74 (98) 50 24
1{3}
Br P10 5 35 (38) 3(4,1} 32 44,1 3
4}
2{1} 1 20 (20) 3(5,1} 20 45,1} 0
@ 5 45 (45) 45 0
1{5}
2{1} 1 43 (43) 3(1,1} 43
ji;\ 5 91 (91) 91
1}
2{1} 1 18 (19) 3(2,1} 17 42,1 1
58 (72) 45 13

{2}
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Table 1: Hydroarylation of alkynes using gold NHC catalysts: screening of different arenes and alkynes.? (continued)

Vil 2{1} 1 66 (86) 3(3,1} 46 43,1} 20
\Q/ 5 71(93) 50 22
1{3}
Vi 2(2} 1 23 (23) 3(1,2} 23
;d;\ 5 58 (58) 58
11}
VI 2(3) 5 0 3(1,3} 0
1{1}
VI 2{1} 5 51 (51)¢ 3(1,1} 51
11}
VI 21} 48 15 (15)d 3(1,1} 15

o

11}

@Reaction conditions: 1 equiv arene, 1 equiv alkyne, 1 equiv tetrafluoroboric acid, 0.1 mol % Au, 0.1 or 0.3 mol % AgBF4, 1,2-dichloroethane, 25 °C.
bThe yield was determined by TH NMR spectroscopy. °Reaction performed with trifluoroacetic acid. dReaction performed without acid.

selective, albeit sluggish. Variations of the alkyne substrate
made it apparent that electron-rich alkynes, such as 1-hexyne,
are not viable substrates for this reaction, and that electron-
poor, internal alkynes react only scarcely under these condi-

tions.

The high catalytic activity of complex VI prompted us to eval-
uate its efficiency also under less acidic conditions. Hydroaryla-
tion of ethyl propiolate with pentamethylbenzene run with 0.1%
VI and 0.1% AgTFA in HTFA yielded 51% pure monohy-
droarylated product after 5 h. On the other hand, the reaction
run with 0.1% VI and 0.1% AgBF,4 under neutral conditions
yielded only 15% product after 48 h. Thus, the nature and
amount of acid have a very strong influence on catalytic effi-
ciency, as in the case of catalysis by palladium(II) NHC com-
plexes [13]; in contrast to Pd, though the catalyst remains
slightly active even under neutral conditions. This result was
expected, as in early examples of the use of gold catalysts for
intermolecular alkyne hydroarylations the reaction was invari-
ably done without acid addition, although much more forceful
conditions (larger amount of catalyst, higher temperature,

longer reaction times) were applied [18,19,47]. In order to have

a closer comparison between the catalytic efficiency of VI and
that of the previously employed gold(I) catalysts, such as
AuCl(PPhj3), we subjected complex VI to the same catalytic test
performed by Reetz and Sommer with the phosphino complex
(Scheme 3) [18]. The catalytic test performed with catalyst VI
resulted in the exclusive formation of the hydroarylation pro-
duct in 45% yield. Catalyst AuCl(PPh3) was reported instead to
produce, under the same reaction conditions, the hydroarylation
product in 56% yield, together with 28% yield of the product
deriving from insertion of two alkyne molecules into two C—H
bonds of mesitylene [18]. Thus, it can be stated that catalyst VI
is apparently less active but more selective under these neutral
reaction conditions.

Finally, we preliminarily investigated the capability of com-
plexes VI and VII to act as catalysts for intramolecular alkyne
hydroarylation reactions. As mentioned in the Introduction,
gold salts and complexes have been extensively employed for
intramolecular cyclisations of this kind [35-46], but in most
instances only terminal pendant alkynes have been employed as
reacting groups. Furthermore, to the best of our knowledge

substrates with amido tethers between the aryl and the alkyne,
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H H H

: M H M
+

CO,Et EtO,C CO,Et

+ H——=——CO,Et
1,2-dichloroethane, 60 °C, 4 h
3 equiv 1 equiv yield: 45% yield: 0%
13} 2{1} 3(3,1} 4{3,1}

Scheme 3: Hydroarylation experiment with catalyst VI under neutral conditions.

such as substrates 5 (Scheme 4), have never been reported to
undergo cyclisation with gold catalysts, whereas there are
examples of the use of palladium catalysts with these substrates
leading to different products in dependence on the reaction
conditions: reaction under neutral conditions produces the
S-exo-dig cyclisation product 6 [59], whereas in the presence of
an acid the 6-endo-dig product 7 is formed [60]. Thus, we set
out to evaluate the reactivity of substrates 5 with catalysts VI
and VIL

Under neutral conditions the reaction gave no yield in the
desired cyclised product and the substrate was recovered
unchanged in all cases. Therefore, we moved to investigate the
reaction in the presence of trifluoroacetic acid, using a reaction
protocol previously employed by Fujiwara for running analo-
gous reactions with palladium(II) catalysts [60]. The results are

reported in Table 2.

Catalyst VII was completely inactive even under acidic condi-
tions with substrate 5{2}, whereas with substrate 5{1} it reacted
sluggishly forming complex product mixtures containing also
the 6-endo-dig cyclisation product 7{2}. On the other hand, with
complex VI moderate to very good conversions of the
substrates were obtained, but the main reaction product was
invariably the product of hydration of the triple bond 8, whereas
the 6-endo-dig cyclisation product 7 was present in minor
amounts. Gold(I) NHC complexes such as VI are known to be
extremely efficient catalysts for alkyne hydration [61], hence it

Table 2: Intramolecular alkyne hydroarylation under acidic conditions.?

Substrate Catalyst Conversion (%)° Yield (%)°
5{1} v 89 7{1} 12 8{1} 78
5{1} Vil 31 7{1} 10 8{1} -
5{2} VI 54 7{2} 7 8{2} 47
5{2) Vil 0 7{2} 0 8{2} O

@Reaction conditions: 1 equiv substrate, 20 equiv trifluoroacetic acid,
1 mol % Au, 1 mol % AgBF4, 1,2-dichloroethane, room temperature,
24 h. PThe conversion and the yields were determined by TH NMR
spectroscopy.

can be expected that alkyne hydration by traces of water may
become a serious competitive reaction despite the low concen-
tration of water in the reaction mixture. On the basis of the
above, it can be hypothesised that in order to steer the reaction
towards the hydroarylation product, more activating, hence
electron-donating substituents should be installed on the aryl
ring. Experiments towards this goal are currently underway.

Conclusion

In conclusion, we have demonstrated that gold complexes with
N-heterocyclic carbenes are active catalysts for alkyne hydro-
arylations under acidic conditions. Mononuclear complexes
appear more active than dinuclear ones, and gold(I) complexes
are more active and selective than analogous gold(IIl) com-
plexes. Under neutral reaction conditions, mononuclear gold(I)

NHC complexes appear less active but more selective than the

R R
| ] |
N._O  Au (1 mol %), AgBF, (1 mol %) N N.__O O O
o eea
Il HTFA, 1,2-dichloroethane \ Z > H N
25°C R
§ C
5{(1} R = Me 6{1} R = Me 7{1} R=Me 8{1} R =Me
5{(2} R=H 6{2} R =H 7{2} R=H 8{2} R=H

Scheme 4: Intramolecular cyclisation through hydroarylation investigated in this work.
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corresponding triphenylphosphine complexes. Finally, tests
performed on the intramolecular hydroarylation of substrates
5{1} and 5{2} indicate that the reaction does not take place
under neutral conditions, whereas under acidic conditions prod-
ucts of alkyne hydration by traces of water present in the reac-
tion mixture are mainly formed, together with low yields of the
6-endo-dig cyclisation product. Possibly the installation of an
electron-donating group on the aryl ring will improve the effi-

ciency of the hydroarylation process.

