Supporting Information

for

Synthesis of 1-[bis(trifluoromethyl)phosphine]-1'-oxazolinylferrocene ligands and their application in regio- and enantioselective Pd-catalyzed allylic alkylation of monosubstituted allyl substrates

Zeng-Wei Lai^{1,2}, Rong-Fei Yang³, Ke-Yin Ye¹, Hongbin Sun^{*2} and Shu-Li You^{*1}

Address: ¹State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China, ²State Key Laboratory of Natural Medicines and Center of Drug Discovery, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China and ³Process Development and Manufacturing Department, Pharmaron (Beijing) Co. Ltd., 6 Taihe Road, BDA, Beijing, 100176, China.

Email: Shu-Li You* - slyou@sioc.ac.cn; Hongbin Sun* - hbsun2000@yahoo.com_

* Corresponding author

Experimental, characterization data and spectra

Table of contents

General information	S2
Experimental details and characterization data	S3–8
References	S9
Copies of NMR spectra	S10–38
Copies of HPLC chromatograms	S39–50

General information

Unless stated otherwise, all reactions were performed under a dry argon atmosphere with dry solvents under anhydrous conditions. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Dry diethyl ether (Et₂O) was distilled over sodium-potassium alloy. Dichloromethane (DCM), dimethylformamide (DMF), acetonitrile, and 1,2-dichloroethane (DCE) were distilled over calcium hydride. All reagents were obtained from commercial sources and used without further purification. ¹H and ¹³C NMR spectra were recorded on a Varian instrument (300 MHz and 75 MHz, 400 MHz and 100 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. ¹⁹F and ³¹P NMR spectra were recorded on an Agilent instrument (376 and 162 MHz respectively). ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as internal standard and ³¹P NMR spectra were referenced to an external 85% H₃PO₄ signal (0.0 ppm). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm).

Compounds **3** were prepared from ferrocene in three steps according to the reported procedures [1-3].

General procedure for the synthesis of ligands

To a suspension of the corresponding 1-oxazolinyl-1'-bromoferrocenes **3** (9.0 mmol) in anhydrous Et₂O (55 mL) was added TMEDA (1.6 mL, 10.8 mmol) and a solution of *n*-BuLi in hexane (4.5 mL, 2.4 M, 10.8 mmol) at -78 °C. After being stirred for 2 h at that temperature, the reaction mixture was added slowly to a solution of P(OPh)₃ (3 mL, 11.7 mmol) in Et₂O and then warmed to rt. The reaction was stirred at rt overnight until there was no change as monitored by ³¹P NMR spectroscopy. The suspension was filtered through a pad of silica gel, washed with DCM and concentrated in vacuo. The crude product was used for the next step without purification. To a stirred solution of above crude product in Et₂O (55 mL) was added CsF (19.8 mmol, 3 g) and TMSCF₃ (27 mmol, 3.9 mL). The reaction was stirred at rt for 4 h, concentrated in vacuo, and purified by silica gel column chromatography (petroleum ether/DCM 10:1) to give the ligand.

(*S*)-1-[4,5-Dihydro-4-isopropyloxazol-2-yl]-1'-[bis(trifluoromethyl)phosphino]-ferrocene (**L1a**)

Orange oil, 21% yield, IR (neat) Vmax cm⁻¹: 2962, 1259, 1087, 1016, 796; $[\alpha]_D^{20} = -29.9$ (*c* 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.85 (s, 1H), 4.81 (s, 1H), 4.55 (s, 2H), 4.45 (s, 2H), 4.41 (s, 2H), 4.28 (dd, *J* = 17.6, 9.2 Hz, 1H), 4.04 (dd, *J* = 16, 7.6 Hz, 1H), 4.00-3.90 (m, 1H), 1.82 (m, 1H), 0.98 (d, *J* = 6.8 Hz, 3H), 0.90 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 75.0, 74.9, 74.8, 74.7, 74.7, 72.6, 72.4, 71.6, 71.6, 70.5, 70.4, 69.6, 32.3, 18.8, 17.9. ³¹P NMR (162 MHz, CDCl₃) δ -1.72 (sept, *J* = 73.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -53.85 (dq, *J* = 73.3, 7.3 Hz, 3F), -53.94 (dq, *J* = 73.4, 7.3 Hz, 3F). HRMS (MALDI-FT) m/z: calcd for C₁₈H₁₉NOF₆P⁵⁴Fe [M+1]⁺: 464.0493, found 464.0499

