Supporting Information

for

The search for new amphiphiles: synthesis of a modular, high-throughput library

George C. Feast¹, Thomas Lepitre¹, Xavier Mulet¹, Charlotte E. Conn¹, Oliver E. Hutt¹, G. Paul Savage^{*1}, Calum J. Drummond^{*1,2}

Address: ¹CSIRO Materials Science and Engineering, Bag 10, Clayton South MDC, VIC 3169, Australia and ²Current address: School of Applied Sciences, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.

Email: G. Paul Savage*- <u>paul.savage@csiro.au</u>; Calum J. Drummond*-<u>calum.drummond@csiro.au</u>

*Corresponding author

Experimental procedures, chemical characterisation data (including ¹³C NMR spectra) and preliminary SAXS analysis

Contents

- S2 General experimental
- S3 Synthesis of double-chain tails
- **S11** Synthesis of triple-chain tails
- S18 Synthesis of sugar head groups
- S20 Amphiphile synthesis and characterisation
- S25 ¹³C NMR spectra
- S32 Preliminary SAXS analysis
- S33 References

General experimental

All solvents used were HPLC grade and all chemicals were purchased from Sigma-Aldrich.

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV400 spectrometer. ¹H NMR and ¹³C NMR were recorded at 400 MHz and 100 MHz, respectively. ¹H NMR chemical shifts are reported in ppm with the internal chloroform signal at 7.26 ppm. The data are reported as integration, s = singlet, d = doublet, t = triplet, q = quartet, non = nonet, m = multiplet, br = broad, app. = apparent, J = coupling constant(s) in Hz. ¹³C NMR chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm.

Amphiphile ¹³C NMR spectra were recorded using a Bruker Avance III HD 600 MHz spectrometer with a TCI cryoprobe. The experimental parameters were: 32894.738 Hz sweep width, 1.00 s acquisition time, 1 s recycle delay and using a 90 degree excitation pulse of approximately 11.5 μ s at 100 W. Samples were analysed in MeOD- d_4 and chemical shifts reported in ppm (δ) relative to the solvent residual for methanol at 49.00 ppm.

Infrared spectra were recorded on a Nicolet 6700 FT-IR spectrometer using a diamond Smart iTR ATR attachment. Absorption maxima (λ_{max}) are described as s (strong), m (medium), w (weak), or br (broad) and are quoted in wavenumbers (cm⁻¹).

Accurate mass spectra for amphiphilic compounds were recorded on a Bruker AUtoflex III MALDI– TOF/TOF mass spectrometer. Experiment employed: positive ion, reflectron mode. The matrix employed was HCCA (α-cyano-4-hydroxycinnamic acid).

Copper analysis was carried out on an Agilent 770 ICP-MS. Nitric acid at ca. 100 °C was used to digest the samples before being made up to 25 mL with Milli Q water. The solutions were then measured directly by ICP-MS.

Synthesis of double-chain tails

Prop-2-yn-1-yl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate (2)^[1]

To a stirred solution of 2,2-bis(hydroxymethyl)propionic acid (1.0 equiv) in DMF (5 mL/mmol) was added KOH (1.1 equiv). After stirring for 2 h at 100 °C, propargyl bromide (1.0 equiv) was added dropwise over 30 min. The solution was heated at 80 °C for 18 h, before the reaction mixture was cooled, filtered and concentrated *in vacuo*. The crude product was diluted with ether and subsequently washed with brine and sat. aq. NaHCO₃ solution. The organic fragment was dried over MgSO₄ and concentrated *in vacuo* to give the title compound (4.06 g, 69%) without the need for further purification. Spectroscopic data matched with the literature data.

General procedure A

To a stirred solution of carboxylic acid (2.5 equiv) and DMAP (0.2 equiv) in DCM at r.t. (5 mL/mmol) was added diisopropylcarbodiimide (2.2 equiv). Once dissolved, diol **2** (1.0 equiv) was added and stirring continued for 18 h. The reaction mixture was then diluted with DCM and washed with 1.0 M aq. HCl, sat. aq. NaHCO₃ solution and brine, dried over MgSO₄ and concentrated *in vacuo* to give the crude material.

2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl dioctanoate (3)

Synthesised in accordance with General Procedure A. Purification by column chromatography (4:1, petrol:ethyl acetate) afforded the compound (446 mg, 72%) as a yellow, viscous liquid; v_{max}/cm^{-1} (thin film) 2927m, 2856m, 1738s, 1467m, 1378s, 1225m; δ_{H} (400 MHz, CDCl₃) 0.86 (6H, t, *J* 7.1, 2× CH₂-CH₃), 1.20-1.32 (19H, m, CH₃ and 8×CH₂) 1.52-1.63 (4H, m, 2×O=C-CH₂-CH₂), 2.28 (4H, t, *J* 7.8, 2×O=C-CH₂), 2.43 (1H, t, *J* 2.2, ≡CH) 4.21 (2H, s, C-CH₂-O-), 4.22 (2H, s, C-CH₂-O-), 4.69 (2H, d, *J* 2.2, ≡C-CH₂-O-); δ_{C} (100 MHz, CDCl₃) 14.2 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.7 (2×CH₂-CH₃), 25.0 (2×CH₂), 29.0 (2×CH₂), 29.2 (2×CH₂), 31.8 (2×CH₂), 34.3 (2×CH₂), 46.5 (CR₄), 52.7 (≡C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (≡CH), 77.4 (HC≡C-), 172.3 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 425.2897 C₂₄H₄₁O₆ (MH⁺) requires 425.2903.

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ethyl acetate) afforded the compound (494 mg, 71%) as a colourless, viscous liquid; v_{max}/cm^{-1} (thin film) 2924m, 2854m, 1740s, 1466m, 1377s, 1235m; δ_{H} (400 MHz, CDCl₃) 0.86 (6H, t, *J* 6.1, 2× CH₂-CH₃), 1.25 (27H, br s, CH₃ and 12×CH₂), 1.53-1.63 (4H, m, 2× O=C-CH₂-CH₂), 2.28 (4H, t, *J* 7.8, 2× O=C-CH₂), 2.41-2.45 (1H, m, ≡CH) 4.21 (2H, s, C-CH₂-O-), 4.22 (2H, s, C-CH₂-O-), 4.69 (2H, d, *J* 3.0, ≡C-CH₂-O-); δ_{C} (100 MHz, CDCl₃) 14.3 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.8 (2×CH₂-CH₃), 25.0 (2×CH₂), 29.3 (2×CH₂), 29.4 (2×CH₂), 29.6 (2×CH₂), 32.0 (2×CH₂), 34.3 (2×CH₂), 46.5 (CR₄), 52.7 (≡C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (≡CH), 77.3 (HC≡C-), 172.3 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 481.3524 C₂₈H₄₉O₆ (MH⁺) requires 481.3524.

2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(dodecanoate) (5)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol:ether) afforded the compound (373 mg, 70%) as a colourless, viscous liquid; v_{max}/cm^{-1} (thin film) 2922m, 2853m, 1740s, 1466m, 1376s, 1232m; δ_{H} (400 MHz, CDCl₃) 0.85 (6H, t, *J* 6.7, 2× CH₂-CH₃), 1.19-1.33 (35H, m, CH₃ & 16×CH₂) 1.52-1.62 (4H, m, 2×O=C-CH₂-CH₂), 2.27 (4H, t, *J* 7.5, 2×O=C-CH₂), 2.41-2.45 (1H, m, \equiv CH) 4.21 (2H, s, C-CH₂-O-), 4.22 (2H, s, C-CH₂-O-), 4.68 (2H, d, *J* 2.5, \equiv C-CH₂-O-); δ_{C} (100 MHz, CDCl₃) 14.3 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.8 (2×CH₂-CH₃), 25.0 (2×CH₂), 29.3 (2×CH₂), 29.4 (2×CH₂), 29.5 (2×CH₂), 29.6 (2×CH₂), 29.8 (2×CH₂), 32.1 (2×CH₂), 34.3 (2×CH₂), 46.5 (CR₄), 52.7 (\equiv C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (\equiv CH), 77.3 (HC \equiv C-), 172.3 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 537.4153 C₃₂H₅₇O₆ (MH⁺) requires 537.4150.