Experimental

All manipulations were carried out using standard Schlenk tech-
niques under an atmosphere of dry argon or dinitrogen. The
reagents were purchased at Sigma—Aldrich or Merck as high-
purity products and generally used as received. All solvents
were dried by standard procedures and distilled under dini-
trogen prior to use. Complexes I [55], II-V [54] and VII [58],
as well as substrates 5{1} and 5{2} [59] were prepared
according to literature procedures. NMR spectra were recorded
on a Bruker Avance 300 MHz (300.1 MHz for 'H and
75.5 MHz for 13C); chemical shifts (8) are reported in units of
parts per million (ppm) relative to the residual solvent signals.

Catalytic tests. General procedure for the intermolecular
hydroarylation: In a 100 mL three-necked, round-bottomed
flask were placed the arene (13.2 mmol), the Au complex
(0.013 mmol for mononuclear complexes, 0.0065 mmol for
dinuclear complexes) and AgBF4 (0.013 mmol to 0.052 mmol,
depending on the Au complex employed). The flask was evacu-
ated and filled with argon, after which the acid (13.2 mmol) and
1,2-dichloroethane (the quantity necessary to reach a total
volume of 6.3 mL) were added. Finally, the alkyne (13.2 mmol)
was introduced, and the flask was placed in a water bath ther-
mostated at 25 °C and vigorously stirred. Aliquots of the reac-
tion mixture (around 0.2 mL) were periodically withdrawn from
the reactor and analysed by 'H NMR.

General procedure for the intramolecular hydroarylation: In a
Schlenck tube were placed the substrate (1.00 mmol), the Au
complex (0.010 mmol) and AgBF4 (0.010 mmol). The flask
was evacuated and filled with argon, after which 1,2-
dichloroethane (2 mL) and trifluoroacetic acid (1.5 mL,
20 mmol) were added. The resulting mixture was vigorously
stirred at room temperature for 24 h. The reaction mixture was
subsequently poured into a saturated aqueous NaCl solution
(20 mL) and neutralized with a saturated aqueous NaHCO3
solution. The residual substrate and products were extracted
into diethyl ether (20 mL). The resulting ethereal solution was
washed with a saturated aqueous NaCl solution (10 mL) and
water (10 mL), dried over Na;SO,4 and evaporated to dryness.
The residue was analysed by 'H NMR.

Beilstein J. Org. Chem. 2013, 9, 246-253.
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New Pd-NHC complexes have been synthesized and employed for palladium-catalyzed direct arylation of pyrrole derivatives by
using electron-deficient aryl chlorides as coupling partners. The desired coupling products were obtained in moderate to good yields

by using 1 mol % of these air-stable palladium complexes. This is an advantage compared to the procedures employing air-sensi-

tive phosphines, which have been previously shown to promote the coupling of aryl chlorides with heteroarenes.

Introduction

N-Heterocyclic carbenes (NHC) have emerged as an important
class of ligands in the development of homogeneous catalysis
[1-9]. Such ligands, which are electronically and sterically
tunable, and which generally form thermally stable compounds
with different metal ions, are strong c-donors. These qualities
have rendered N-heterocyclic carbene ligands as classical
substitutes to phosphines in organometallic catalysis [10-14].

This is especially true for palladium-catalyzed coupling reac-

tions. Pd-NHC catalysts [15] have proven to be excellent alter-
natives to catalytic systems involving palladium associated to
tertiary phosphine ligands [16-19].

The introduction of aryl groups at C2 or C5 positions of
pyrroles is an important research area in organic synthesis
as such motives are known to be present in several bioactive

molecules, such as Atorvastatin, which is used for lowering
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blood cholesterol, Fendosal, which is an anti-inflammatory
agent, or Tanaproget, which is a progesterone-receptor

agonist (Figure 1).

The palladium-catalyzed direct arylation of various heteroaro-
matics including pyrroles by a C—H bond activation using aryl
halides has met great success in recent years, allowing the syn-
thesis of a wide variety of arylated heteroaromatics in only one
step [20-25]. However, there are still limitations for these reac-
tions in terms of aryl halide or heteroaromatic tolerance. Up to
now, very few examples of palladium-catalyzed direct aryla-
tions of pyrroles by using aryl chlorides have been reported,
[26,27]. Daugulis and co-workers recently described the aryl-
ation of pyrrole derivatives with a variety of aryl chlorides
using 5 mol % of Pd(OAc), associated to 10 mol % of Cy,P-o-
biphenyl as the catalyst [26]. However, in most cases, such
couplings were performed with aryl bromides or iodides [28-
39].

The influence of mono- or diphosphines as ligands for the palla-
dium-catalyzed coupling of heteroarenes with aryl halides
through a C—H bond activation has been largely explored. On
the other hand, the influence of carbene ligands for such
couplings remains largely unexplored [40-47]. Quite congested
N-heterocyclic carbene—palladium catalysts have been
employed by Fagnou and co-workers to promote intramolec-
ular direct arylations of arenes [40]. A few examples of
couplings of aryl bromides and iodides employing Pd-NHC
complexes have also been reported [41-45]. For example,
Sames and co-workers described the use of imidazolylidene
carbene ligands for the Pd-catalyzed direct arylation of pyrroles
or indoles using bromobenzene and aryl iodides [42]. They
observed that an important steric demand on the carbene ligand
led to better results. Recently, the use of palladium(Il) acetate
complexes bearing both a phosphine and a carbene ligand, was
reported by Lee and co-workers for the direct arylation of
imidazoles with some aryl chlorides [46]. However, to our

(2
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knowledge, N-heterocyclic carbene ligands have not yet been
employed for the palladium-catalyzed direct arylation of
pyrroles with aryl chlorides. As carbene ligands have proved to
be very useful for several palladium-catalyzed reactions
involving aryl chlorides, we decided to explore their potential
for the direct 2- or 5-arylation of pyrrole derivatives.

Results and Discussion

First, a range or Pd-NHC complexes employing a variety of
carbene ligands was prepared (Scheme 1). The deviations from
the accustomed structures of palladium—NHC complexes can be
attributed to steric rather than to electronic factors [48]. The use
of quite congested carbene ligands has been found to be
required for the palladium-catalyzed direct arylation of pyrroles,
indoles, benzothiophene [42,45] or arenes [40]. Therefore, we
employed carbenes bearing relatively bulky N-substituents. The
reaction of Pd(OAc), with the corresponding benzimidazolium
halides in DMSO at 60-110 °C gave 1-9 in 53-87% yields
(Scheme 1). The geometry of these complexes was not defined,

as no crystals suitable for X-ray analysis could be obtained.

