Supporting Information

for

The chemoenzymatic synthesis of clofarabine and related 2'deoxyfluoroarabinosyl nucleosides: the electronic and stereochemical factors determining substrate recognition by *E. coli* nucleoside phosphorylases

Ilja V. Fateev¹, Konstantin V. Antonov¹, Irina D. Konstantinova¹, Tatyana I. Muravyova¹, Frank Seela², Roman S. Esipov¹, Anatoly I. Miroshnikov¹, Igor A. Mikhailopulo^{*3}

Address: ¹Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 GSP, Moscow B-437, Russia. ² Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, D-48149 Münster, Germany and ³Institute of Bioorganic Chemistry, National Academy of Sciences, Acad. Kuprevicha 5/2, 220141 Minsk, Belarus

Email: Igor A. Mikhailopulo* - imikhailopulo@gmail.com.

*Corresponding author

Detailed analysis of the NMR data, geometry optimizations and HPLC and mass spectrometry data.

Table of Contents

1 – Table S1 . The ¹ H and ³¹ P NMR spectra of 1-phosphates of D-arabinofuranose and 2-deoxy-2-fluoro-D- arabinofuranose.	s2
2 – Table S2 . The ¹³ C NMR spectra of 2-deoxy-2-fluoro- α - and - β -D-arabinofuranose-1-phosphates (12a , b)	.s2
3 – Table S3. Geometry optimization of 1-phosphates 2-deoxy-2-fluoro-α-D-arabinofuranose (12a) and its β-anomer 12b as well as α-D-arabinofuranose-1-phosphate (α-Ara-1P) [dilithium salts; HyperChem 8.1; AMBER Force Field starting approximation then the ab initio calculations (3-21G/RHF/total charge equal to zero; Polak-Ribiere conjugate gradient)]	.s3
4 – Figure S1 . 2-Deoxy-2-fluoro-β-D-arabinofuranose-1-phosphate (12b); the W-arrangement of P–O–C1–C2–H2 fragment of molecule	.s7
$5 -$ Table S4 . The geometry optimization of the tautomeric structures of the sp ² -hybridized N^9 nitrogen atoms of 2-chloroadenine, 2-aminoadenine (DAP), hypoxanthine, allopurinol and 5-aza-7-deazaguanine analyzed by the ab initio method [6-31G** level; restricted Polak–Ribiere (RPR) conjugate gradient; using basis set of parameters; mapped function shown from red to green to blue]	.s8
6 – The HPLC and mass spectrometry data on the one-pot cascade synthesis of clofarabine from 2-deoxy- 2-fluoro-D-arabinose and 2-chloroadenine	.s9

Compound	Chemical sl	hifts, δ _{τмs} , pj	pm (δ _{H3PO4} , ppm)			Coupling constants, Hz					
1-phosphate	H-1	H-2	H-3	H-4	H-5/H5′	³¹ P	1,2	2,3	3,4	³¹ P,H1	³¹ P,H2
α-D-Araf - 1P b)	5.50 dd [5.18 & 4.70]	4.18 m [4.7 & 3.4]	≈3.93 m [3.4]	≈4.19 m [6.0 & 3.4]	3.83 dd / 3.71 dd	2.49	4.70	3.4	≈1.0	5.18	<1.0
2d,2F-α-D- Ara <i>f</i> -1P (12 a) c)	5.70 br.d [9.83; 6.99] $({}^{3}J_{H1,H2} > 0.7)$	5.04 dd [1.05; 50.2]	4.20 tdd [5.40; 1.2; 24.40]	4.25 dt [5.47; 5.35; 3.37]	3.74 dd [5.35; 12.5]/ 3.87 dd 3.37]	2.20 ${}^{3}J_{31P,H1} = 6.5$	<0.7	1.2	5.40	6.99	<1.0
α -D-2d,2F- Araf-1P (D ₂ O) d)	5.71 dd	5.02 d (?)	4.27- (2H	4-18 , m)	3.88-3.71 (2H, m)	2.19	9.9 (6.9)			6.9 (9.9)	(?)
2d,2F-β-D- Araf-1P (12 b) e)	5.63 dd [6.04; 4.37] (${}^{3}J_{\rm H1,19F} > 0.7$)	4.98 dddd [4.37; 6.83; 1.28 53.17]	4.48 dt [6.80; 17.80]	3.91 ddd [6.70; 5.53; 3.08]	3.82 ddd [3.08; 12.64; 1.45]/ 3.71 dd [5.53]	2.76 ${}^{3}J_{31P,H1} =$ 5.7	4.37	6.83	≈6.75	6.04	1.28