2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(tetradecanoate) (6)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ether) afforded the compound (337 mg, 56%) as a colourless, viscous liquid; v_{max}/cm^{-1} (thin film) 2921m, 2851m, 1740s, 1467m, 1377s, 1237m; δ_{H} (400 MHz, CDCl₃) 0.85 (6H, t, *J* 6.7, 2× CH₂-CH₃), 1.18-1.33 (43H, m, CH₃ and 20×CH₂), 1.52-1.62 (4H, m, 2×O=C-CH₂-CH₂), 2.27 (4H, t, *J* 7.5, 2×O=C-CH₂), 2.43 (1H, t, *J* 2.8, ≡CH), 4.21 (2H, s, C-CH₂-O-), 4.22 (2H, s, C-CH₂-O-), 4.68 (2H, d, *J* 2.8, ≡C-CH₂-O-); δ_{C} (100 MHz, CDCl₃) 14.3 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.8 (2×CH₂), 29.4 (2×CH₂), 29.5 (2×CH₂), 29.6 (2×CH₂), 29.8 (2×CH₂), 29.8 (2×CH₂), 29.8 (2×CH₂), 29.9 (2×CH₂), 32.1 (2×CH₂), 34.3 (2×CH₂), 46.5 (CR₄), 52.7 (≡C-CH₂-O-), 65.3 (2×C-

CH₂-O-), 75.3 (\equiv CH), 77.3 (HC \equiv C-), 172.3 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 593.4774 C₃₆H₆₅O₆ (MH⁺) requires 593.4776.

2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(hexadecanoate) (7)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ether) afforded the compound (410 mg, 62%) as a white solid; v_{max}/cm^{-1} (thin film) 2916m, 2849m, 1732s, 1463m, 1378s, 1245m; δ_{H} (400 MHz, CDCl₃) 0.86 (6H, t, *J* 6.8, 2× CH₂-CH₃), 1.18-1.34 (51H, m, CH₃ & 24×CH₂) 1.53-1.63 (4H, m, 2×O=C-CH₂-CH₂), 2.27 (4H, t, *J* 7.1, 2×O=C-CH₂), 2.43 (1H, t, *J* 2.4, ≡CH) 4.21 (2H, s, C-CH₂-O-), 4.22 (2H, s, C-CH₂-O-), 4.68 (2H, d, *J* 2.4, ≡C-CH₂-O-); δ_{C} (100 MHz, CDCl₃) 14.3 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.9 (2×CH₂-CH₃), 25.0 (2×CH₂), 29.3 (2×CH₂), 29.4 (2×CH₂), 29.5 (2×CH₂), 29.6 (2×CH₂), 29.8 (2×CH₂), 29.8 (4×CH₂), 29.9 (4×CH₂), 32.1 (2×CH₂), 34.3 (2×CH₂), 46.5 (CR₄), 52.7 (≡C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (≡CH), 77.3 (HC≡C-), 172.3 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 649.5399 C₄₀H₇₃O₆ (MH⁺) requires 649.5402.

2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(octadecanoate) (8)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ether) afforded the compound (410 mg, 62%) as a white solid; v_{max}/cm^{-1} (thin film) 2915m, 2849m, 1738s, 1467m, 1380s, 1235m; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.86 (6H, t, *J* 6.8, 2× CH₂-CH₃), 1.18-1.33 (59H, m, CH₃ and 28×CH₂) 1.53-1.61 (4H, m, 2×O=C-CH₂-CH₂), 2.27 (4H, t, *J* 7.4, 2×O=

CH₂), 2.43 (1H, t, *J* 2.4, \equiv CH) 4.21 (2H, s, C-CH₂-O-), 4.22 (2H, s, C-CH₂-O-), 4.68 (2H, d, *J* 2.4, \equiv C-CH₂-O-); δ_{C} (100 MHz, CDCl₃) 14.3 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.9 (2×CH₂-CH₃), 25.0 (2×CH₂), 29.3 (2×CH₂), 29.4 (2×CH₂), 29.8 (2×CH₂), 29.6 (2×CH₂), 29.8 (2×CH₂), 29.8 (4×CH₂), 29.9 (8×CH₂), 32.1 (2×CH₂), 34.3 (2×CH₂), 46.8 (CR₄), 52.7 (\equiv C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (\equiv CH), 77.3 (HC \equiv C-), 172.3 (O=C), 173.4 (2×O=C).

2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(3,7,11,15-

tetramethylhexadecanoate) (9)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ether) afforded the compound (303 mg, 52%) as a colourless, viscous oil; v_{max}/cm^{-1} (thin film) 2953m, 2925m, 2868m, 1741s, 1462m, 1377m, 1236m; δ_{H} (400 MHz, CDCl₃) 0.79-0.87 (24H, app. dd, *J* 6.8, 6.5, 8×CH-CH₃), 0.89 (6H, d, *J* 6.5, 2×O=C-CH₂-CH-CH₃), 0.99-1.40 (43H, m, CH₃ and 18×CH₂ and 4×CH), 1.50 (2H, m, *J* 6.8, 2×CH₂-CH-(CH₃)₂), 1.83-1.96 (2H, m, 2×O=C-CH₂-CH), 2.08 (2H, dd, *J* 14.5, 8.3, 2×O=C-CHH'-CH), 2.29 (2H, dd, *J* 15.1, 5.8, 2×O=C-CHH'-CH), 2.43 (1H, t, *J* 2.5, ≡CH), 4.19-4.24 (4H, s, 2×C-CH₂-O-), 4.68 (2H, d, *J* 2.5, ≡C-CH₂-O-); δ_{C} (100 MHz, CDCl₃) 17.8 (C-CH₃), 19.8 (CH-CH₃), 19.8 (CH-CH₃), 19.8 (2×CH-CH₃), 19.9 (CH-CH₃), 19.9 (CH-CH₃), 22.8 (2×CH-CH₃), 22.9 (2×CH-CH₃), 24.5 (2×CH₂-CH₂), 24.6 (2×CH₂-CH₂, 25.0 (2×CH₂-CH₂), 28.1 (3×R₃CH), 30.5 (2×R₃CH), 32.9 (3×R₃CH), 37.2 (2×CH₂-CH), 37.3 (CH₂-CH), 37.4 (CH₂-CH), 37.4 (CH₂-CH), 37.6 (2×CH₂-CH), 37.6 (2×CH₂-CH), 37.3 (2×CH₂-CH), 41.8 (O=C-CH₂-CH), 46.4 (CR₄), 52.7 (≡C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (≡CH), 77.3 (HC≡C-), 172.2 (O=C), 172.9 (2×O=C); Accurate mass (ESI): Found: 761.6643 C₄₈H₈₉O₆ (MH⁺) requires 761.6661.

(7Z,7'Z)-2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(hexadec-7-enoate) (10)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ether) afforded the compound (410 mg, 62%) as a colourless, viscous oil; v_{max}/cm^{-1} (thin film) 2916m, 2849m, 1733s, 1473m, 1463m, 1235m, 1213m; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.86 (6H, t, *J* 6.5, 2× CH₂-CH₃), 1.20-1.34 (35H, m, CH₃ & 16×CH₂) 1.52-1.62 (4H, m, 2×O=C-CH₂-CH₂), 1.94-2.04 (8H, m, 4×=CH-CH₂), 2.28 (4H, t, *J* 7.4, 2×O=C-CH₂-O), 2.43 (1H, t, *J* 2.2, \equiv CH), 4.21 (2H, s, C-CH₂-O), 4.22 (2H, s, C-CH₂-O), 4.68 (2H, d, *J* 2.2, \equiv C-CH₂-O), 5.32 (4H, dt, *J* 5.6, 3.6, 2×CH=CH); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.3 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.8 (2×CH₂-CH₃), 25.0 (2×CH₂), 27.3 (2×=C-CH₂), 27.4 (2×CH₂-C=), 29.1 (2×CH₂), 29.3 (2×CH₂), 29.3 (2×CH₂), 29.9 (2×CH₂), 29.9 (2×CH₂), 31.9 (2×CH₂), 34.3 (2×CH₂), 46.8 (CR₄), 52.7 (\equiv C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (\equiv CH), 77.3 (HC=C-), 129.9 (2×C=C), 130.1 (2×C=C), 172.2 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 667.4906 C₄₀H₆₈O₆Na (MNa⁺) requires 667.4908.