Arylation with Pd-NHC complexes

We initially examined the direct 5-arylation of 1-methylpyrrole-
2-carboxaldehyde (10) with 4-chlorobenzonitrile (11) using
these nine PA-NHC complexes. We had previously observed
that with this pyrrole derivative a high yield of 89% could be
obtained in the presence of only 0.5 mol % of a triphosphine
associated to Pd(OAc), as the catalyst [27]. With complexes 2,
3, 8 and 9, a high conversion of 4-chlorobenzonitrile (11) and
good yields of the coupling product 16 were obtained (Table 1,
entries 1-9). Then, in order to confirm this trend, 2-chloroben-
zonitrile (12) and 4-(trifluoromethyl)chlorobenzene (13) were
reacted with 1-methylpyrrole-2-carboxaldehyde (10) by using
this library of complexes (Table 1, entries 10-27). Again,
complexes 2, 8 and 9 were found to be effective catalysts for
this transformation, and led to a high conversion of
2-chlorobenzonitrile (12) to give 17 in 55-60% yield (Table 1,

/ \
e
I\ o
NC™ N /\QS
COLH | N
OH
Atorvastatin Fendosal Tanaproget

Figure 1: Examples of pyrrole-containing bioactive compounds.
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R R
N N
@ﬂ) X + Pd(OAc), —2MSO @[ PdZ
N N
I " /2
R' R'
-Bu t-Bu t-Bu

Scheme 1: Synthesis of PdA-NHC complexes.

entries 10—18). For 4-(trifluoromethyl)chlorobenzene (13), the
best results were obtained with catalysts 2 and 8 to give 18 in
76% and 74% yields, respectively (Table 1, entries 20 and 26).
Then, the reactivity of 4-chlorobenzaldehyde (14) and
4-chloroacetophenone (15) was examined by using complexes
2, 8 and 9. For both substrates the best yields of products 19 and
20 of 41% and 50% were obtained with complex 8 (Table 1,
entries 28-33).

The reactivity of 2-acetyl-1-methylpyrrole (21) was similar to
1-methylpyrrole-2-carboxaldehyde (10, Table 2). Complexes 8
and 9 promoted an almost complete conversion of 2- and

4-chlorobenzonitrile, and of 4-(trifluoromethyl)chlorobenzene

to give the desired coupling products 22-24 in good yields. On
the other hand, low to moderate yields were obtained with
complexes 1, 4 and 6.

Methyl 1-methylpyrrole-2-carboxylate (25) also reacts with
4-chlorobenzonitrile (11) to give 26 in good yields with cata-
lysts 2, 8 and 9 (Table 3). No significant decarboxylation of the
pyrrole derivative was observed in the course of this reaction.

Three aryl chlorides have also been coupled with 1-methylpyr-
role (27, Table 4). A large excess of 1-methylpyrrole (27) was
employed (4 equiv) in order to avoid the formation of 2,5-diary-
lated pyrroles. From 2- and 4-chlorobenzonitrile, 28 and 29

305



Beilstein J. Org. Chem. 2013, 9, 303-312.

Table 1: Direct arylation of 1-methylpyrrole-2-carboxaldehyde (10) with chlorobenzene derivatives.?

Pd-NHC (1 mol %) Oy I \

O§/Q +  ACl

N Ar
| DMAc, KOAc, |
10 11-15 150°C, 20 h 16-20

Entry ArCl Pd-NHC Product Conv. (%)P Yield (%)°
1 1 68 57
2 2 99 87
3 3 N 99 83
4 . N 4 WCN 69 61
5 5 Ox™N 64 57
6 1 6 \ 46 36
7 7 16 45 37
8 8 80 72
9 9 74 65
10 1 63 23
11 2 78 60
12 3 A 38 11
13 cl 4 o | 45 33
14 5 X N 32 7
15 NC 6 v NG 32 5
16 12 7 17 26 20
17 8 65 58
18 9 67 55
19 1 100 56
20 2 98 76
21 3 m 100 34
22 4 CFs 100 32
23 C'OCF3 5 Ox N 86 8
24 13 6 \ 77 40
25 7 18 100 28
26 8 98 74
27 9 98 21

o)

/
28 2 R 11 2
29 C'OCHO 8 Ox J:Ni C 70 4
30 14 9 \ 74 38

19

o)
31 0o 2 N 24 9
32 cl 8 Ox~~N 73 50
33 9 \ 74 47

15 20

@Reaction conditions: Pd-NHC (0.01 mmol), aryl chloride (1 mmol), 1-methylpyrrole-2-carboxaldehyde (10, 2 mmol), KOAc (2 mmol), DMAc (3 mL),

20 h, 150 °C. PDetermined by GC and NMR.

were obtained in high yields in the presence of complexes 8 and
9. On the other hand, the formation of several side-products was
observed during the coupling of 4-(trifluoromethyl)chloroben-
zene (13) with this pyrrole derivative, and 30 was obtained in
low yields (Table 4, entries 11-15).

Finally, the reactivity of 1-phenylpyrrole (31) with two aryl
chlorides was examined (Table 5). Again, good yields in 32
were obtained with complexes 2, 8 and 9 for the coupling with

4-chlorobenzonitrile (11). 4-Chloroacetophenone (15) also gave
33 in good yields with complexes 8 and 9.

Conclusion

In summary, we have demonstrated that the regioselective C2 or
CS5 direct arylation of a range of pyrrole derivatives using elec-
tron-deficient aryl chlorides can be promoted by N-heterocyclic
carbene ligands associated to palladium. So far, the reason for

the influence of the nature of the carbene ligand on such
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Table 2: Direct arylation of 2-acetyl-1-methylpyrrole (21) with chlorobenzene derivatives.?

o. I\ _ 9 o. [\
YQ . AC Pd-NHC (1 mol %) A
| DMAc, KOAc, |
21 11-13 150°C, 20 h 22-24
Entry ArCl Pd-NHC Product Conv. (%)° Yield (%)°
1 1 58 54
2 4 B CN 64 61
3 CIOCN 6 o N 79 45
4 7 \ 77 71
5 1 8 08 85
6 9 22 99 85
7 1 N o 62 38
8 cl 4 oM N Y/, 71 59
9 8 \ 94 78
10 NC 9 NC 90 78
12 23
11 1 B CF4 79 21
12 a—@ca 4 0 N 80 42
13 8 \ 92 77
14 13 9 95 76
24

@Reaction conditions: Pd-NHC (0.01 mmol), aryl chloride (1 mmol), 2-acetyl-1-methylpyrrole (2 mmol), KOAc (2 mmol), DMAc (3 mL), 20 h, 150 °C.

bDetermined by GC and NMR.

Table 3: Direct arylation of methyl 1-methylpyrrole-2-carboxylate (25) with 4-chlorobenzonitrile (11).2

o, M\ Pd-NHC (1 mol %) Oy U \
N~ * Cl CN > N
MeO | DMAc, KOAc, MeO | CN
150 °C, 20 h

25 1 26
Entry Pd-NHC Conv. (%)P Yield (%)°
1 1 52 32
2 2 94 78
3 4 58 27
4 5 69 51
5 6 66 47
6 7 61 49
7 8 98 83
8 9 97 81

@Reaction conditions: Pd—-NHC (0.01 mmol), 4-chlorobenzonitrile (11, 1 mmol), methyl 1-methylpyrrole-2-carboxylate (25, 2 mmol), KOAc (2 mmol),

DMAc (3 mL), 20 h, 150 °C. PDetermined by GC and NMR.

couplings remains unclear. However, the presence of bulky
N-substituents on the benzimidazole ring, such as 3,5-di-tert-
butylbenzyl (1-4) or benzhydryl (8), appears to be favorable;
whereas, 2-(2-ethoxy)phenoxyethyl substituent (5-7) generally
led to lower yields. The presence of a 2-(2-ethyl)-1,3-dioxalane
as N-substituent (9) was also found to be profitable. To our

knowledge, these are the first examples of direct arylations of
pyrroles by using aryl chlorides as the coupling partners and
Pd-N-heterocyclic carbene complexes as the catalyst. Finally, as
the major by-products are AcOK associated to HBr instead of
metallic salts, this procedure is environmentally more attractive

than the classical coupling procedures.
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Table 4: Direct arylation of 1-methylpyrrole (27) with chlorobenzene derivatives.?

ry rg | _PAENHC (1 mol %) @Ar

’]‘ DMAc, KOAc, '}'
150 °C, 20 h
27 11-13 28-30
Entry ArCl Pd-NHC Product Conv. (%)° Yield (%)°
1 1 56 50
2 4 N\ 75 70
3 CIOCN 6 [l N> < > CN 44 39
4 7 \ 68 63
5 11 8 28 94 83
6 9 96 90
7 cl 1 | N 78 74
8 4 N 81 70
9 8 \ 94 88
NC NC
10 12 9 29 92 83
11 2 N 94 31
12 al CF 3 D—@Cﬁ 91 27
13 3 4 N 89 39
14 13 8 \ 96 29
15 9 30 97 25

@Reaction conditions: Pd—-NHC (0.01 mmol), aryl chloride (1 mmol), 1-methylpyrrole (27, 4 mmol), KOAc (2 mmol), DMAc (3 mL), 20 h, 150 °C.
bDetermined by GC and NMR.