1 - **Table S1**. The ¹H and ³¹P NMR spectra of 1-phosphates of D-arabinofuranose and 2-deoxy-2-fluoro-D-arabinofuranose (D₂O).

a) The data for α -D-Araf -1P [22] and for α -D-2d,2F-Araf-1P (D₂O) by Yamada et al. [19] are included for comparison reasons).

b) $J_{5,4} = 3.36; J_{5',4} = 5.96; {}^{\text{gem}}J_{5,5'} = 12.28 [22].$

c) HyperChem 8.1 [AMBER FF the *ab initio* method [3-21G/ toal charge = 0; Polak-Ribiere conjugate gradient] data point to a mixture of conformers; ¹⁹F NMR: -187.3 ppm (ddd; ^{gem}J_{19F,H2} = 50.52; ³J_{19F,H1} - 9.95; ³J_{19F,H3} = 24.39).

d) ${}^{\text{gem}}J_{\text{F,H2alpha}} = 50.5 [19].$

e) ${}^{5}J_{2F,H5} = 1.45$ (through space interaction); ${}^{19}F$ NMR: -206.3 ppm (dd; ${}^{gem}J_{19F,H2} = 53.25$; ${}^{3}J_{19F,H1} < 0.7$; ${}^{3}J_{19F,H3} = 18.04$).

2 - Table S2 . The ¹³ C NMR	spectra of 2-deox	y-2-fluoro-α- and -	β-D-arabinofuranose-1-	phosphates (12a,b)
---	-------------------	---------------------	------------------------	--------------------

Compound	The ¹³ C NMR chemical shifts (δ_{TMS} , ppm) and corresponding coupling constants (Hz; in parentheses)						
	$\begin{array}{c} \text{C-1} \\ ({}^{2}J_{31\text{P,C1}} \& {}^{2}J_{19\text{F,C1}}) \end{array}$	$\begin{array}{c} \text{C-2} \\ ({}^{3}J_{31\text{P,C1}} \& {}^{1}J_{19\text{F,C1}}) \end{array}$	C-3 (² J _{19F,C3})	C-4 (³ J _{19F,C3})	C-5		
2F,2d–α-D- Araf-1P (12 a)	100.26 dd (3.54 & 36.52)	100.77 dd (7.46 & 180.48)	74.87 d (27.30)	84.61 s	61.69		
3-TMS-Propionic acid-d4 Na-salt [19]	103.17 dd (3.7 & 36.7)	103.65 dd (7.1 & 180.1)	77.73 d (27.1 Hz)	87.51 d (2.50)	63.94		
2F,2d–β-D- Ara <i>f</i> -1P (12 b)	94.74 dd (4.31 & 17.09)	94.39 dd (6.88 & 195.73)	71.75 d (21.85)	81.30 d (9.28)	60.97		

3 – **Table S3**. Geometry optimization of 1-phosphates 2-deoxy-2-fluoro- α -D-arabinofuranose (**12a**) and its β -anomer **12b** as well as α -D-arabinofuranose-1-phosphate (α -Ara-1P) [dilithium salts; HyperChem 8.1; AMBER Force Field starting approximation then the ab initio calculations (3-21G/total charge equal to zero; Polak–Ribiere conjugate gradient)]