(Z)-2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl dioleate (11)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ether) afforded the compound (464 mg, 76%) as a colourless, viscous oil; v_{max}/cm^{-1} (thin film) 2922m, 2853m, 1742s, 1465m, 1463m, 1377m, 1237m; $\delta_{\rm H}$ (400 MHz, CDCl₃) 0.86 (6H, t, *J* 6.8, 2× CH₂-CH₃), 1.19-1.34 (47H, m, CH₃ and 22×CH₂) 1.53-1.62 (4H, m, 2×O=C-CH₂-CH₂), 1.95-2.02 (8H, m, 4×=CH-CH₂), 2.28 (4H, t, *J* 6.2, 2×O=C-CH₂), 2.43 (1H, t, *J* 2.5, ≡CH) 4.21 (2H, s, C-CH₂-CH₂)

O-), 4.22 (2H, s, C-CH₂-O-), 4.68 (2H, d, J 2.5, \equiv C-CH₂-O-), 5.32 (4H, dt, J 5.6, 3.4, 2×-CH=CH-); $\delta_{\rm C}$ (100 MHz, CDCl₃) 14.3 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.8 (2×CH₂-CH₃), 25.0 (2×CH₂), 27.3 (2×=C-CH₂), 27.4 (2×CH₂-C=), 29.3 (2×CH₂), 29.3 (2×CH₂), 29.3 (2×CH₂), 29.5 (2×CH₂), 29.7 (2×CH₂), 29.9 (2×CH₂), 29.9 (2×CH₂), 32.1 (2×CH₂), 34.3 (2×CH₂), 46.5 (CR₄), 52.7 (\equiv C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (\equiv CH), 77.3 (HC \equiv C-), 129.9 (2×C=C) 130.2 (2×C=C), 172.2 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 701.5712 C₄₄H₇₇O₆ (MH⁺) requires 701.5715.

(Z)-2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(docos-13-enoate) (12)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ether) afforded the compound (487 mg, 69%) as a colourless, viscous oil; v_{max}/cm^{-1} (thin film) 2921m, 2852m, 1743s, 1465m, 1377m, 1236m; δ_{H} (400 MHz, CDCl₃) 0.86 (6H, t, *J* 6.5, 2×CH₂-CH₃), 1.19-1.34 (63H, m, CH₃ and 30×CH₂) 1.52-1.61 (4H, m, 2×O=C-CH₂-CH₂), 1.99 (8H, q, *J* 6.4, 4×=CH-CH₂), 2.28 (4H, t, *J* 7.3, 2×O=C-CH₂), 2.43 (1H, t, *J* 2.5, ≡CH), 4.21 (2H, s, C-CH₂-O-), 4.22 (2H, s, C-CH₂-O-), 4.69 (2H, d, *J* 2.5, ≡C-CH₂-O-), 5.32 (4H, *J* 8.9, 4.5, 2×-CH=CH-); δ_{C} (100 MHz, CDCl₃) 14.3 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.8 (2×CH₂-CH₃), 25.0 (2×CH₂), 27.4 (4×=C-CH₂), 29.3 (2×CH₂), 29.4 (2×CH₂), 29.5 (2×CH₂), 29.6 (2×CH₂), 29.7 (4×CH₂), 29.7 (2×CH₂), 29.8 (2×CH₂), 29.9 (2×CH₂), 32.1 (2×CH₂), 34.3 (2×CH₂), 46.5 (CR₄), 52.7 (≡C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (≡CH), 77.3 (HC≡C-), 130.0 (2×C=C) 130.1 (2×C=C), 172.3 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 813.6971 C₅₂H₉₃O₆ (MH⁺) requires 813.6974.

(9Z,9'Z,12Z,12'Z)-2-Methyl-2-((prop-2-yn-1-yloxy)carbonyl)propane-1,3-diyl bis(octadeca-9,12dienoate) (13)

Synthesised in accordance with General Procedure A. Purification by column chromatography (5:1, petrol/ether) afforded the compound (192 mg, 40%) as a colourless, viscous oil; v_{max}/cm^{-1} (thin film) 2925m, 2852m, 1742s, 1465m, 1377m, 1236m; δ_{H} (400 MHz, CDCl₃) 0.86 (6H, t, *J* 6.7, 2×CH₂-CH₃), 1.20-1.38 (35H, m, CH₃ and 16×CH₂) 1.53-1.62 (4H, m, 2×O=C-CH₂-CH₂), 2.02 (8H, q, *J* 6.7, 4×=CH-CH₂), 2.28 (4H, t, *J* 7.4, 2×O=C-CH₂), 2.43 (1H, t, *J* 2.5, ≡CH), 2.75 (4H, t, *J* 6.5, C=C-CH₂-C=C), 4.21 (2H, s, C-CH₂-O-), 4.22 (2H, s, C-CH₂-O-), 4.69 (2H, d, *J* 2.5, ≡C-CH₂-O-), 5.26-5.40 (8H, m, 4×-CH=CH-); δ_{C} (100 MHz, CDCl₃) 14.2 (2×CH₂-CH₃), 17.8 (C-CH₃), 22.7 (2×CH₂-CH₃), 25.0 (2×CH₂), 25.8 (2×=C-CH₂-C=), 27.4 (4×=C-CH₂), 29.2 (2×CH₂), 29.3 (2×CH₂), 29.3 (2×CH₂), 29.5 (2×CH₂), 29.8 (2×CH₂), 31.7 (2×CH₂), 34.2 (2×CH₂), 46.5 (CR₄), 52.7 (≡C-CH₂-O-), 65.3 (2×C-CH₂-O-), 75.3 (≡CH), 77.3 (HC≡C-), 128.1 (2×C=C) 128.2 (2×C=C), 130.2 (2×C=C), 130.4 (2×C=C), 172.2 (O=C), 173.4 (2×O=C); Accurate mass (ESI): Found: 697.5385 C₄₄H₇₃O₆ (MH⁺) requires 697.5405.

Synthesis of triple chain tails

N-(1,3-Dihydroxy-2-(hydroxymethyl)propan-2-yl)pent-4-ynamide (15)

To a stirred solution of tri-(hydroxymethyl)-methylamine (TRIS) (1.1 equiv) and *N*-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) (1.2 equiv) in ethanol (5 mL/mmol) was added 4-pentynoic acid (1.0 equiv). The reaction mixture was heated to 60 °C and stirred for 20 h. The reaction mixture was cooled, filtered and concentrated in vacuo to give the crude material. Purification by column chromatography (5:2 ethyl acetate/petrol) afforded the compound (951 mg, 84%) as a white solid; v_{max}/cm^{-1} (thin film) 3446br, 2935br, 1656s, 1389m, 1215m; δ_{H} (400 MHz, MeOD) 2.25 (1H, s, \equiv CH), 2.44 (4H, m, \equiv C-CH₂-CH₂-C=O), 3.70 (6H, s, 3×CH₂-OH); δ_{C} (100 MHz, CDCl₃) 14.4 (\equiv C-CH₂), 35.2 (CH₂- C=O), 61.3 (3×CH₂-OH), 62.5 (C-NH), 69.1 (\equiv CH), 82.4 (\equiv C-CH₂), 173.8 (O=C); Accurate mass (ESI): Found: 202.1076 C₉H₁₆O₄N (MH⁺) requires 202.1079.

