Supporting Information

for

Synthesis of 1-[bis(trifluoromethyl)phosphine]-1'-oxazolinylferrocene ligands and their application in regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates

Zeng-Wei Lai ${ }^{1,2}$, Rong-Fei Yang ${ }^{3}$, Ke-Yin Ye ${ }^{1}$, Hongbin Sun* ${ }^{2}$ and Shu-Li You* ${ }^{1}$
Address: ${ }^{1}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China, ${ }^{2}$ State Key Laboratory of Natural Medicines and Center of Drug Discovery, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China and ${ }^{3}$ Process Development and Manufacturing Department, Pharmaron (Beijing) Co. Ltd., 6 Taihe Road, BDA, Beijing, 100176, China.
Email: Shu-Li You* - slyou@sioc.ac.cn; Hongbin Sun* - hbsun2000@yahoo.com_
* Corresponding author

Experimental, characterization data and spectra

Table of contents

General information S2
Experimental details and characterization data S3-8
References S9
Copies of NMR spectra S10-38
Copies of HPLC chromatograms S39-50

General information

Unless stated otherwise, all reactions were performed under a dry argon atmosphere with dry solvents under anhydrous conditions. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Dry diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) was distilled over sodium-potassium alloy. Dichloromethane (DCM), dimethylformamide (DMF), acetonitrile, and 1,2-dichloroethane (DCE) were distilled over calcium hydride. All reagents were obtained from commercial sources and used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian instrument (300 MHz and $75 \mathrm{MHz}, 400 \mathrm{MHz}$ and 100 MHz , respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on an Agilent instrument (376 and 162 MHz respectively). ${ }^{19} \mathrm{~F}$ NMR chemical shifts were determined relative to CFCl_{3} as internal standard and ${ }^{31} \mathrm{P}$ NMR spectra were referenced to an external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ signal (0.0 ppm). Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, coupling constant (s) in Hz , integration). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm).

Compounds 3 were prepared from ferrocene in three steps according to the reported procedures [1-3].

General procedure for the synthesis of ligands

To a suspension of the corresponding 1-oxazolinyl-1'-bromoferrocenes $\mathbf{3}$ (9.0 mmol) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(55 \mathrm{~mL})$ was added TMEDA ($1.6 \mathrm{~mL}, 10.8 \mathrm{mmol}$) and a solution of n - BuLi in hexane $(4.5 \mathrm{~mL}, 2.4 \mathrm{M}, 10.8 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After being stirred for 2 h at that temperature, the reaction mixture was added slowly to a solution of $\mathrm{P}(\mathrm{OPh})_{3}(3$ $\mathrm{mL}, 11.7 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ and then warmed to rt . The reaction was stirred at rt overnight until there was no change as monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The suspension was filtered through a pad of silica gel, washed with DCM and concentrated in vacuo. The crude product was used for the next step without purification. To a stirred solution of above crude product in $\mathrm{Et}_{2} \mathrm{O}(55 \mathrm{~mL})$ was added $\mathrm{CsF}(19.8 \mathrm{mmol}, 3 \mathrm{~g})$ and $\mathrm{TMSCF}_{3}(27 \mathrm{mmol}, 3.9 \mathrm{~mL})$. The reaction was stirred at rt for 4 h , concentrated in vacuo, and purified by silica gel column chromatography (petroleum ether/DCM 10:1) to give the ligand.