(*S*)-1-[4-benzyl-4,5-dihydrooxazol-2-yl]-1'-[bis(trifluoromethyl)phosphino]ferrocene (**L1b**)

Orange oil, 25% yield, IR (neat) vmax cm⁻¹: 2961, 2926, 1656, 1259, 1184, 1094, 1018, 797; $[\alpha]_D{}^{16} = -10.8$ (*c* 0.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.22 (m, 5H), 4.85 (s, 2H), 4.50-4.44 (m, 7H), 4.26 (t, *J* = 8.5 Hz, 1H), 4.07 (t, *J* = 7.5 Hz, 1H), 3.30-3.08 (m, 1H), 2.72 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 164.9, 137.6, 129.3, 128.5, 126.5, 75.0, 74.8, 74.7, 72.11, 71.7, 71.4, 70.4, 67.7, 41.5; ³¹P NMR (162 MHz, CDCl₃) δ -1.74 (sept, *J* = 73.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -53.80 (dq, *J* = 73.3, 6.4 Hz, 3F), -53.86 (dq, *J* = 73.3, 6.4 Hz, 3F). HRMS (MALDI-FT) m/z: calcd for C₂₂H₁₉NOF₆P⁵⁴Fe [M+1]⁺: 512.0510, found 512.0499

L1c

(*S*)-1-[4,5-dihydro-4-phenyloxazol-2-yl]-1'-[bis(trifluoromethyl)phosphino]ferrocene (**L1c**)

Orange oil, 18% yield, IR (neat) vmax cm⁻¹: 2961, 2926, 1653, 1259, 1182, 1096, 974, 954, 796; $[\alpha]_D^{23} = -64.3$ (*c* 0.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.34 (m, 2H), 7.30-7.28 (m, 3H), 5.24 (dd, *J* = 9.9, 8.1 Hz, 1H), 4.94 (dd, *J* = 7.9, 1.2 Hz, 2H), 4.71 (dd, *J* = 10.0, 8.4 Hz, 1H), 4.62 (s, 2H), 4.51 (s, 2H), 4.48 (s, 2H), 4.21 (t, *J* = 8.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.7, 142.1, 128.7, 127.6, 126.5, 75.0, 74.9, 74.8, 74.7 (m), 74.6, 71.9, 71.83, 71.81, 70.6, 69.9; ³¹P NMR (162 MHz, CDCl₃) δ -1.92 (sept, *J* = 74.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -53.76 (dq, *J* = 73.3, 7.5 Hz, 3F), -53.86 (dq, *J* = -73.3, 7.3 Hz, 3F); HRMS (MALDI-FT) m/z: calcd for C₂₁H₁₇NOF₆P⁵⁴Fe [M+1]⁺: 498.0347, found 498.0343.

(*S*)-1-[4,5-Dihydro-4-*tert*-butyloxazol-2-yl]-1'-[bis(trifluoromethyl)phosphino]-ferrocene (**L1d**)

Orange solid, 35% yield, mp = 56 °C, IR (neat) vmax cm⁻¹: 2961, 1258, 1086, 1012, 792; $[\alpha]_D^{21} = -57.0$ (*c* 0.25, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 4.89 (s, 1H), 4.83 (s, 1H), 4.58 (s, 2H), 4.48 (s, 2H), 4.44 (s, 2H), 4.30-4.20 (m, 1H), 4.16 (t, *J* = 8.2 Hz, 1H), 3.91 (dd, *J* = 9.9, 8.0 Hz, 1H), 0.95 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.00, 76.09, 74.84 (d, *J* = 6 Hz), 74.61 (m), 72.72, 71.52, 71.45, 70.39, 68.41,