Table 5: Direct arylation of 1-phenylpyrrole (31) with chlorobenzene derivatives.?

LY, o _PeNHc@more [ Y

N DMAc, KOAC, N

Ph 150 °C, 20 h Ph

31 11,15 32,33

Entry ArCl Pd-NHC Product Conv. (%)P Yield (%)°

1 1 81 71
2 2 90 85
3 4 O_@CN 80 73
4 CIOCN 5 N 85 79
5 6 bh 86 74
6 1 7 87 81
7 8 32 08 89
8 9 98 88

O
9

1" 15

OOoN
Z/i
@)
O
N N
o O
[e)0d)]

@Reaction conditions: Pd—-NHC (0.01 mmol), aryl chloride (1 mmol), 1-phenylpyrrole (31, 4 mmol), KOAc (2 mmol), DMAc (3 mL), 20 h, 150 °C.
bDetermined by GC and NMR.

Experimental tion of the desired complexes of Pd(Il) in 53—-87% yield. The
The reaction of benzimidazolium halide (2 equiv) with crude product was recrystallized from a dichloromethane/
Pd(OAc), in DMSO according to Scheme 1 led to the forma-  diethyl ether mixture 1:3 at room temperature, which afforded
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the corresponding crystals. The new complexes were character-
ized by 'H NMR, 13C NMR, IR and elemental analysis tech-
niques, which support the proposed structures.

As described in [49], the air and moisture-stable palladium-
carbene complexes (1-9) were soluble in halogenated solvents
and insoluble in nonpolar solvents. Palladium complexes ex-
hibit a characteristic viyeny band typically at 1407-1477 em L
The formation of the Pd-NHC complexes was confirmed by the
absence of the 'H NMR resonance signal of the acidic benzimi-
dazolium C2-H. The '3C NMR spectra of Pd-NHC complexes
exhibit a resonance signal in the 181.2-183.6 ppm range
ascribed to the carbenic carbon atom, which is consistent with
the reported values for PA-NHC complexes [43]. NMR data

showed that complexes 2 and 4-7 were cis/trans mixtures.

General procedure for the preparation of the

palladium—NHC complexes

As described in [50], to a solution of benzimidazolium salts
(10 mmol) in DMSO (5 mL) was added palladium(II) diacetate
(5 mmol) under argon, and the resulting mixture was stirred at
room temperature for 2 h, then at 60 °C for 4 h, at 80 °C for 2 h
and finally at 110 °C for 2 h. Volatiles were removed in vacuo,
and the residue was washed twice with THF (5 mL). The com-
plex was crystallized from dichloromethane/diethyl ether 1:3 at

room temperature.

Dibromo-bis[1-(3,5-di-fert-butylbenzyl)-3-(2-methoxy-
ethyl)benzimidazol-2-ylidene|palladium(II) (1): Yield: 0.29
g, 87%; mp 172-174 °C; 'H NMR (CDCls, 8) 1.29 (t, J=17.0
Hz, 4H, NCH,CH,0CH3), 1.31 (t, J= 7.0 Hz, 4H, NCH,CH,-
OCHj3), 1.33 (s, 36H, NCH,CgH3(C(CHj3)3)-3,5), 2.63 (s, 6H,
NCH,CH,0CHj3), 5.10 (s, 4H, NCH,CgH3(C(CH3)3-3,5)),
6.89-7.6 (m, 14H, NC¢H4N and NCH,C¢H3(C(CH3)3-3,5));
13C NMR (CDCls, 8) 31.5 (NCH,CgH3(C(CH3)3)-3,5), 34.8
(NCH,CgH3(C(CH3)3-3,5)), 35.0 (NCH,CH,OCHj3), 41.0
(NCH,C¢H3(C(CH3)3)-3,5)), 48.3 (NCH,CH,OCH3), 58.8
(NCH,C¢H;3(C(CH3)3-3,5)), 111.1, 111.2, 121.7, 122.3, 122.7,
122.9, 134.2, 134.6, 151.1, 151.3 (NCgH4N and NCH,CgHj3-
(C(CH3)3-3,5)), 183.6 (Pd-Cegrpene); IR (cm™ 1) vieny: 1407;
Anal. calcd for C59HggN4PdBry: C, 60.58; H, 6.91; N, 5.65;
found: C, 60.47; H, 6.94; N, 5.63.

cis/trans-Dibromo-bis[1-(3,5-di-tert-butylbenzyl)-3-(3,4,5-
trimethoxybenzyl)benzimidazol-2-ylidene]palladium(II) (2):
Yield: 0.29 g, 87%; mp 160-162 °C; '"H NMR (CDCl;, §) 1.16,
1.21 (s, 36H, NCH,CcH3(C(CHj3)3-3,5), 3.66, 3.80, 3.81, 3.86
(s, 18 H, NCH,C¢H,(OCH3)3-3,4,5), 5.32, 5.37 (s, 4H,
NCH,C¢H3(C(CH3)3-3,5), 5.74, 5.79 (s, 4H,
NCH,CgH»(OCHj3)3-3,4,5), 6.09-7.39 (m, 18H, NCgH4N,
NCH2C6H3(C(CH3)3-3,5 and NCH2C6H2(OCH3)3-3,4,5);

Beilstein J. Org. Chem. 2013, 9, 303-312.

13C NMR (CDCl3, 8) 31.2, 31.3 (NCH,CgH3(C(CH3)3-3,5),
31.4,31.7, 34.7, 34.8 (NCH,CcH,(OCHj3)3-3.,4,5), 41.0, 41.1
(NCH;CgH3(C(CH3)3-3,5), 53.2, 53.9 (NCH,C¢H3(C(CH3)3-3,
5), 56.3, 56.4 (NCH,CgH,(OCH3)3-3,4,5), 104.4, 104.8, 111.8,
112.4,121.1, 121.3, 123.4, 129.9, 130.4, 133.1, 133.5, 133.9,
134.3, 134.4, 134.7, 137.7, 151.2, 151.5, 153.5, 153.7
(NC6H4N, NCH2C6H3(C(CH3)3-3,5 and NCH2C6H2(OCH3)3-
3,4,5), 181.2 and 182.3 (Pd-Cigrpene); IR (cm™1) v(cN): 1447,
Anal. caled for Cg4HggN4OgPdBr,: C, 60.64; H, 6.36; N, 4.42;
found: C, 60.57; H, 6.54; N, 4.45.