(S)-1-[4,5-Dihydro-4-isopropyloxazol-2-yl]-1’-[bis(trifluoromethyl)phosphino]ferrocene (L1a)
Orange oil, 21% yield, IR (neat) $V \operatorname{max~cm}{ }^{-1}: 2962,1259,1087,1016,796 ;[\alpha]_{\mathrm{D}}{ }^{20}=$ -29.9 (c 0.45, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.85(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.55$ (s, 2H), $4.45(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=17.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=16$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1,75.0,74.9,74.8,74.7,74.7,74.7$, $72.6,72.4,71.6,71.6,70.5,70.4,69.6,32.3,18.8,17.9 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-1.72$ (sept, $J=73.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-53.85(\mathrm{dq}, J=73.3,7.3$ $\mathrm{Hz}, 3 \mathrm{~F}$), -53.94 (dq, $J=73.4,7.3 \mathrm{~Hz}, 3 \mathrm{~F}$). HRMS (MALDI-FT) m / z : calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NOF}_{6} \mathrm{P}^{54} \mathrm{Fe}[\mathrm{M}+1]^{+}: 464.0493$, found 464.0499

(S)-1-[4-benzyl-4,5-dihydrooxazol-2-yl]-1’-[bis(trifluoromethyl)phosphino]ferrocene (L1b)

Orange oil, 25% yield, IR (neat) $v \operatorname{max~cm}{ }^{-1}: 2961,2926,1656,1259,1184,1094$, 1018, 797; $[\alpha]_{\mathrm{D}}{ }^{16}=-10.8\left(c 0.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.22$ $(\mathrm{m}, 5 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 4.50-4.44(\mathrm{~m}, 7 \mathrm{H}), 4.26(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9,137.6$, $129.3,128.5,126.5,75.0,74.8,74.7,72.11,71.7,71.4,70.4,67.7,41.5 ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-1.74(\mathrm{sept}, J=73.0 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-53.80$ (dq, $J=73.3,6.4 \mathrm{~Hz}, 3 \mathrm{~F}$), -53.86 (dq, $J=73.3,6.4 \mathrm{~Hz}, 3 \mathrm{~F}$). HRMS (MALDI-FT) m/z: calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NOF}_{6} \mathrm{P}^{54} \mathrm{Fe}[\mathrm{M}+1]^{+}: 512.0510$, found 512.0499

(S)-1-[4,5-dihydro-4-phenyloxazol-2-yl]-1’-[bis(trifluoromethyl)phosphino]ferrocene (L1c)
Orange oil, 18% yield, IR (neat) $v \operatorname{max~cm}^{-1}: 2961,2926,1653,1259,1182,1096,974$, 954, 796; $[\alpha]_{\mathrm{D}}{ }^{23}=-64.3\left(c 0.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.34(\mathrm{~m}$, 2 H), 7.30-7.28 (m, 3H), 5.24 (dd, $J=9.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.94$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.71 (dd, $J=10.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{t}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,142.1,128.7,127.6,126.5,75.0,74.9$, $74.8,74.7$ (m), 74.6, 71.9, 71.83, 71.81, 70.6, 69.9; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -1.92 (sept, $J=74.5 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-53.76(\mathrm{dq}, J=73.3,7.5 \mathrm{~Hz}$, 3 F), -53.86 (dq, $J=-73.3,7.3 \mathrm{~Hz}, 3 \mathrm{~F}$); HRMS (MALDI-FT) m/z: calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NOF}_{6} \mathrm{P}^{54} \mathrm{Fe}[\mathrm{M}+1]^{+}: 498.0347$, found 498.0343.

(S)-1-[4,5-Dihydro-4-tert-butyloxazol-2-yl]-1'-[bis(trifluoromethyl)phosphino]ferrocene (L1d)
Orange solid, 35% yield, $\mathrm{mp}=56^{\circ} \mathrm{C}$, IR (neat) $v \operatorname{max~cm}^{-1}: 2961,1258,1086,1012$, $792 ;[\alpha]_{\mathrm{D}}{ }^{21}=-57.0\left(c 0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.89(\mathrm{~s}, 1 \mathrm{H}), 4.83$ $(\mathrm{s}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{dd}, J=9.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $164.00,76.09,74.84(\mathrm{~d}, J=6 \mathrm{~Hz}), 74.61(\mathrm{~m}), 72.72,71.52,71.45,70.39,68.41$,
33.45, 25.82; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.35$ (sept, $J=73.3 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-53.86(\mathrm{~d}, J=73.2 \mathrm{~Hz}, 6 \mathrm{~F})$. HRMS (MALDI-FT) m/z: calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NOF}_{6} \mathrm{P}^{54} \mathrm{Fe}[\mathrm{M}+1]^{+}: 478.0649$, found 478.0655