33.45, 25.82; ³¹P NMR (162 MHz, CDCl₃) δ -2.35 (sept, J = 73.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -53.86 (d, J = 73.2 Hz, 6F). HRMS (MALDI-FT) m/z: calcd for C₁₉H₂₁NOF₆P⁵⁴Fe [M+1]⁺: 478.0649, found 478.0655

General procedure for the Pd-catalyzed allylic alkylation reaction.

Pd₂(dba)₃ (9.2 mg, 0.01 mmol) and ligand L1d (9.6 mg, 0.02 mmol) were dissolved in dry (CH₂Cl)₂ (5.0 mL) and then the reaction mixture was stirred for 30 min at rt under an atmosphere of argon. To this stirred solution was successively added allyl carbonate mmol). dimethylmalonate (0.17)mL, mmol). (0.5)1.5 N,O-bis(trimethylsilyl)acetamide (BSA) (0.37 mL, 1.5 mmol), and NaOAc (1.0 mg, 0.015 mmol). The reaction was stirred at 0 °C and monitored by TLC. After completion, the reaction mixture was diluted with DCM (25 mL) and washed twice with ice-cold saturated aqueous ammonium chloride. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. The regioselectivity of the reaction was determined by ¹H NMR spectroscopy of the crude product. The residue was purified with silica gel column chromatography (petroleum ether/ethyl acetate 30:1) to provide the product. The enantiomeric purities were determined by HPLC.

CH(COOMe)2

Dimethyl 3-phenyl-1-butene-4,4-dicarboxylate (6a)^[4]

Colorless oil, 91% yield, 88% ee [Daicel CHIRALPAK OJ-H (0.46 cm x 25 cm). hexane/2-propanol = 95/5; flow rate = 1.0 mL/min; detection wavelength = 220 nm; $t_R = 19.53$ (major), 21.99 (minor) min] $[\alpha]_D^{24} = -32.4$ (*c* 1.0, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.29-7.20 (m, 5H), 5.99 (ddd, *J* = 17.4, 9.0, 8.4 Hz, 1H), 5.12 (d, *J* = 16.2 Hz, 1H), 5.08 (d, *J* = 8.2 Hz, 1H), 4.11 (dd, *J* = 10.4 Hz, *J* = 8.7 Hz, 1H), 3.86 (d, *J* = 11.1 Hz, 1H), 3.74 (s, 3H), 3.49 (s, 3H).

Dimethyl 3-(1-naphthyl)-1-butene-4,4-dicarboxylate (6b)^[5]

Colorless oil, 95% yield, 92% ee [Daicel CHIRALPAK OJ-H (0.46 cm x 25 cm). hexane/2-propanol = 90/10; flow rate = 1.0 mL/min; detection wavelength = 254 nm; $t_R = 12.5$ (major), 17.4 (minor) min] $[\alpha]_D^{23} = -35.9$ (*c* 0.85, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.56 (t, *J* = 7.1 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.47-7.37 (m, 2H), 6.09 (ddd, *J* =17.3, 9.7, 8.0 Hz, 1H), 5.18 (d, *J* = 17.1 Hz, 1H), 5.11 (d, *J* = 10.2 Hz, 1H), 5.04 (dd, *J* = 10.0, 9.2 Hz, 1H), 4.17 (d, *J* = 10.8 Hz, 1H), 3.79 (s, 3H), 3.39 (s, 3H).