General procedure B

To a stirred solution of carboxylic acid (3.5 equiv) and DMAP (0.3 equiv) in DCM at rt (5 mL/mmol) was added diisopropylcarbodiimide (3.3 equiv). Once dissolved, propargyl amide **15** (1.0 equiv) was added and stirring continued for 18 h. The reaction was then diluted with DCM and washed with 1.0 M aq. HCl, sat. aq. NaHCO₃ solution and brine, dried over MgSO₄ and concentrated in vacuo to give the crude product.

2-((Octanoyloxy)methyl)-2-(pent-4-ynamido)propane-1,3-diyl dioctanoate (16)

Synthesised in accordance with General Procedure B. Purification by column chromatography (5:1, petrol/ethyl acetate) afforded the compound (556 mg, 77%) as a colourless, viscous liquid; v_{max}/cm^{-1} (thin film) 3313br, 2924m, 2855m, 1737s, 1661s, 1546m, 1464m, 1379m; δ_{H} (400 MHz, CDCl₃) 0.86 (9H, t, *J* 6.1, 3× CH₂-CH₃), 1.19-1.34 (24H, m, 12×CH₂) 1.53-1.65 (6H, m, 3×O=C-CH₂-CH₂), 1.95 (1H, t, *J* 2.5, \equiv CH), 2.26-2.37 (8H, m, \equiv C-CH₂-CH₂, overlays t, *J* 7.8, 3×O=C-CH₂), 2.41-2.47 (2H, m, \equiv C-CH₂), 4.40 (6H, s, 3×CH₂-O-) 6.02 (1H, br s, NH); δ_{C} (100 MHz, CDCl₃) 14.2 (3×CH₂-CH₃), 14.9 (\equiv C-CH₂-CH₂), 22.7 (3×CH₂-CH₃), 25.0 (3×CH₂), 29.1 (3×CH₂), 29.2 (3×CH₂), 31.8 (3×CH₂), 34.2 (3×CH₂), 36.0 (\equiv C-CH₂-CH₂), 58.6 (CR₃N), 62.7 (3×C-CH₂-O-), 69.5 (\equiv CH), 82.8 (HC \equiv C-), 171.2 (O=C), 173.6 (3×O=C); Accurate mass (ESI): Found: 580.4212 C₃₃H₅₈O₇N (MH⁺) requires 580.4213.

2-((Decanoyloxy)methyl)-2-(pent-4-ynamido)propane-1,3-diyl bis(decanoate) (17)

Synthesised in accordance with General Procedure B. Purification by column chromatography (6:1, petrol/ethyl acetate) afforded the compound (520 mg, 72%) as a white solid; v_{max}/cm^{-1} (thin film) 2923m, 2854m, 1740s, 1686s, 1544m, 1466m, 1378m, 1241m; δ_{H} (400 MHz, CDCl₃) 0.85 (9H, t, *J* 6.8, 3× CH₂-CH₃), 1.19-1.33 (36H, m, 18×CH₂) 1.53-1.63 (6H, m, 3×O=C-CH₂-CH₂), 1.96 (1H, t, *J* 2.8, ≡CH), 2.26-2.37 (8H, m, ≡C-CH₂-CH₂, overlays t, *J* 7.1, 3×O=C-CH₂), 2.43-2.48 (2H, m, ≡C-CH₂-CH₂)

CH₂), 4.41 (6H, s, $3 \times CH_2$ -O-), 6.02 (1H, br s, NH); δ_C (100 MHz, CDCl₃) 14.3 ($3 \times CH_2$ -CH₃), 14.9 (\equiv C-CH₂-CH₂), 22.8 ($3 \times CH_2$ -CH₃), 25.0 ($3 \times CH_2$), 29.3 ($3 \times CH_2$), 29.4 ($6 \times CH_2$), 29.6 ($3 \times CH_2$), 32.0 ($3 \times CH_2$), 34.3 ($3 \times CH_2$), 36.0 (\equiv C-CH₂-CH₂), 58.7 (CR₃N), 62.7 ($3 \times C$ -CH₂-O-), 69.5 (\equiv CH), 82.8 (HC=C-), 171.2 (O=C), 173.6 ($3 \times O$ =C); Accurate mass (ESI): Found: 664.5148 C₃₉H₇₀O₇N (MH⁺) requires 664.5147.

2-((Dodecanoyloxy)methyl)-2-(pent-4-ynamido)propane-1,3-diyl didodecanoate (18)

Synthesised in accordance with General Procedure B. Purification by column chromatography (6:1, petrol/ethyl acetate) afforded the compound (527 mg, 71%) as a white solid; v_{max}/cm^{-1} (thin film) 2917s, 2849s, 1735s, 1651s, 1557m, 1468m, 1373m, 1269m; δ_{H} (400 MHz, CDCl₃) 0.86 (9H, t, *J* 6.7, 3× CH₂-CH₃), 1.20-1.33 (48H, m, 24×CH₂) 1.54-1.63 (6H, m, 3×O=C-CH₂-CH₂), 1.96 (1H, t, *J* 2.5, \equiv CH), 2.27-2.37 (8H, m, \equiv C-CH₂-CH₂, overlays t, *J* 7.4, 3×O=C-CH₂), 2.43-2.49 (2H, m, \equiv C-CH₂), 4.41 (6H, s, 3×CH₂-O-), 6.03 (1H, br s, NH); δ_{C} (100 MHz, CDCl₃) 14.3 (3×CH₂-CH₃), 14.9 (\equiv C-CH₂-CH₂), 22.8 (3×CH₂-CH₃), 25.0 (3×CH₂), 29.3 (3×CH₂), 29.4 (3×CH₂), 29.5 (3×CH₂), 29.6 (3×CH₂), 29.8 (3×CH₂) 32.1 (3×CH₂), 34.3 (3×CH₂), 36.0 (\equiv C-CH₂-CH₂), 58.7 (CR₃N), 62.7 (3×C-CH₂-O-), 69.5 (\equiv CH), 82.8 (HC \equiv C-), 171.2 (O=C), 173.6 (3×O=C); Accurate mass (ESI): Found: 748.6082 C₄₅H₈₂O₇N (MH⁺) requires 748.6086.

Synthesised in accordance with General Procedure B. Purification by column chromatography (3:1, petrol/ether) afforded the compound (492 mg, 79%) as a white solid; v_{max}/cm^{-1} (thin film) 2916s, 2849s, 1736s, 1652s, 1555m, 1469m, 1373m, 1269m; δ_{H} (400 MHz, CDCl₃) 0.86 (9H, t, *J* 6.4, 3× CH₂-CH₃), 1.17-1.33 (60H, m, 30×CH₂) 1.54-1.63 (6H, m, 3×O=C-CH₂-CH₂), 1.96 (1H, t, *J* 2.7, \equiv CH), 2.26-2.37 (8H, m, \equiv C-CH₂-CH₂, overlays t, *J* 7.7, 3×O=C-CH₂), 2.43-2.49 (2H, m, \equiv C-CH₂), 4.41 (6H, s, 3×CH₂-O-), 6.03 (1H, br s, NH); δ_{C} (100 MHz, CDCl₃) 14.3 (3×CH₂-CH₃), 14.9 (\equiv C-CH₂-CH₂), 22.9 (3×CH₂-CH₃), 25.0 (3×CH₂), 29.3 (3×CH₂), 29.4 (3×CH₂), 29.5 (3×CH₂), 29.6 (3×CH₂), 29.8 (6×CH₂), 29.8 (3×CH₂), 32.1 (3×CH₂), 34.3 (3×CH₂), 36.0 (\equiv C-CH₂-CH₂), 58.7 (CR₃N), 62.7 (3×C-CH₂-O-), 69.5 (\equiv CH), 82.8 (HC \equiv C-), 171.2 (O=C), 173.6 (3×O=C); Accurate mass (ESI): Found: 832.7024 C₅₁H₉₄O₇N (MH⁺) requires 832.7025.