Dibromo-bis[1,3-bis(3,5-di-tert-butylbenzyl)benzimidazol-2-
ylidene]palladium(II) (3): Yield: 0.27 g, 82%; mp
248-250 °C; 'H NMR (CDCl3, &) 1.18 (s, 72H,
NCH,CgH3(C(CH3)3)-3,5), 5.80 (s, 8H, NCH,C¢H3(C(CH3)3-
3,5), 6.14-7.48 (m, 20H, NCzH4N and NCH,CgH3(C(CH3)3-
3,5); 13C NMR (CDCls, 8) 31.4 (NCH,CgH3(C(CHj3)3)-3,5),
41.02 (NCH,Cg¢H3(C(CH3)3)-3,5), 53.9 (NCH,C¢H3(C(CHj3)s3-
3,5), 111.6, 112.2, 121.3, 121.5, 122.3, 122.8, 133.4, 134.4,
134.6, 151.1, 151.2 (NCgH4N and NCH,CgH3(C(CHj3)3-3,5)),
182.5 (Pd-Cyarpene); IR (cm™ 1) v(cN): 1477; Anal. caled for
C74H19oN4PdBr,: C, 67.75; H, 7.68; N, 4.27; found: C, 67.72;
H, 7.64; N, 4.27.

cis/trans-Dichloro-bis[1-(3,5-di-tert-butylbenzyl)-3-(2,3,4,5,6-
pentamethylbenzyl)benzimidazol-2-ylidene]palladium(II)
(4): Yield: 0.27 g, 82%; mp 310-312 °C; 'H NMR (CDCls, 8)
1.27,1.29 (s, 36 H, NCH,C4¢H3(C(CH3)3-3,5)), 2.20, 2.23, 2.24,
2.29, 2.30, 2.34 (s, 30H, NCH,C¢(CH3)5-2,3,4,5,6), 5.30 and
5.40 (s, 4H, NCH,C4(CH3)s5-2,3,4,5,6), 5.53, 5.54 (s, 4H,
NCH2C6H3(C(CH3)3-3,5)), 6.04-7.55 (m, 14H, NC6H4N and
NCH,CgH3(C(CH3)3-3,5)); 13C NMR (CDCl3, 8) 31.3, 31.4
(NCH,CgH3(C(CH3)3-3,5), 41.0, 41.1 (NCH,CgH3(C(CH3)3-
3,5)), 17.1, 17.2, 17.3, 17.6, 17.7, 17.8 (NCH,C4(CH3)s-
2,3,4,5,6), 51.2, 51.3 (NCH,C¢(CH3)5-2,3,4,5,6), 51.5, 51.6
(NCH,CeH3(C(CH3)3-3,5)), 111.2, 111.4, 111.8, 121.3, 121.5,
122.0, 122.5, 122.7, 122.8, 128.5, 128.6, 132.9, 133.0, 134.3,
134.4,134.5, 134.6, 134.8, 134.9, 135.1, 151.0, 151.1 NCgH4N
and NCH;CgH3(C(CH3)3-3,5)), 182.4, 182.5 (Pd-C,yrpene); IR
(em™h) v(cNy: 14515 Anal. caled for CggHggN4PdCly: C, 71.97;
H, 7.46; N, 4.94; found: C, 71.92; H, 7.64; N, 4.97.

cis/trans-Dibromo-bis[1-(2,4,6-trimethylbenzyl)-3-(2-(2-eth-
oxy)phenoxyethyl)benzimidazol-2-ylidene]palladium(II) (5):
Yield: 0.33 g; 81%; mp 238-240 °C; 'H NMR (CDCl3, ) 1.23,
1.39 (t, J= 7.0 Hz, 6H, NCH,CH,0CgH4(OCH;,CH3)-2), 2.29,
2.34,2.35,2.36 (s, 18H, NCH,CgH(CH3)-2,4,6), 3.89, 4.01 (q,
J=17.0 Hz, 4H, NCH,CH,0CgH4(OCH,CH3)-2), 4.81, 4.83 (t,
J=5.9 Hz, 4H, NCH,CH,0CgH4(OCH,CH3)-2), 5.39, 5.41 (t,
J=15.9, 4H, NCH,CH,0CgH4(OCH,CHj3)-2), 6.03, 6.13 (s, 4H,
NCH,CgH,(CH3)-2,4,6), 6.80-7.77 (m, 20H, NCgH4N,
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NCH,CH,-OCgH4(OCH,CH3)-2, NCH,C¢H,(CH3)-2,4,6);
I3 NMR (CDCl3, &) 15.1, 15.3 (NCH,CH,O0C¢Hy4-
(OCH,CH3)-2), 21.0, 21.1, 21.2, 21.3 (NCH,CgH,(CH3)-
2,4,6), 48.0, 48.1 (NCH,CH,OC¢H4(OCH,CHj3)-2), 50.1, 50.6
(NCH,CH,0-C¢H4(OCH,CH3)-2), 64.0, 64.1 (NCH,CH,O-
C¢H4(OCH,CHj3)-2), 67.8, 67.9 (NCH,CgH,(CH3)-2,4,6),
111.3, 111.5, 112.8, 113.3, 120.7, 120.9, 121.4, 122.9, 128.0,
129.4, 129.6, 134.6, 135.7, 138.4, 138.6, 138.9, 148.0, 148.5,
148.6 (NCgH4NNCH,CH,-OC¢H4(OCH,CHj3)-2,
NCH,CgH»(CH3)-2,4,6), 182.2, 182.3 (Pd-Cogrpene); IR (cm™1)
V(cN): 1448; Anal. caled for Cs4HgoN4O4PdBr): C, 59.21; H,
5.52; N, 5.12; found: C, 59.27; H, 5.54; N, 5.13.

cis/trans-Dichloro-bis[1-(2-(2-ethoxy)phenoxyethyl)-3-(4-
methylbenzyl)benzimidazol-2-ylidene] palladium(II) (6):
Yield: 0.32 g, 66%; mp 235-237 °C; '"H NMR (CDCl3, ) 1.43,
1.45 (t, J= 6.9 Hz, 6H, NCH,CH,0CgH4(OCH,CH3)-2), 2.29,
2.35 (s, 6H, NCH,C¢H4(CH3)-4), 3.98, 4.03 (q, /= 7.0 Hz, 4H,
NCH,CH,0CgH4(OCH,CH3)-2), 4.57, 4.82 (t, J = 5.0 Hz, 4H,
NCH,CH,0CgH4(OCH,CH3)-2), 5.27, 5.42 (t, J = 5.0 Hz, 4H,
NCH,CH,0CgH4(OCH,CH3)-2), 5.97, 6.15 (s, 4H,
NCH,CgH4(CH3)-4), 6.68-8.56 (m, 24H, NCgH4N,
NCH,CH,0-CcH4(OCH,CH3)-2, NCH,CgH4(CH3)-4);
13C NMR (CDCls, 8) 15.0, 15.1 (NCH,CH,OC¢Hy-
(OCH,CHj3)-2), 21.1, 21.2 (NCH,C¢H4(CH3)-4), 48.1, 48.3
(NCH,CH,0C¢H4(OCH,CH3)-2), 52.1, 52.2 (NCH,CH,0-
C¢H4(OCH,CHj3)-2), 64.0, 64.1 (NCH,CH,OC¢Hy4-
(OCH;,CH3)-2), 68.3, 68.6 (NCH,CgH4(CH3)-4), 110.8, 111.1,
112.2, 112.8, 113.1, 120.7, 120.9, 121.2, 123.0, 123.1, 127.6,
127.7, 127.8, 129.3, 129.5, 132.6, 134.1, 135.6, 137.4, 137.6,
148.0, 148.4, 148.6 (NCcH4NNCH,CH,0-CgH4(OCH,CHj3)-2,
NCH,CgH4(CH3)-4), 182.0, 182.1 (Pd-Cegrpene); IR (cm™1)
v(cNy: 1407; Anal. caled for C5oH3oN404PdCly: C, 63.19; H,
5.52; N, 5.90; found: C, 63.18; H, 5.50; N, 5.93.