Dimethyl 3-(4-methylphenyl)-1-butene-4,4-dicarboxylate (6c)^[6]

Colorless oil, 93% yield, 85% ee [Daicel CHIRALCEL OD-H (0.46 cm x 25 cm). hexane/2-propanol = 69/1; flow rate = 0.7 mL/min; detection wavelength = 220 nm; $t_R = 9.87$ (minor), 10.6 (major) min] $[\alpha]_D^{23} = -25.5$ (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (s, 4H), 5.98 (ddd, *J* = 17.1, 10.2, 8.2 Hz, 1H), 5.11 (d, *J* = 17.0 Hz, 1H), 5.07 (d, *J* = 10.5 Hz, 1H), 4.08 (dd, *J* = 11.0, 8.3 Hz, 1H), 3.86 (d, *J* = 11.0 Hz, 1H), 3.74 (s, 3H), 3.51 (s, 3H), 2.31 (s, 3H).

Dimethyl 3-(4-methoxyphenyl)-1-butene-4,4-dicarboxylate (6d)^[7]

Colorless oil, 96% yield, 82% ee [Daicel CHIRALCEL OD-H (0.46 cm x 25 cm). hexane/2-propanol = 90/10; flow rate = 0.5 mL/min; detection wavelength = 220 nm; $t_R = 11.43$ (minor), 12.76 (major) min] $[\alpha]_D^{20} = -20.3$ (*c* 0.75, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.7 Hz, 2H), 6.83 (d, *J* = 8.7 Hz, 2H), 5.97 (ddd, *J* = 17.1, 10.2, 8.1 Hz, 1H), 5.09 (d, *J* = 11.8 Hz, 1H), 5.06 (d, *J* = 8.7 Hz, 1H), 4.06 (dd, *J* = 10.9, 8.2 Hz, 1H), 3.82 (d, *J* = 11.1 Hz, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.50 (s, 3H).

Dimethyl 3-(2-thienyl)-1-butene-4,4-dicarboxylate (6e)^[5]

Colorless oil, 94% yield, 70% ee [Daicel CHIRALPAK OJ-H (0.46 cm x 25 cm). hexane/2-propanol = 98/2; flow rate = 1.0 mL/min; detection wavelength = 220 nm; $t_R = 23.15$ (major), 25.5 (minor) min] $[\alpha]_D^{23} = -30.4$ (*c* 0.5, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.18 (d, *J* = 5.0 Hz, 1H), 6.92 (t, *J* = 4.2 Hz, 1H), 6.88 (d, *J* = 3.0 Hz, 1H), 6.02 (ddd, *J* = 17.4, 9.8, 8.0 Hz, 1H), 5.19 (d, *J* = 18.0 Hz, 1H), 5.13 (d, *J* = 9.6 Hz, 1H), 4.42 (dd, *J* = 9.3, 9.09 Hz, 1H), 3.84 (d, *J* = 10.2 Hz, 1H), 3.73 (s, 3H), 3.61 (s, 3H).

CH(COOMe)₂

Dimethyl 3-(2-furanyl)-1-butene-4,4-dicarboxylate (6f)^[8]

Colorless oil, 90% yield, 65% ee [Daicel CHIRALPAK OJ-H (0.46 cm x 25 cm). hexane/2-propanol = 95/5; flow rate = 0.6 mL/min; detection wavelength = 220 nm; $t_R = 22.73$ (major), 24.36 (minor) min] $[\alpha]_D^{23} = -9.4$ (*c* 0.3, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 1.8 Hz, 1H), 6.23 (dd, *J* = 3.2, 1.9 Hz, 1H), 6.06 (d, *J* = 3.3 Hz, 1H), 5.92 (ddd, *J* = 17.1, 10.2, 8.5 Hz, 1H), 5.14 (d, *J* = 17.1 Hz, 1H), 5.11 (d, *J* = 9.6 Hz, 1H), 4.17 (t, *J* = 9.3 Hz, 1H), 3.83 (d, *J* = 10.0 Hz, 1H), 3.70 (s, 1H), 3.68 (s, 3H), 3.60 (s, 3H).