General procedure for the Pd-catalyzed allylic alkylation reaction.
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}(9.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ and ligand $\mathbf{L 1 d}(9.6 \mathrm{mg}, 0.02 \mathrm{mmol})$ were dissolved in dry $\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(5.0 \mathrm{~mL})$ and then the reaction mixture was stirred for 30 min at rt under an atmosphere of argon. To this stirred solution was successively added allyl carbonate $(0.5 \mathrm{mmol})$, dimethylmalonate $(0.17 \mathrm{~mL}, \quad 1.5 \mathrm{mmol})$, N, O-bis(trimethylsilyl)acetamide (BSA) ($0.37 \mathrm{~mL}, 1.5 \mathrm{mmol}$), and NaOAc (1.0 mg , $0.015 \mathrm{mmol})$. The reaction was stirred at $0{ }^{\circ} \mathrm{C}$ and monitored by TLC. After completion, the reaction mixture was diluted with DCM (25 mL) and washed twice with ice-cold saturated aqueous ammonium chloride. The organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The regioselectivity of the reaction was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the crude product. The residue was purified with silica gel column chromatography (petroleum ether/ethyl acetate $30: 1$) to provide the product. The enantiomeric purities were determined by HPLC.

Dimethyl 3-phenyl-1-butene-4,4-dicarboxylate (6a) ${ }^{[4]}$
Colorless oil, 91% yield, 88% ee [Daicel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=95 / 5$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=19.53$ (major), 21.99 (minor) min$] \quad[\alpha]_{\mathrm{D}}{ }^{24}=-32.4\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.20(\mathrm{~m}, 5 \mathrm{H}), 5.99$ (ddd, $\left.J=17.4,9.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12(\mathrm{~d}, J=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=10.4 \mathrm{~Hz}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}$, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 3-(1-naphthyl)-1-butene-4,4-dicarboxylate (6b) ${ }^{[5]}$
Colorless oil, 95% yield, 92% ee [Daicel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=90 / 10$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=254 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=12.5$ (major), 17.4 (minor) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-35.9\left(c 0.85, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.09$ (ddd, J $=17.3,9.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}$, $J=10.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 3-(4-methylphenyl)-1-butene-4,4-dicarboxylate (6c) ${ }^{[6]}$

Colorless oil, 93% yield, 85% ee [Daicel CHIRALCEL OD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=69 / 1$; flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=9.87$ (minor), 10.6 (major) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-25.5$ (c 1.2, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~s}, 4 \mathrm{H}), 5.98(\mathrm{ddd}, J=17.1,10.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=11.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 3-(4-methoxyphenyl)-1-butene-4,4-dicarboxylate (6d) ${ }^{[7]}$
Colorless oil, 96% yield, 82% ee [Daicel CHIRALCEL OD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=90 / 10$; flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=11.43$ (minor), 12.76 (major) min] $[\alpha]_{\mathrm{D}}{ }^{20}=-20.3\left(c 0.75, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.97$ (ddd, $J=17.1$, $10.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=$ $10.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 3-(2-thienyl)-1-butene-4,4-dicarboxylate (6e) ${ }^{[5]}$
Colorless oil, 94% yield, 70% ee [Daicel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=98 / 2$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=23.15$ (major), 25.5 (minor) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-30.4\left(c 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.02$ (ddd, $J=17.4,9.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=9.3,9.09 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.61$ ($\mathrm{s}, 3 \mathrm{H}$).