cis/trans-Dichloro-bis[1-(2-(2-ethoxy)phenoxyethyl)-3-(3-
methoxybenzyl)benzimidazo-2-ylidene]palladium(II) (7):
Yield: 0.22 g, 53%; mp 205-207 °C; 'H NMR (CDCls, ) 1.43,
1.45 (t,J = 7.0 Hz, 6H, NCH,CH,OCcH4(OCH,CH3)-2), 3.66,
3.75 (s, 6H, NCH,CcH4(OCHj3)-3), 3.97, 4.03 (q, J = 7.0 Hz,
4H, NCH,CH,0C¢H4(OCH,CH3)-2)), 4.60, 4.83 (t, /= 5.6 Hz,
4H, NCH,CH,0CgH4(OCH,CH3)-2), 5.29, 5.43 (t, J= 5.7 Hz,
4H, NCH,CH,0CgH4(OCH,CH3)-2), 6.01, 6.18 (s, 4H,
NCH,CgH4(OCHj3)-3), 6.67-7.86 (m, 24H, NCgHyN,
NCH,CH,0-CcH4(OCH,CH3)-2, NCH,C¢H4(OCHj3)-3);
I3C NMR (CDCls, 8) 15.0, 15.3 (NCH,CH,0C¢Hy-
(OCH,CHj3)-2), 48.0, 48.3 (NCH,CH,0C¢H4(OCH,CHj3)-2),
52.3, 52.4 (NCH,C¢H4(OCH3)-3), 55.5, 55.7 (NCH,CH,0-
C¢H4(OCH,CHj3)-2), 63.9, 64.0 (NCH,CH,OC¢Hy4-
(OCH,CHj3)-2), 68.3, 68.6 (NCH,C¢H4(OCH3)-3), 112.3,
113.1, 114.7, 120.0, 120.7, 120.9, 123.1, 123.2, 129.8, 134.0,
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134.1, 135.6, 137.0, 137.3, 148.0, 148.4, 160.0, 160.3 (NCcH4N
NCH;,CH;,0-C¢H4(OCH,CHj3)-2, NCH,;C¢H4(OCH3)-3),
182.0, 182.2 (Pd-Cegrpene); IR (cm™h) v(cN): 1444; Anal. caled
for C50Hs5oN4O4PdCly: C, 61.14; H, 5.34; N, 5.70; found: C,
61.21; H, 5.37; N, 5.73.

Dibromo-bis[1-(3-methylbenzyl)-3-(benzhydryl)|benzimi-
dazol-2-ylidene|palladium(II) (8): Yield: 0.35 g, 60%; mp
230-232 °C; 'H NMR (CDCl3, 8) 2.12 (3-CH3C4Hs), 5.72 (s,
2H, (3-CH3)(Cg¢Hjs)-CH>), 6.74-7.79 (m, 19H, CH(CgHs),,
CgH4 and 3-CH3Cg¢Hs); '3C NMR (CDCls, 8) 21.3
(3-(CH3)(CgHs)), 52.0 (3-(CH3)(CeHs)-CHy), 67.5 (CH(CgHs),
112.4, 123.6, 125.5, 128.6, 128.7, 128.9, 129.1, 133.4, 133.8,
134.9, 135.9, 136.1, 137.6, 138.0, 138.2, 138.4 (3-(CH3)(CgHs),
CH(C6H5) and C6H4), 183.5 (Pd'Ccarbene); IR (cm_l) V(CN):
1412; Anal. calcd for CsqHyNy4BryPd: C, 64.60; H, 4.45; N,
5.38; found: C, 64.58; H, 4.49; N, 5.46.

Dibromo-bis[1-(benzyl)-3-(2-(2-ethyl)-1,3-dioxalane)|benz-
imidazol-2-ylidene]palladium(II) (9): Yield: 0.31 g, 62%; mp
282-284 °C; 'H NMR (CDCls, §) 2.27 (m, 2H, NCH,CH,CH),
3.83 and 3.99 (t, 4H, J = 6.6 Hz, NCH,CH,CHO,CH,CH>),
5.01 (m, 3H, NCH,CH,CH and NCH,CH,CH), 6.01 (s, 2H,
(C6H5)-CH2), 7.0-7.92 (m, 9H, (C6H5)CH2 and C6H4);
I3C NMR (CDCl3, 8) 33.7 (NCH,CH,CH), 40.8
(NCH,CH,CH), 64.9 (NCH,CH,CHO,CH,CH,), 101.6
(NCH,CH,CHO,CH,CH3), 101.9, 111.3, 112.2, 123.7, 128.3,
128.5, 128.8, 128.9, 133.9, 134.4, 136.6 (C¢HsCH; and CgHy),
181.7 (Pd-Cyarpene); IR (cm™1) v(cN): 1408; Anal. caled for
C33H4904N4PdBrp: C, 51.69; H, 4.57; N, 6.35; found: C, 51.60;
H, 4.61;N, 6.37.

General Procedure for direct arylations

As described in [47], in a typical experiment, the aryl chloride
(1 mmol), heteroaryl derivative (2 or 4 mmol) (see Table 1-5)
and KOAc (2 mmol) were introduced in a Schlenk tube,
equipped with a magnetic stirring bar. The Pd complex
(0.01 mmol, see Table 1-5) and DMAc (3 mL) were added, and
the Schlenk tube was purged several times with argon. The
Schlenk tube was placed in a preheated oil bath at 150 °C, and
the reaction mixture was stirred for 20 h. Then, the reaction
mixture was analysed by gas chromatography to determine the
conversion of the aryl chloride. The solvent was removed by
heating of the reaction vessel under vacuum and the residue was
charged directly onto a silica-gel column. The products were
eluted by using an appropriate ratio of diethyl ether and
pentane.
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In this work we analyze the whole molecular mechanism for intramolecular aromatic hydroxylation through O, activation by a

Schiff hexaazamacrocyclic dicopper(I) complex, [Culp(bsH2m)

]2+

. Assisted by DFT calculations, we unravel the reaction pathway

for the overall intramolecular aromatic hydroxylation, i.e., from the initial O, reaction with the dicopper(I) species to first form a

CulCull-superoxo species, the subsequent reaction with the second Cu! center to form a p-n2:m2-peroxo-Cu'ly intermediate, the

concerted peroxide O—O bond cleavage and C—O bond formation, followed finally by a proton transfer to an alpha aromatic carbon

that immediately yields the product [Cu'ly(bsH2m-O)(n-OH)]**.

Introduction

Bearing in mind the key role of dioxygen in biology, in particu-
lar toward Cu and Fe metal centers, being involved in the
catalytic cycle of proteins, including dinuclear copper-active
sites, such as hemocyanin, tyrosinase and catechol oxidases
[1-7], either transporting or activating O, its comprehension is
still underway. Efforts in biomimetics have been made to under-
stand the interaction of such prototypical metalloenzymes with
dinuclear Cu! complexes with molecular O, [8-10], in particu-

lar by modifying the nature of the ligands bonded to the metals

[11-14]. On the other hand, a hot topic is still to unravel, either
experimentally or by calculations, which of the side-on p-nZm?2-
peroxo and bis(p-ox0) isomeric CuyO,2" cores are present, and
in the case that they exist, to study the feasibility of their inter-
conversion [15-19], tuning either the metallic complex or the
reaction conditions [20-23]. Moreover, both Cuy0,2" cores
have been proposed to be the active species in the aromatic
hydroxylation process. Indeed, this question still remains

controversial [24-26].
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Among the recent studies in the field of oxidation of Cu
systems, tyrosinase model systems that selectively produce
aromatic hydroxylation products [27-32] and methane
monooxygenase (MMO) models that yield stable aliphatic
hydroxylation compounds [33,34] are the subject of interest,
and both aliphatic and aromatic hydroxylations have been
analyzed theoretically. In particular, there are detailed studies of
pMMO complexes [35,36], showing why they are suitable for
the conversion of methane to methanol [37]. On the other hand,
several theoretical studies have analyzed the inter- and
intramolecular hydroxylation of aromatic rings [38-46]. Most of
these studies agree that the aromatic hydroxylation takes place
through a peroxo group side-on to the Cu,O; core.