Dimethyl 3-(4-chlorophenyl)-1-butene-4,4-dicarboxylate (6g)^[6]

Colorless oil, 91% yield, 83% ee [Daicel CHIRALCEL OD-H (0.46 cm x 25 cm). hexane/2-propanol = 69/1; flow rate = 0.7 mL/min; detection wavelength = 220 nm; $t_R = 7.15$ (minor), 7.75 (major) min] $[\alpha]_D^{23} = -27.6$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.6 Hz, 2H), 5.95 (ddd, *J* = 18.3, 9.8, 8.0 Hz, 1H), 5.11 (d, *J* = 16.8 Hz, 1H), 5.10 (d, *J* = 10.0 Hz, 1H), 4.10 (dd, *J* = 10.8, 8.2 Hz, 1H), 3.82 (d, *J* = 11.0 Hz, 1H), 3.74 (s, 3H), 3.52 (s, 3H).

Br

Dimethyl 3-(4-bromophenyl)-1-butene-4,4-dicarboxylate (6h)^[8]

Colorless oil, 90% yield, 83% ee [Daicel CHIRALCEL OD-H (0.46 cm x 25 cm). hexane/2-propanol = 69/1; flow rate = 0.7 mL/min; detection wavelength = 220 nm; $t_R = 11.53$ (minor), 12.27 (major) min] $[\alpha]_D^{23} = -29.2$ (*c* 1.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.4 Hz, 2H), 5.94 (ddd, *J* = 17.0, 10.4, 8.1 Hz, 1H), 5.08 (d, *J* = 16.8 Hz, 1H), 5.07 (d, *J* = 10.4 Hz, 1H), 4.07 (dd, *J* = 10.9, 8.2 Hz, 1H), 3.82 (d, *J* = 11.0 Hz, 1H), 3.74 (s, 3H), 3.52 (s, 3H).

Dimethyl 3-(2-fluorophenyl)-1-butene-4,4-dicarboxylate (6i)^[9]

Colorless oil, 90% yield, 81% ee [Daicel CHIRALCEL OD-H (0.46 cm x 25 cm). hexane/2-propanol = 95/5; flow rate = 0.6 mL/min; detection wavelength = 220 nm; t_R = 9.03 (minor), 9.77 (major) min] $[\alpha]_D^{23}$ = -33.4 (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.12 (m, 2H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.99-6.93 (m, 1H), 5.98 (ddd, *J* = 17.1, 9.9, 8.6 Hz, 1H), 5.10 (d, *J* = 17.0 Hz, 1H), 5.05 (d, *J* = 10.2 Hz, 1H), 4.33-4.22 (m, 1H), 3.97 (d, *J* = 11.1 Hz, 1H), 3.69 (s, 1H), 3.46 (s, 3H).

Dimethyl 3-(2-methoxyphenyl)-1-butene-4,4-dicarboxylate (6j)^[9]

Colorless oil, 95% yield, 92% ee [Daicel CHIRALCEL OD-H (0.46 cm x 25 cm). hexane/2-propanol = 95/5; flow rate = 0.6 mL/min; detection wavelength = 220 nm; $t_R = 10.32$ (minor), 11.9 (major) min] $[\alpha]_D^{23} = -35.1$ (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.08 (m, 2H), 6.82 (m, 2H), 6.16-5.99 (m, 1H), 5.07 (d, *J* = 17.1 Hz, 1H), 4.99 (d, *J* = 10.1 Hz, 1H), 4.34-4.24 (m, 1H), 4.14 (d, *J* = 10.7 Hz, 1H), 3.80 (s, 3H), 3.67 (s, 3H), 3.44 (s, 3H).