Dimethyl 3-(2-furanyl)-1-butene-4,4-dicarboxylate (6f) ${ }^{[8]}$
Colorless oil, 90% yield, 65% ee [Daicel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=95 / 5$; flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=22.73$ (major), 24.36 (minor) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-9.4\left(c 0.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92$ (ddd, $J=17.1,10.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.68$ (s, 3H), 3.60 ($\mathrm{s}, 3 \mathrm{H}$).

Dimethyl 3-(4-chlorophenyl)-1-butene-4,4-dicarboxylate ($\mathbf{6 g})^{[6]}$
Colorless oil, 91% yield, 83% ee [Daicel CHIRALCEL OD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane/2-propanol $=69 / 1$; flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=7.15$ (minor), 7.75 (major) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-27.6\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.95(\mathrm{ddd}, J=18.3$, $9.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=$ $10.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 3-(4-bromophenyl)-1-butene-4,4-dicarboxylate (6h) ${ }^{[8]}$
Colorless oil, 90% yield, 83% ee [Daicel CHIRALCEL OD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=69 / 1$; flow rate $=0.7 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=11.53$ (minor), 12.27 (major) $\left.\min \right][\alpha]_{\mathrm{D}}{ }^{23}=-29.2\left(c 1.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{ddd}, J=17.0$, $10.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=$ $10.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 3-(2-fluorophenyl)-1-butene-4,4-dicarboxylate (6i) ${ }^{[9]}$
Colorless oil, 90% yield, 81% ee [Daicel CHIRALCEL OD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=95 / 5$; flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=9.03$ (minor), 9.77 (major) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-33.4\left(c 1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-6.93(\mathrm{~m}, 1 \mathrm{H}), 5.98$ (ddd, $J=17.1,9.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33-4.22 (m, 1H), 3.97 (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 3-(2-methoxyphenyl)-1-butene-4,4-dicarboxylate (6j) ${ }^{[9]}$
Colorless oil, 95% yield, 92% ee [Daicel CHIRALCEL OD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=95 / 5$; flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=10.32$ (minor), 11.9 (major) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-35.1$ (c 1.0, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~m}, 2 \mathrm{H}), 6.16-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl 3-(2-methylphenyl)-1-butene-4,4-dicarboxylate (6k) ${ }^{[10]}$
Colorless oil, 91% yield, 94% ee [Daicel CHIRALCEL OD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$). hexane $/ 2$-propanol $=99 / 1$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220 \mathrm{~nm}$; $\mathrm{t}_{\mathrm{R}}=7.7$ (minor), 8.7 (major) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-67.9\left(c 1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) $\delta 7.16-7.07(\mathrm{~m}, 4 \mathrm{H}), 5.83(\mathrm{ddd}, J=8.0,9.2,18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=11.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$.

Dimethyl3-(3-chlorophenyl)-1-butene-4,4-dicarboxylate (61) ${ }^{[8]}$
Colorless oil, 90% yield, 88% ee [Phenomenex CHIRALCEL PA-2 $(0.46 \mathrm{~cm} \times 25$ $\mathrm{cm})$. hexane $/ 2$-propanol $=95 / 5$; flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$; detection wavelength $=220$ $\mathrm{nm} ; \mathrm{t}_{\mathrm{R}}=23.6$ (major), 36.3 (minor) min] $[\alpha]_{\mathrm{D}}{ }^{23}=-26.1\left(c 1.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.19-7.12 (m, 3H), $7.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.08$ $(\mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=10.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H})$.