Although from the hexaazamacrocyclic dinuclear Cu! complex
[Cu'y(bsH2m)]%" (a) [14] the p-phenoxo-p-hydroxo product
[Cully(bsH2m-0O)(u-OH)]%" (g) was characterized experimen-
tally, it was not possible to trap or detect any intermediate in the
path from a + O, — g. Here, by means of density functional
theory (DFT) calculations, we search for the whole reaction
pathway (Figure 1). The results are compared with those
obtained in a similar previous study in which the hexaaza-
macrocyclic ligand used (H3m) was more flexible [40]. Crystal-
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lographic data on related copper compounds by using the same
ligand suggest that complex a may present many conforma-
tions of rather similar energy [47]; however, the optimized
geometries of similar complexes was found to be in perfect
agreement with the X-ray structures [40,48-56].

Computational details

All geometry optimizations, as described in [40], were
performed with the Gaussian03 package [57], by using the
B3LYP functional [58-60] and the standard 6-31G(d) basis set
[61,62]. The geometries obtained at the B3LYP/6-31G(d) level
were used to perform single-point energy calculations with a
larger basis set, the 6-311G(d,p) basis set [63], and the same
functional (B3LYP/6-311G(d,p)//B3LYP/6-31G(d)). Intrinsic
reaction pathways were calculated to confirm that the located
transition states connected the expected minima. Analytical
Hessians were computed to determine the nature of all the
stationary points we located, and to calculate zero-point ener-
gies (ZPEs) and thermodynamic properties at 298 K.

For open-shell states, the geometry optimizations were
performed within the broken-symmetry unrestricted method-
ology, while for the closed-shell singlet states the restricted
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Figure 1: Stationary points located along the reaction path of the aromatic hydroxylation mechanism (some H atoms omitted for clarity). Gibbs ener-
gies relative to the product (in kcal-mol~") in solution are given in parentheses. Calculated imaginary frequencies for transition structures are given in
brackets. Superindexes SO (open-shell singlet) and T (triplet) refer to the multiplicity of the ground state.
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formalism was used. Theoretical treatment of biradical singlet
species requires multiconfigurational or multireference methods
due to strong static electron correlation. Unfortunately, these
methods can only be applied to relatively small systems because
computationally they are extremely demanding. As an alter-
native, we have used the unrestricted UB3LYP method in
broken symmetry (BS, using GUESS = MIX) [64]. This method
improves the modeling of biradical singlet states at the expense
of introducing some spin contamination from higher spin states
[65-73].

Solvent effects including contributions of non-electrostatic
terms have been estimated in single-point calculations on the
gas-phase-optimized structures, based on the polarizable contin-
uous solvation model (PCM) with CH3CN as a solvent [74,75],
i.e., the same solvent used experimentally.

The relative Gibbs energies reported in this work include ener-
gies computed using the B3LYP/6-311G(d,p)//B3LYP/6-
31G(d) method together with solvent effects obtained at the
B3LYP/6-31G(d) level, and zero-point energies, thermal correc-
tions, and entropy effects calculated at 298 K with the B3LYP/
6-31G(d) method.

Results and Discussion

Bearing in mind the easy transformation of a to g, done at low
temperature and atmospheric pressure [14], the coordination of
0, gives as a result the formation of a CulCull-superoxo species
b switching the singlet ground state to a triplet, in a barrierless
process checked by means of several reaction coordinate linear
transits between one or both oxygen atoms and the Cu atoms.
The rotation of about 180° of the O, moiety in order to
facilitate that the non-bonded oxygen atom points towards the
still free Cu atom costs just 2.6 kecal-mol™!, evolving to the
p-n':n?-peroxo isomer ¢ with an energetic stabilization of
12.9 kcal-mol™! with respect to the preceding complex b.
Furthermore, this step also requires change to a biradical singlet
ground state, although the triplet state is only 1 kcal-mol™!
higher as a result of the long distance between both Cu atoms
that allocate both unpaired electrons [76,77]. To achieve the
p-nZ:n2-peroxo-Cull, isomer d only the formation of Cu—O is
necessary, the later step having a barrier of 6.2 kcal'-mol™! to
overcome. Before the formation of this peroxo intermediate d
the side-on CulCull-superoxo isomeric species was not located,
probably due the higher rigidity that is imposed by the Schiff
bases bsH2m with respect to the similar, previously described
system H3m [40].

The two possible routes from d to e (C—O bond formation)
corresponding to the attacks on the two phenyl rings are basi-

cally identical, and consequently, only one of them has been
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analyzed. This step leads to the cleavage of the O—O bond and
consists of a direct and concerted attack on the closest carbon
atom of the aromatic ring to form species e through a barrier of
20.8 kcal'mol™!. In an alternative route in Figure 2, the p-n2m?2-
peroxo-Cull, intermediate d might evolve first to the closed-

shell singlet bis(p-0x0)-Culll

» isomer (h), but this bis(p-o0xo)
species is 20.0 kcal'mol™! higher in energy with respect to the
peroxo form [40]. Apart from the high instability with respect to
the peroxo intermediate, from d it is necessary to overcome a
barrier of 22.3 kca1~m01_1, which rules out the role of h in the
reaction pathway a—g. However, as reported by Cramer
[11,12,78], it is necessary to point out that the equilibrium
p-n2:mZ-peroxo/bis(p-0x0) is artificially displaced towards the
peroxo species by hybrid functionals, such as the B3LYP func-
tional, due to unbalanced correlation corrections [11,12]. In
spite of that, previous calculations agree in considering that the
p-nZ:m2-peroxo species is the active species in the hydroxyla-
tion process studied here [38-40,79,80].
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Figure 2: Computed structures of the potential equilibrium between
the peroxo and bis-p-oxo intermediates (some H atoms omitted for
clarity). Gibbs energies relative to product g (in kcal-mol~") in solution
are given in parentheses. Calculated imaginary frequencies for tran-
sition structures are given in brackets. Superindexes SO (open-shell
singlet) and S (closed-shell singlet) refer to the muiltiplicity of the
ground state.

This step from d to e corresponds to the beginning of the
so-called o* electrophilic mechanism described for ortho-
hydroxylation towards phenolate [5]. It is worth noting that in
the next reaction step, the aromatic H atom in the activated C—H
bond of e is transferred as a proton to one neighboring aromatic
carbon. Amazingly this step requires only 7.3 kcal'mol™!. It is
necessary to point out that this small barrier comes in part from
the breaking of the nearest Cu—O to this proton, which facili-
tates the electronic arrangement. Finally, overcoming a barrier
of 14.2 keal-mol™! the product is reached when transferring the
proton to the other oxygen and rebuilding the broken Cu—O
bond.

587



There are different parallel reactions and competitive intermedi-
ates that might be present in the reaction pathway. In Figure 3
the f—g step is compared with the migration of the hydrogen to
the nearest nitrogen first, and then this nitrogen atom easily
throws it to the oxygen bonded to the aromatic ring over-
coming a barrier of 2.8 kcal'‘mol™! in the i—g step. However,
the upper barrier of 27.3 kcal-mol™! of the step f—i in the f—g
process in Figure 3 must be compared to 14.2 kcal-mol™! of step
f—g in Figure 1. Thus the migration to the nitrogen atom first is
discarded.
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Figure 3: Computed structures for a potential alternative pathway f—g
of the 0* mechanism (some H atoms omitted for clarity). Gibbs ener-
gies relative to product g (in kcal‘mol=") in solution are given in paren-
theses. Calculated imaginary frequencies for transition structures are
given in brackets. Superindex SO (open-shell singlet) refers to the
multiplicity of the ground state.