2-((Palmitoyloxy)methyl)-2-(pent-4-ynamido)propane-1,3-diyl dipalmitate (20)

Synthesised in accordance with General Procedure B. Purification by column chromatography (5:1, petrol/ether) afforded the compound (442 mg, 61%) as a white solid; v_{max}/cm^{-1} (thin film) 2916s, 2849s, 1736s, 1652s, 1552m, 1469m, 1373m, 1266m; δ_{H} (400 MHz, CDCl₃) 0.86 (9H, t, *J* 6.2, 3× CH₂-CH₃), 1.19-1.34 (72H, m, 36×CH₂) 1.54-1.63 (6H, m, 3×O=C-CH₂-CH₂), 1.96 (1H, t, *J* 2.7, \equiv CH), 2.27-2.37 (8H, m, \equiv C-CH₂-CH₂, overlays t, *J* 7.4, 3×O=C-CH₂), 2.43-2.50 (2H, m, \equiv C-CH₂), 4.41 (6H, s, 3×CH₂-O-), 6.03 (1H, br s, NH); δ_{C} (100 MHz, CDCl₃) 14.3 (3×CH₂-CH₃), 14.9 (\equiv C-CH₂-CH₂), 22.9 (3×CH₂-CH₃), 25.0 (3×CH₂), 29.3 (3×CH₂), 29.4 (3×CH₂), 29.5 (3×CH₂), 29.7 (3×CH₂), 29.8 (6×CH₂), 29.9 (6×CH₂), 32.1 (3×CH₂), 34.3 (3×CH₂), 36.0 (\equiv C-CH₂-CH₂), 58.7 (CR₃N), 62.7 (3×C-CH₂-O-), 69.5 (\equiv CH), 82.8 (HC \equiv C-), 171.2 (O=C), 173.6 (3×O=C); Accurate mass (ESI): Found: 916.7965 C₄₀H₇₃O₆ (MH⁺) requires 916.7964.

2-(Pent-4-ynamido)-2-(((3,7,11,15-tetramethylhexadecanoyl)oxy)methyl)propane-1,3-diyl bis(3,7,11,15-tetramethylhexadecanoate) (21)

Synthesised in accordance with General Procedure B. Purification by column chromatography (5:1, petrol/ether) afforded the compound (293 mg, 61%) as a colourless, viscous oil; v_{max}/cm^{-1} (thin film) 2953s, 2924s, 2868s, 1742s, 1658s, 1546m, 1462m, 1378m, 1244m; δ_{H} (400 MHz, CDCl₃) 0.81-0.87 (36H, app. dd, *J* 6.8, 6.5, 12×CH-CH₃), 0.91 (6H, d, *J* 6.5, 3×O=C-CH₂-CH-CH₃), 0.98-1.41 (60H, m, 27×CH₂ and 6×CH), 1.50 (3H, app. non, *J* 6.5, 3×CH₂-CH-(CH₃)₂), 1.86-1.98 (3H, m, 3×O=C-CH₂-CH overlays t, *J* 2.7, ≡CH), 2.10 (3H, dd, *J* 14.4, 8.5, 3×O=C-CHH'-CH), 2.28-2.37 (9H, m, 3×O=C-CHH'-CH and 3×O=C-CH₂), 2.42-2.49 (2H, m, ≡C-CH₂), 4.42 (6H, s, 3×CH₂-O-), 6.06 (1H, br s, NH); δ_{C} (100 MHz, CDCl₃) 14.9 (≡C-CH₂-CH₂), 19.7 (CH₃), 19.8 (CH₃), 19.8 (2×CH₃), 19.8 (3×CH₃), 19.9 (CH₃), 19.9 (CH₃), 22.8 (3×CH₃) 22.9 (3×CH₃), 24.5 (3×CH₂), 24.6 (3×CH₂), 25.0 (3×CH₂), 28.1 (3×CH), 30.5 (3×CH), 32.9 (3×CH), 33.0 (3×CH), 36.0 (≡C-CH₂-CH₂), 37.2 (3×CH₂), 37.3 (CH₂), 37.4 (CH₂), 37.4 (2×CH₂), 37.5 (CH₂), 37.6 (2×CH₂), 37.6 (2×CH₂), 37.7 (CH₃), 62.7 (3×C-CH₂-O-), 69.5 (≡CH), 82.8 (HC≡C-), 171.1 (O=C), 173.1 (3×O=C); Accurate mass (ESI): Found: 1084.9813 C₆₉H₁₃₀O₇N (MH⁺) requires 1084.9849.

(7Z,7'Z)-2-(((Z)-hexadec-7-enoyloxy)methyl)-2-(pent-4-ynamido)propane-1,3-diyl bis(hexadec-7-enoate) (22)

Synthesised in accordance with General Procedure B. Purification by column chromatography (5:1, petrol/ether) afforded the compound (240 mg, 53%) as a colourless, viscous oil; v_{max}/cm^{-1} (thin film) 2923s, 2853s, 1743s, 1658s, 1545m, 1465m, 1378m, 1239m; δ_{H} (400 MHz, CDCl₃) 0.86 (9H, t, *J* 6.2, 3×CH₂-CH₃), 1.20-1.35 (48H, m, 24×CH₂) 1.54-1.64 (6H, m, 3×O=C-CH₂-CH₂), 1.94-2.04 (13H, m, 6×=CH-CH₂ overlays ≡CH), 2.26-2.38 (8H, m, ≡C-CH₂-CH₂, overlays t, *J* 7.6, 3×O=C-CH₂), 2.43-2.49 (2H, m, ≡C-CH₂), 4.41 (6H, s, 3×CH₂-O-), 5.32 (6H, dt, *J* 5.6, 3.4, 3×-CH=CH-), 6.03 (1H, br s, NH); δ_{C} (100 MHz, CDCl₃) 14.3 (3×CH₂-CH₃), 14.9 (≡C-CH₂-CH₂), 22.8 (3×CH₂-CH₃), 25.0 (3×CH₂), 27.3 (3×=C-CH₂), 27.4 (3×CH₂-C=), 29.1 (3×CH₂), 29.3 (3×CH₂), 29.3 (6×CH₂), 29.9 (3×CH₂), 31.9 (3×CH₂), 34.2 (3×CH₂), 36.0 (≡C-CH₂-CH₂), 58.7 (CR₃N), 62.7 (3×C-CH₂-O-), 69.6 (≡CH), 82.8 (HC≡C-), 129.9 (3×C=C) 130.2 (3×C=C), 171.2 (O=C), 173.6 (3×O=C); Accurate mass (ESI): Found: 910.7496 C₅₇H₁₀₀O₇N (MH⁺) requires 910.7494.

⁽Z)-2-((Oleoyloxy)methyl)-2-(pent-4-ynamido)propane-1,3-diyl dioleate (23)

Synthesised in accordance with General Procedure B. Purification by column chromatography (5:1, petrol/ether) afforded the compound (501 mg, 63%) as a colourless, viscous oil; v_{max}/cm^{-1} (thin film) 2922s, 2853s, 1742s, 1660s, 1545m, 1465m, 1378m, 1274m; δ_{H} (400 MHz, CDCl₃) 0.86 (9H, t, *J* 6.8, 3× CH₂-CH₃), 1.19-1.35 (60H, m, 30×CH₂) 1.54-1.64 (6H, m, 3×O=C-CH₂-CH₂), 1.94-2.03 (13H, m, 6×=CH-CH₂ overlays ≡CH), 2.26-2.37 (8H, m, ≡C-CH₂-CH₂, overlays t, *J* 7.4, 3×O=C-CH₂), 2.43-2.49 (2H, m, ≡C-CH₂), 4.41 (6H, s, 3×CH₂-O-), 5.32 (6H, dt, *J* 5.7, 3.6, 3×-CH=CH-), 6.03 (1H, br s, NH); δ_{C} (100 MHz, CDCl₃) 14.3 (3×CH₂-CH₃), 14.9 (≡C-CH₂-CH₂), 22.8 (3×CH₂-CH₃), 25.0 (3×CH₂), 27.3 (3×=C-CH₂), 27.4 (3×CH₂-C=), 29.3 (3×CH₂), 29.3 (3×CH₂), 29.5 (3×CH₂), 29.7 (3×CH₂), 29.9 (3×CH₂), 32.1 (3×CH₂), 34.2 (3×CH₂), 36.0 (≡C-CH₂-CH₂), 58.7 (CR₃N), 62.7 (3×C-CH₂-O-), 69.6 (≡CH), 82.8 (HC≡C-), 129.8 (3×C=C) 130.2 (3×C=C), 171.2 (O=C), 173.6 (3×O=C); Accurate mass (ESI): Found: 994.8415 C₆₃H₁₁₂O₇N (MH⁺) requires 994.8441.