MeOOC

Dimethyl 3-methyl-1-butene-4,4-dicarboxylate (6 m) ${ }^{[11]}$
Colorless oil, 96% yield, $[\alpha]_{\mathrm{D}}{ }^{24}=-2.25\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.67 (ddd, $J=17.3,10.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

References

1. Dong, T.-Y.; Lai, L.-L. J. Organomet. Chem. 1996, 509, 131.
2. Chesney, A.; Bryce, M. R.; Chubb, R. W. J.; Batsanov, A.; Howard, J. Synthesis 1998, 413.
3. Park, J.; Quan, Z.; Lee, S.; Ahn, K. H.; Cho, C.-W. J. Organomet. Chem. 1999, 584, 140.
4. Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. 1995, 34, 462.
5. Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104.
6. Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.
7. Kinoshita, N.; Marx, K. H.; Tanaka, K.; Tsubaki, K.; Kawabata, T.; Yoshikai, N.; Nakamura, E.; Fuji, K. J. Org. Chem. 2004, 69, 7960.
8. Hu, Z.; Li, Y.; Liu, K.; Shen, Q. J. Org. Chem. 2012, 77, 7957.
9. Nemoto,T.; Sakamoto,T.; Fukuyama,T.; Hamada,Y. Tetrahedron Lett. 2007, 48, 4977.
10. Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2012, 134, 4812.
11. Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581

Ni	
-iri	-0io

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	

L1a, ${ }^{31}$ P NMR

1	1	1	1	1	1	T	1	1
200	150	100	50	0	-50	-100	-150	-200

L1a, ${ }^{19}$ F NMR

$\stackrel{\circ}{\circ}$

L1b

whw

S18

L1c

L1c, ${ }^{19}$ F NMR

$$
\begin{aligned}
& \begin{array}{l}
8 \\
\hline 8 \\
\circ \\
i
\end{array}
\end{aligned}
$$

L1d

6a

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	12.424	383706	50.28	12863	59.81
2	17.185	379418	49.72	8643	40.19

	RT (min)	Area $(\mu \mathrm{V} * \sec)$	$\%$ Area	Height $(\mu \mathrm{V})$	\% Height
1	12.501	1214733	96.19	40874	97.33
2	17.436	48088	3.81	1122	2.67

6b

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	9.873	1011762	7.69	78231	8.85
2	10.608	12149787	92.31	805708	91.15

6c

	RT (min)	Area $(\mu \mathrm{V}$ *ec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	11.431	1458444	9.09	111225	10.70
2	12.767	14594653	90.91	928123	89.30

6d

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	\% Height
1	21.329	2303008	49.65	51878	53.52
2	23.243	2335145	50.35	45051	46.48

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	$\%$ Area	Height $(\mu \mathrm{V})$	\% Height
1	23.155	7066554	84.74	146840	85.43
2	25.521	1272434	15.26	25040	14.57

$6 f$

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \sec \right)$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	7.139	2771130	49.80	204622	54.26
2	7.782	2793338	50.20	172519	45.74

	RT (min)	$c \mid$Area $\left(\mu \mathrm{V}^{*}\right.$ sec $)$	$\%$ Area	Height $(\mu \mathrm{V})$	\% Height
1	7.154	3352445	8.55	262725	10.95
2	7.755	35862552	91.45	2137653	89.05

$6 g$

	RT (min)	Area $(\mu \mathrm{V} * \mathrm{sec})$	$\%$ Area	Height $(\mu \mathrm{V})$	\% Height
1	11.441	5891499	49.87	365237	52.35
2	12.240	5922239	50.13	332407	47.65

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	11.431	1458444	9.09	111225	10.70
2	12.767	14594653	90.91	928123	89.30

6h

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	$\%$ Area	Height $(\mu \mathrm{V})$	$\%$ Height
1	9.037	155756	9.62	14561	10.78
2	9.778	1464036	90.38	120464	89.22

$6 i$

	RT (min)	Area $(\mu \mathrm{V}$ *ec $)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	10.325	885124	4.11	33392	2.66
2	11.910	20653228	95.89	1221772	97.34

6j

6k

	RT (min)	Area $\left(\mu \mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height $(\mu \mathrm{V})$	\% Height
1	23.652	14103651	93.92	210550	95.38
2	36.317	912731	6.08	10191	4.62

61