In Figure 4, from species e the donation of the hydrogen atom
to the oxygen bonded to the aromatic carbon would be possible
through a barrier of 25.2 kcal'mol ™!, thus extremely disfavored
with respect to 7.3 kcal'mol™! when migrating this hydrogen to
one alpha aromatic carbon in the e—f step in Figure 1. Then, if
this alternative mechanism is taken into account, the subse-
quent formation of the product from intermediate j requires
11.8 kcal-mol L. However, in Figure 5 it is shown that species j
can evolve towards species i overcoming a negligible barrier of
0.2 kcal'mol™!. From the Gibbs energies obtained in these alter-
native pathways, one can conclude that the role played by

species i and j in the whole reaction mechanism is irrelevant.

After the formation of the C—O bond in species e, the previ-
ously described ligand H3m showed that the other aromatic ring
could assist the aromatic proton transfer to the nearer oxygen
atom with an upper barrier of only 1.4 kcal-mol™! [40].
However, for bsH2m the distance between the two aromatic
rings is always too large for them to help each other. Indeed
bsH2m is significantly more rigid, and this factor reduces the
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Figure 4: Computed structures for a potential alternative pathway
e—g of the 0* mechanism (some H atoms omitted for clarity). Gibbs
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Figure 5: Computed structures for a potential alternative pathway j—i
of the o* mechanism (Gibbs energies in kcal-mol~1). Superindex SO
(open-shell singlet) refers to the multiplicity of the ground state.

degrees of free rotation. However, the upper barrier for bsH2m
is only 7.3 kcal-mol™!. Thus, the most favored mechanism
might change depending on the nature of the chains between the
N atoms of the hexaaza ligand. However, the affinity of the
peroxo species d to interact with either of the aromatic rings is
the key factor that decides whether the intramolecular hydroxy-
lation will take place or not [13-26].
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Indeed, intermediates found here are also very different from
those found in an aliphatic hydroxylation reaction studied by
Holthausen [39]. Thus, in terms of comparison, to broaden the
scope of this study, in Figure 6 the study of a different mecha-
nism starting from species b was envisaged. Intermediate 1
represents a valid option as a potential reactive intermediate for
the direct attack to the aromatic ring by one of the oxygen
atoms. The formation of 1 requires that a barrier of only
2.6 keal'mol™! higher in energy with respect to the formation of
species ¢ be overcome. And species 1 is 2.0 kcal-mol™! less
stable with respect to species ¢. However, although species 1
needs to overcome a barrier of only 11.0 kcal-mol™ to create a
C-0 bond after the interaction of an oxygen atom with an
aromatic ring, the upper barrier from species b to the product g
requires 43.6 kcal'mol™!, which is 38.2 kcal'mol™! higher than
the upper barrier of the reaction pathway in Figure 1. Thus, the
aliphatic hydroxylation scheme is not reproducible here, and
thus we can confirm that the aromatic rings play a key role in
intramolecular aromatic hydroxylation reactions through O, ac-

tivation.

In Figure 7 the attack on the aromatic ring from species ¢
instead of species d is displayed. This alternative mechanism
reveals an upper energy barrier of 24.5 kcal-mol™! instead of the
18.3 kcal'mol™! described in the mechanism in Figure 1. Thus,

the reactivity towards the aromatic rings of the intermediate
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trans-peroxo (¢) is worse with respect to the intermediate with a
peroxo core (d). Finally, comparison of the Gibbs energy
profiles of Figure 1 in the present work with those in reference
[40], show that energy barriers present in the H3m reaction
mechanism [40] are somewhat lower than those found in the
more rigid bsH2m ligand, and therefore, the [Culy(H3m)]?"
catalyst is expected to be slightly more efficient than the
[Culy(bsH2m)]*" one.

Bearing in mind that Mayer Bond Order (MBO) theory gives
insight into the strength of the bonds [81-89], MBOs between
two atoms A and B were calculated through Equation 1 [90,91],
where S is the atomic orbital overlap matrix and P is the density
matrix. The sums run over the basis set functions belonging to a

given atom A or B.

Bap=2 Z Z [(PaS)m) (P“S)Uu +(PBS)H1) (PBS)DH:| (1)

neA veB

A first glance at Table 1 shows that the in study of the d—e step
in complexes containing bsH2m and H3m ligands, the MBOs
are quite similar. There is a slight difference between the MBOs
of the new O—C bond in e in the transition state de, with values
0f 0.069 and 0.122 for the [Cul,(bsH2m)]?" and [Cul5(H3m)]*"
systems, respectively. This might help to explain why the
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Figure 6: Computed structures for a potential alternative pathway b—g of the 0 mechanism (some H atoms omitted for clarity). Gibbs energies rela-
tive to product g (in kcal-mol~") in solution are given in parentheses. Calculated imaginary frequencies for transition structures are given in brackets.
Superindexes SO (open-shell singlet) and T (triplet) refer to the multiplicity of the ground state.
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Table 1: MBOs for d—e step for the [Culo(H3m)]2* and the [Culs(bsH2m)]2* catalysts.

Intermediate Cu1-01 Cu1-02 Cu2-01 Cu2-02 01-02 02-C
[Culy(bsH2m))2* d 0.401 0.382 0.403 0.382 0.889 0.015
de 0.644 0.629 0.684 0.657 0.416 0.069
e 0.558 0.386 0.801 0.462 0.027 0.856
[Culy(H3m)J2* d 0.391 0.378 0.391 0.379 0.878 0.017
de 0.640 0.678 0.640 0.678 0.412 0.122
e 0.505 0.822 0.395 0.614 0.040 0.843

barrier for the [Culy(H3m)]*" system is lower than for
[Culy(bsH2m)]?* by 8.8 keal-mol~!. However, the differences
between the MBOs are small, but this study of the MBOs is not
meaningless because it confirms that structurally both systems
are similar. On the other hand, to explain the d—e step the
O---C distance in the peroxo intermediate d is key, being
2.601 A for [Culy(bsH2m)]%" but 2.350 A for [Culy(H3m)]2T,
which explains why for the latter system the energy barrier for
the d—e step is lower. Indeed, for the Culy(bsH2m)]?" system
this step displays the upper barrier of the overall reaction
pathway a—g.

Conclusion
To sum up, the intramolecular hydroxylation of a Schiff base

hexaazamacrocyclic dicopper(I) complex (a) by means of O; to

finally yield the p-phenoxo-p-hydroxo product (g) occurs
thanks to a o*-mechanism that proceeds through a p-nZ:m?2-
peroxo species. Bearing in mind the DFT calculations for the
full reaction pathway, it is feasible to explain why it is difficult
to characterize experimentally any intermediate, particularly for
two reasons: first the lack of high energy barriers, and second
the cascade of the energy decay to the product. Furthermore, we
provide a detailed analysis of potential alternative reaction path-
ways to reach product (g) [40]; however, these different
explored paths between intermediates, in all cases, involve
higher energy barriers or are not feasible. Finally, comparison
of the reaction mechanisms involving hexaazamacrocyclic
bsH2m and H3m ligands indicates that the energy barriers
present in the H3m reaction mechanism are somewhat lower

than those found in the more rigid bsH2m ligand.
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