(13Z,13'Z)-2-(((Z)-Docos-13-enoyloxy)methyl)-2-(pent-4-ynamido)propane-1,3-diyl bis(docos-13-enoate) (24)

Synthesised in accordance with General Procedure B. Purification by column chromatography (5:1, petrol/ether) afforded the compound (648 mg, 70%) as a white solid; v_{max}/cm^{-1} (thin film) 2921s, 2852s, 1743s, 1659s, 1545m, 1465m, 1378m; δ_{H} (400 MHz, CDCl₃) 0.86 (9H, t, *J* 6.7, 3× CH₂-CH₃), 1.19-1.35 (84H, m, 42×CH₂) 1.54-1.64 (6H, m, 3×O=C-CH₂-CH₂), 1.93-2.04 (13H, m, 6×=CH-CH₂ and =CH), 2.27-2.38 (8H, m, =C-CH₂-CH₂, overlays t, *J* 7.6, 3×O=C-CH₂), 2.43-2.49 (2H, m, =C-CH₂), 4.41 (6H, s, 3×CH₂-O-), 5.32 (6H, dt, *J* 9.2, 4.6, 3×-CH=CH-), 6.03 (1H, br s, NH); δ_{C} (100 MHz, CDCl₃) 14.3 (3×CH₂-CH₃), 14.9 (=C-CH₂-CH₂), 22.8 (3×CH₂-CH₃), 25.0 (3×CH₂), 27.4

 $(3 \times = C - CH_2)$, 29.3 $(3 \times CH_2)$, 29.4 $(3 \times CH_2)$, 29.5 $(6 \times CH_2)$, 29.5 $(3 \times CH_2)$, 29.7 $(3 \times CH_2)$, 29.7 $(3 \times CH_2)$, 29.8 $(3 \times CH_2)$, 29.9 $(3 \times CH_2)$, 30.0 $(3 \times CH_2)$, 32.1 $(3 \times CH_2)$, 34.3 $(3 \times CH_2)$, 36.0 $(=C - CH_2 - CH_2)$, 58.7 (CR_3N) , 62.7 $(3 \times C - CH_2 - O)$, 69.5 (=CH), 82.8 (HC = C - O), 130.0 $(3 \times C = C)$ 130.1 $(3 \times C = C)$, 171.20 (O = C), 173.6 $(3 \times O = C)$; Accurate mass (ESI): Found: 1163.0320 C₇₅H₁₃₆O₇N (MH+) requires 1163.0313.

Synthesis of sugar head groups

(2*S*,3*R*,4*S*,5*R*)-tetrahydro-2*H*-pyran-2,3,4,5-tetrayl tetraacetate (31)^[2]

$$\begin{array}{c} HO \longrightarrow O \\ HO \longrightarrow OH \end{array} \xrightarrow{Ac_2O, NaOAc} AcO \longrightarrow OAc \\ AcO \longrightarrow OAc \\ AcO \end{array}$$

To a stirred suspension of anhydrous sodium acetate (4.36 g, 53.2 mmol) in acetic anhydride (25 mL) heated at reflux was added D(+)-xylose (2.0 g, 13.3 mmol). The reaction mixture was heated for 3 h before cooling to 100 °C and immediately transferred to an ice–water mixture and stirred vigorously until a gum formed. After decanting the aqueous portion, the gum was dissolved in DCM and washed successively with sat. aq. NaHCO₃ solution and brine. The organic layer was dried over MgSO₄ anhydrous and concentrated in vacuo. The title compound (4.05g, 97%) was obtained as a white solid and was used in subsequent reactions without further purification.

(2R,3R,4S,5R)-2-azidotetrahydro-2H-pyran-3,4,5-triyl triacetate (32)^[3]

$$\begin{array}{cccc} AcO & O & TMSN_3, FeCl_3 \\ AcO & OAc & DCM & AcO & O \\ AcO & AcO & AcO & AcO \\ \end{array}$$

To a stirred solution of FeCl_3 (64 mg, 0.40 mmol) in dry DCM (10 mL) was added xylose tetraacetate **31** (4.18 g, 13.3 mmol) in DCM (20 mL). After stirring for 5 min, a solution of trimethylsilyl azide in DCM (10 mL) was added dropwise. The progress of reaction was monitored by thin layer chromatography (1:2 ethyl acetate/petrol). Once complete consumption of the starting material was observed, the reaction was quenched with sat. aq. NaHCO₃ solution. After separation, the aqueous layer was extracted with DCM and the combined organic extracts washed with brine, dried over

 $MgSO_4$ and concentrated in vacuo to give the crude product. Purification by column chromatography (1:2 ethyl acetate/petrol benzene) afforded the title compound (2.29 g, 58%) as a colourless viscous oil. Data matched literature values.^[3]

1-Azido-1-β-D-xylopranoside (27)^[4]

To a stirred solution of azide **32** (2.26g, 7.60 mmol) in methanol (20 mL) was added a catalytic amount of sodium methoxide (10 mg, 0.18 mmol). After stirring for 1 h the reaction mixture was neutralised with Amberlite IR-120[H⁺] resin. The reaction mixture was filtered and concentrated in vacuo to afford the title compound (1.25g, 96%) as a white solid without the need for further purification; $\delta_{\rm H}$ (400 MHz, MeOD) 3.09 (1H, app. t, *J* 8.4, CHOH-CHN₃), 3.22-3.31 (2H, m, COH-CHOH-COH & COH-CHOH-CH₂), 3.42-3.50 (1H, m, O-CHH'), 3.90 (1H, dd, *J* 10.6, 5.0, O-CHH'), 4.39 (1H, d, *J* 8.4, CHN₃); $\delta_{\rm C}$ (100 MHz, CDCl₃) 67.8 (CH₂), 69.6 (C-OH), 73.5 (C-OH), 76.8 (C-OH), 91.4 (C-N₃).

Amphiphile synthesis and characterisation

General procedure

To each of 24 glass vials (18 mm × 45 mm) in a 4 × 6 array aluminium reaction block, was added a solution of azido sugar (1.0 equiv, ca. 15 mg) in 2:1 *t*-BuOH/water (1.5 mL). Alkyne (1.0 equiv) was added and the reaction block heated, with stirring, to 40 °C. After dissolution, copper powder (ca. 150 mg) was added and the reaction stirred for 24–48 h. The reaction mixture was cooled, diluted with ethanol (2 mL) and filtered through Celite[®] into 24 glass vials (25 mm × 75 mm). Concentration in vacuo on a Genevac EZ-2, followed by vacuum oven drying (50 °C, 3 h), afforded the amphiphile products.