Dimethyl 3-(2-methylphenyl)-1-butene-4,4-dicarboxylate (6k)^[10]

Colorless oil, 91% yield, 94% ee [Daicel CHIRALCEL OD-H (0.46 cm x 25 cm). hexane/2-propanol = 99/1; flow rate = 1.0 mL/min; detection wavelength = 220 nm; $t_R = 7.7 \text{ (minor)}$, 8.7 (major) min] $[\alpha]_D^{23} = -67.9 \text{ (}c \text{ 1.0, CHCl}_3\text{)}$. ¹H NMR (400 MHz, CDCl₃) δ 7.16-7.07 (m, 4H), 5.83 (ddd, *J* = 8.0, 9.2, 18.0 Hz, 1H), 5.04 (d, *J* = 16.8 Hz, 1H), 5.02 (d, *J* = 10.4 Hz, 1H), 4.37 (dd, *J* = 11.4, 8.1 Hz, 1H), 3.95 (d, *J* = 11.4 Hz, 1H), 3.74 (s, 3H), 3.46 (s, 3H), 2.40 (s, 3H).

Dimethyl3-(3-chlorophenyl)-1-butene-4,4-dicarboxylate (6l)^[8]

Colorless oil, 90% yield, 88% ee [Phenomenex CHIRALCEL PA-2 (0.46 cm x 25 cm). hexane/2-propanol = 95/5; flow rate = 1.0 mL/min; detection wavelength = 220 nm; $t_R = 23.6$ (major), 36.3 (minor) min] $[\alpha]_D^{23} = -26.1$ (*c* 1.2, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.19-7.12 (m, 3H), 7.06 (d, *J* = 7.0 Hz, 1H), 5.97-5.81 (m, 1H), 5.08 (d, *J* = 13.6 Hz, 1H), 5.06 (d, *J* = 10.4 Hz, 1H), 4.03 (dd, *J* = 10.8, 8.3 Hz, 1H), 3.78 (d, *J* = 11.0 Hz, 1H), 3.69 (s, 3H), 3.48 (s, 3H).

Dimethyl 3-methyl-1-butene-4,4-dicarboxylate (6m)^[11]

Colorless oil, 96% yield, $[\alpha]_D^{24} = -2.25$ (*c* 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.67 (ddd, *J* = 17.3, 10.2, 8.1 Hz, 1H), 5.00 (d, *J* = 17.1 Hz, 1H), 4.92 (d, *J* = 10.3 Hz, 1H), 3.64 (s, 3H), 3.61 (s, 3H), 3.23 (d, *J* = 9.0 Hz, 1H), 2.88-2.82 (m, 1H), 1.00 (d, *J* = 6.8 Hz, 3H).

References

- 1. Dong, T.-Y.; Lai, L.-L. J. Organomet. Chem. 1996, 509, 131.
- 2. Chesney, A.; Bryce, M. R.; Chubb, R. W. J.; Batsanov, A.; Howard, J. Synthesis **1998**, 413.
- 3. Park, J.; Quan, Z.; Lee, S.; Ahn, K. H.; Cho, C.-W. J. Organomet. Chem. 1999, 584, 140.
- 4. Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. 1995, 34, 462.
- 5. Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104.
- 6. Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.
- Kinoshita, N.; Marx, K. H.; Tanaka, K.; Tsubaki, K.; Kawabata, T.; Yoshikai, N.; Nakamura, E.; Fuji, K. *J. Org. Chem.* **2004**, *69*, 7960.
- 8. Hu, Z.; Li, Y.; Liu, K.; Shen, Q. J. Org. Chem. 2012, 77, 7957.
- 9. Nemoto,T.; Sakamoto,T.; Fukuyama,T.; Hamada,Y. *Tetrahedron Lett.* **2007**, *48*, 4977.
- 10. Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. **2012**, *134*, 4812.
- 11. Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581

-30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78 -80 -82 f1 (ppm)

200

CH(COOMe)₂

				Minutes		
	RT (min)	Area (µV*sec)	% Area	Height (µ∨)	% Height	
1	9.873	1011762	7.69	78231	8.85	
2	10.608	12149787	92.31	805708	91.15	

24.00

6d

٩N

CH(COOMe)₂

6f

CH(COOMe)₂