MALDI-TOF results

Table S1: Double-chain amphiphil	es
----------------------------------	----

Sugar	Double	Amphiphile	Predicted mass	Experimental
	chain tail		[MNa]	mass [MINa]
Glucose	C/	33	652.3	652.4
Glucose	C9	34	708.4	708.5
Glucose	C11	35	764.5	764.6
Glucose	C13	36	820.5	820.6
Glucose	Phyt	37	988.8	988.8
Glucose	Palm	38	872.6	872.7
Glucose	Ole	39	928.6	928.7
Glucose	Eruc	40	1040.7	1040.8
Glucose	Lin	41	924.7	924.7
Galactose	C7	42	652.3	652.1
Galactose	C9	43	708.4	708.3
Galactose	C11	44	764.5	764.4
Galactose	C13	45	820.5	820.6
Galactose	C15	46	876.6	876.5
Galactose	C17	47	932.7	932.6
Galactose	Phyt	48	988.7	988.7
Galactose	Palm	49	872.6	872.5
Galactose	Ole	50	928.6	928.6
Galactose	Eruc	51	1040.7	1040.7
Galactose	Lin	52	924.6	924.6
Xylose	C7	53	622.3	622.3
Xylose	C9	54	678.4	678.5
Xylose	C11	55	734.5	734.6
Xylose	C13	56	790.5	790.7
Xylose	C15	57	846.6	846.7
Xylose	C17	58	902.6	902.8
Xylose	Phyt	59	958.8	958.8
Xylose	Palm	60	842.5	842.7
Xylose	Ole	61	898.6	898.7

Eruc	62	1010.7	1010.9
Lin	63	894.7	894.7
C7	64	652.3	652.2
C9	65	708.4	708.3
C11	66	764.5	764.4
Phyt	67	988.7	988.7
Palm	68	872.6	872.5
Ole	69	928.6	928.6
C7	70	814.1	814.3
C9	71	870.5	870.4
C11	72	926.6	926.5
C13	73	982.6	982.5
Phyt	74	1150.8	1150.8
Palm	75	1034.6	1034.6
Ole	76	1090.7	1090.7
Eruc	77	1202.8	1203.5
Lin	78	1086.1	Not found
	Eruc Lin C7 C9 C11 Phyt Palm Ole C7 C9 C11 C13 Phyt Palm Ole Eruc Lin	Eruc62Lin63C764C965C1166Phyt67Palm68Ole69C770C971C1172C1373Phyt74Palm75Ole76Eruc77Lin78	Eruc621010.7Lin63894.7C764652.3C965708.4C1166764.5Phyt67988.7Palm68872.6Ole69928.6C770814.1C971870.5C1172926.6C1373982.6Phyt741150.8Palm751034.6Ole761090.7Eruc771202.8Lin781086.1

 Table S2: Triple chain amphiphiles.

Sugar	Double Amphinhi		Predicted mass	Experimental
cha	chain tail	Amphiphile	$[MNa]^+$	mass $[MNa]^+$
Glucose	C7	79	807.5	807.6
Glucose	C9	80	891.6	891.7
Glucose	C11	81	975.7	975.7
Glucose	Phyt	82	1312.0	1312.0
Glucose	Palm	83	1137.8	1137.8
Glucose	Ole	84	1221.9	1221.9
Glucose	Eruc	85	1390.0	1390.0
Galactose	C7	86	807.5	807.4
Galactose	C9	87	891.6	891.5
Galactose	C11	88	975.7	975.7
Galactose	Phyt	89	1312.0	1312.1
Galactose	Palm	90	1137.8	1137.8
Galactose	Ole	91	1221.9	1221.9
Galactose	Eruc	92	1390.1	1390.1
Xylose	C7	93	777.5	777.6
Xylose	C9	94	861.6	861.7
Xylose	C11	95	923.3	945.6
Xylose	Phyt	96	1282.0	1282.1
Xylose	Palm	97	1107.8	1107.9
Xylose	Ole	98	1191.9	1192.0
Xylose	Eruc	99	1360.0	1360.0
Mannose	C7	100	807.5	807.4
Mannose	C9	101	891.6	891.5
Mannose	C11	102	975.7	975.7
Mannose	Phyt	103	1312.0	1312.1
Mannose	Palm	104	1137.8	1137.9
Mannose	Ole	105	1221.9	1221.9
Lactose	C7	106	969.5	969.5
Lactose	C9	107	1053.6	1053.6
Lactose	C11	108	1137.7	1137.7
Lactose	Phyt	109	1474.1	1474.1
Lactose	Palm	110	1299.9	Not found

Lactose	Ole	111	1384.0	1383.9
Lactose	Eruc	112	1552.1	Not found

¹³C NMR results

A selection of 15 amphiphiles (3 for each sugar) were randomly selected for ¹³C NMR spectroscopy and cover a range of different double and triple chain tails.

Glucose $-2 \times \text{Ole}(39)$

δ_C (100 MHz, CD₃OD) 13.1 (×2), 16.7, 22.3 (×2), 24.6 (×2), 26.7 (×4), 28.7 (×2), 28.8 (×2), 28.9 (×2), 29.0 (×2), 29.1 (×2), 29.2 (×2), 29.4 (×2), 29.5 (×2), 31.7 (×2), 33.4 (×2), 46.2, 57.4, 61.0, 64.8 (×2), 69.5, 72.6, 77.1, 79.8, 88.2, 123.9, 129.4 (×2), 129.5 (×2), 142.2, 172.5, 173.3 (×2).

Galactose – $2 \times C13$ (45)

δ_C (100 MHz, CD₃OD) 13.1 (×2), 16.7, 22.3 (×2), 24.6 (×2), 28.8 (×2), 29.0 (×2), 29.1 (×2), 29.2 (×2), 29.4 (×2), 29.4 (×2), 29.4 (×2), 31.7 (×2), 33.4 (×2), 46.2, 57.5, 60.9, 64.8 (×2), 68.9, 70.1, 73.9, 78.6, 88.9, 123.4, 142.4, 172.5, 173.4 (×2).

Galactose $-2 \times \text{Palm}$ (49)

δ_C (100 MHz, CD₃OD) 13.1 (×2), 16.7, 22.3 (×2), 24.6 (×2), 26.7 (×2), 26.8 (×2), 28.7 (×2), 28.7 (×2), 28.8 (×2), 28.9 (×2), 29.4 (×2), 29.4 (×2), 31.5 (×2), 33.4 (×2), 46.2, 57.5, 60.9, 64.8 (×2), 68.9, 70.1, 73.6, 78.6, 88.9, 123.4, 129.4 (×2), 129.5 (×2), 142.4, 172.5, 173.4 (×2).

Xylose – $2 \times C15$ (**57**)

δ_C (100 MHz, CD₃OD) 13.1 (×2), 16.7, 22.3 (×2), 24.6 (×2), 28.8 (×2), 29.0 (×2), 29.1 (×2), 29.2 (×2), 29.4 (×2), 29.4 (×4), 29.4 (×4), 29.7 (×2), 31.7 (×2), 33.4 (×2), 46.2, 57.4, 64.9 (×2), 68.5, 69.2, 72.5, 77.2, 88.9, 123.8, 142.2, 172.6, 173.3 (×2).

Mannose – $2 \times C7$ (64)

δ_C (100 MHz, CD₃OD) 13.0 (×2), 16.6, 22.3 (×2), 24.6 (×2), 28.7 (×2), 28.7 (×2), 31.5 (×2), 33.4 (×2), 46.2, 57.4, 61.1, 64.8 (×2), 67.2, 68.7, 71.2, 77.4, 87.0, 124.6, 142.5, 172.5, 173.3 (×2).

S22

Mannose $-2 \times Phyt$ (67)

 δ_{C} (100 MHz, CD₃OD) 16.8, 18.7, 18.7, 18.8 (×2), 18.8, 18.8, 21.6 (×2), 21.7 (×2), 24.0, 24.1, 24.1 (×2), 24.5, 24.5, 27.8 (×2), 30.1, 30.1, 32.5 (×2), 32.6 (×2), 36.5, 36.6, 36.8, 36.8, 36.9, 36.9, 37.0, 37.1, 37.1, 37.2, 39.2 (×2), 41.0, 41.1, 46.1, 57.4, 61.1, 64.8 (×2), 67.2, 68.7, 71.2, 77.3, 87.0, 124.5, 142.5, 172.5, 172.7 (×2).

Lactose – $2 \times C9$ (71)

 $\delta_{\rm C}$ (100 MHz, CD₃OD) 13.0 (×2), 16.6, 22.3 (×2), 25.6 (×2), 28.8 (×2), 29.0 (×4), 29.2 (×2), 31.7 (×2), 33.4 (×2), 46.2, 57.4, 60.1, 61.1, 64.8 (×2), 68.9, 71.1, 72.2, 73.4, 75.5, 75.8, 78.2, 78.2, 88.0, 103.7, 123.9, 142.2, 172.5, 173.4 (×2).

Lactose $-2 \times \text{Eruc}$ (77)

δ_C (100 MHz, CD₃OD) 13.1 (×2), 16.7, 22.4 (×2), 24.6 (×2), 26.8 (×4), 28.7 (×2), 28.8 (×4), 28.9 (×2), 29.0 (×2), 29.1 (×4), 29.2 (×4), 29.4 (×4), 29.5 (×2), 31.7 (×2), 33.4 (×2), 46.2, 57.4, 60.1, 61.1, 64.8 (×2), 68.9, 71.1, 72.2, 73.4, 75.5, 75.8, 78.2, 78.2, 88.0, 103.7, 123.9, 129.4 (×2), 129.5 (×2), 142.2, 172.5, 173.3 (×2).

Glucose $-3 \times C9$ (80)

δ_C (100 MHz, CD₃OD) 13.1 (×3), 21.0, 22.3 (×3), 24.6 (×3), 28.8 (×3), 29.0 (×3), 29.1 (×3), 29.2 (×3), 31.7 (×3), 33.5 (×3), 35.0, 57.7, 61.0, 61.6 (×3), 69.5, 72.6, 77.1, 79.7, 88.2, 121.3, 146.2, 173.3 (×3), 173.5.

Glucose $-3 \times \text{Palm}(83)$

δ_C (100 MHz, CD₃OD) 13.0 (×3), 21.1, 22.3 (×3), 24.6 (×3), 28.7 (×3), 28.7 (×3), 28.8 (×3), 28.8 (×3), 29.4 (×3), 29.4 (×3), 31.5 (×3), 33.4 (×3), 35.4, 60.6, 61.0 (×3), 62.3, 69.5, 72.6, 77.1, 79.7, 88.2, 121.4, 129.4 (×3), 129.5 (×3), 146.2, 174.2, 174.6 (×3).

Galactose – $3 \times Phyt$ (89)

δ_C (100 MHz, CD₃OD) 18.7, 18.8, 18.9, 21.0, 21.7 (×3), 21.8 (×3), 24.1, 24.1, 24.1 (×3), 24.2, 24.5 (×3), 27.8 (×3), 30.1 (×3), 32.5, 32.5 (×3), 32.6 (×2), 35.1, 36.6 (×3), 36.7 (×3), 36.8, 36.9, 36.9, 37.0, 37.0 (×3), 37.1 (×3), 37.1 (×3), 37.2, 37.2, 39.2 (×3), 41.1 (×2), 41.1, 57.6, 61.0, 61.6 (×3), 68.9, 70.0, 73.9, 78.5, 88.8, 120.8, 146.3, 172.6 (×3), 173.5.

Xylose $- 3 \times C11$ (95)

δ_C (100 MHz, CD₃OD) 13.2 (×3), 21.3, 22.5 (×3), 24.8 (×3), 29.0 (×3), 29.1 (×3), 29.2 (×3), 29.3 (×3), 29.5 (×6), 31.8 (×3), 33.6 (×3), 35.5, 61.2 (×3), 62.4, 68.6, 69.4, 72.6, 77.3, 88.9, 121.3, 146.4, 174.4, 174.8 (×3).

Xylose $-3 \times \text{Eruc}$ (99)

δ_C (100 MHz, CD₃OD) 13.0 (×3), 21.1, 22.3 (×3), 24.6 (×3), 26.7 (×3), 26.7 (×3), 28.8 (×3), 28.9 (×3), 28.9 (×3), 29.0 (×3), 29.1 (×3), 29.2 (×3), 29.2 (×3), 29.2 (×3), 29.3 (×3), 29.3 (×3), 29.4 (×3), 29.4 (×3), 31.7 (×3), 33.4 (×3), 35.3, 61.0 (×3), 62.3, 68.4, 69.3, 72.5, 77.2, 88.8, 121.2, 129.4 (×3), 129.5 (×3), 146.3, 174.2, 176.6 (×3).

Mannose $-3 \times \text{Ole}$ (105)

δ_C (100 MHz, CD₃OD) 13.0 (×3), 21.0, 22.3 (×3), 24.6 (×3), 26.7 (×3), 26.7 (×3), 28.7 (×3), 28.8 (×3), 28.8 (×3), 28.9 (×3), 29.0 (×3), 29.2 (×3), 29.4 (×3), 29.4 (×3), 31.7 (×3), 33.4 (×3), 35.3, 61.0 (×3), 61.2, 62.3, 67.2, 68.7, 71.1, 77.1, 86.9, 122.1, 129.4 (×3), 129.5 (×3), 146.5, 174.2, 174.6 (×3).

Lactose $-3 \times C7$ (106)

δ_C (100 MHz, CD₃OD) 13.0 (×3), 21.0, 22.2 (×3), 24.6 (×3), 28.7 (×3), 28.1 (×3), 31.4 (×3), 33.4 (×3), 35.2, 60.1, 60.6, 61.0, 61.1 (×3), 61.7, 71.1, 72.2, 73.4, 75.4, 75.8, 78.1, 78.3, 87.9, 103.7, 121.3, 146.3, 173.5 (×3), 174.7.

¹³C NMR spectra

Glucose - 2 x Oleic Amphipihle 39

Mannose - 2 x C7 Amphiphile 64

S28

10 ppm

Preliminary SAXS analysis

The internal liquid crystalline structure was determined using small-angle X-ray scattering. Each amphiphile was dispensed into a 96-well plate and an excess of water (70% w/v) was added to each well using a Mosquito[®] liquid dispensing robot. The samples were equilibrated under controlled conditions of temperature and humidity for 5 days before SAXS analysis was carried out. Samples were analysed within the 96-well plate using a bespoke sample holder at the SAXS beamline at the Australian Synchrotron. The resulting diffraction patterns were analysed using the IDL-based AXcess software package^[5] and the number and distribution of reflections used to assign the mesophase.

Table S3: SAXS data for compounds 33, 53 and 70 at 70% w/v at 25 °C.

Amphiphile		Phase	Lattice parameter (Å)
Glucose – $2 \times C7$	33	IA3D	164.8
Xylose – $2 \times C7$	53	Micellar	n/a
Lactose – $2 \times C7$	70	Lamellar	56.2

References

- 1. V. Truong, I. Blakey, A. K. Whittaker, *Biomacromolecules* **2012**, *13*, 4012-4021.
- 2. J. r. m. Camponovo, C. Hadad, J. Ruiz, E. Cloutet, S. Gatard, J. Muzart, S. Bouquillon, D. Astruc, *J. Org. Chem.* **2009**, *74*, 5071-5074.
- 3. S. B. Salunke, N. S. Babu, C.-T. Chen, *Chem. Commun.* **2011**, *47*, 10440-10442.
- 4. T. Bravman, V. Belakhov, D. Solomon, G. Shoham, B. Henrissat, T. Baasov, Y. Shoham, *J. Biol. Chem.* **2003**, *278*, 26742-26749.
- 5. J. M. Seddon, A. M. Squires, C. E. Conn, O. Ces, A. J. Heron, X. Mulet, G. C. Shearman, R. H. Templer, *Philos. Trans. R. Soc., A* **2006**, *364*, 2635-2655.