2-Deoxy-2-fluoro- α -D [$1 - \alpha$ -2d2F-Ara-1P]	-arabinofuranose-1-phosphate (12a)	2-Deoxy-2-fluoro-β-D-arabinofuranose-1-phosphate (12b) [β-2d2F-Ara-1P]			
8					
Total energy (binding energy): -732 310.1 kcal/mol C3 <i>exo</i> conformation; C1 : 0.388 <i>e</i> ; dipole moment 7.636 D No hydrogen bond(s)		Total energy (binding energy): -732 303.4 kcal/mol C2 <i>-exo</i> conformation; C1 : 0.419 <i>e</i> ; dipole moment 6.173 D No hydrogen bond(s)			
Torsion angles (°)	Experimental vicinal coupling constants (Hz)	Torsion angles (°)	Experimental vicinal coupling constants (Hz)		
H1/H2 97° H1/F 25° H1/P (³ J) 58°	0.7 (³¹ P NMR: 19.20 ppm; 6.5) 9.83 (¹⁹ F NMR: 9.95) 6.99	H1/H2 37° H1/F 85° H1/P (³ J) 71°	4.37 (³¹ P NMR: 19.76 ppm; 5.7) 0.5 (¹⁹ F NMR: <1.0) 6.04		
H2/H3 77° H2/P	^{1.2} ${}^{4}J_{\rm H2,P} < 1.0 ({}^{\rm gem}J_{\rm H2,F} = 50.2)$	H2/H3 162° H2/P	6.83 ${}^{4}J_{\text{H2,P}} = 1.28$ (${}^{\text{gem}}J_{\text{H3,F}} = 53.17$)		
H3/H4 79° H3/F 45° C ² /P 174°	5.40 24.40 (19 F NMR: 24.39) $^{3}J_{C2,P} = 7.46$	H3/H4 158° H3/F 39° C ² /P 161°	≈6.75 17.80 (¹⁹ F NMR: 18.04) 6.88		
C ⁴ /F 79°	$^{3}J_{C4,F} < 1.0$	C ⁴ /F 155°	9.28		

[2 – α-2d2F-Ara1P] Hydrogen bond: C ³ OH	I ⁰ OP 1.68 Å.	
Total energy (binding energy C3 - <i>exo</i> conformation; C1	rgy): -732 311.2 kcal/mol : 0.425 <i>e</i> ; dipole moment 7.636 D	
Torsion angles (°)	Experimental vicinal coupling constants (Hz)	
H1/H2 90° H1/F 31° H1/P (³ J) 112°	0.7 9.83 6.99	
H2/H3 79° H2/P	^{1.2} ${}^{4}J_{\rm H2,P} < 1.0 \; ({}^{\rm gem}J_{\rm H2,F} = 50.2)$	
H3/H4 91° H3/F 44° C ² /P 174°	$5.4024.40{}^{3}J_{C2,P} = 7.46$	
C⁴/F 79°	$^{3}J_{C4,F} < 1.0$	

$[3 - \alpha - 2d2F-Ara-1P]$		
Total energy (binding energy ${}^{3}T_{2}$ conformation; C1: 0.40	y): -732 297.1 kcal/mol 1 <i>e</i> ; dipole moment 8.565 D	
Torsion angles (°)	Experimental vicinal coupling constants (Hz)	
H1/H2 151° H1/F 30° H1/P (³ J) 36° H2/H3 162° H2/P H3/H4 162° H3/F 39°	9.83 6.99 $J_{H2,P} < 1.0 \ (^{gem}J_{H2,F} = 50.2)$ 5.40 24.40	
C ² /P 162° C ⁴ /F 155°	${}^{3}J_{C2,P} = 7.46$ ${}^{3}J_{C2,P} = 7.46$	
$\Delta E = E_{\rm T}^{12a} - E_{\rm T}^{12b} = -$ kcal/mol (for $E_{\rm T}^{12a}$ ave	$732\ 306.1 - (-732\ 303.4) = -2.7$ erage value of three conformers)	

α-D-Arabinofuranose-1-phosphate [(1) AMBER Force Field; (2) the ab initio method (3-21G/Total Charge = O; Polak–Ribiere conjugate gradient)]				
The C ³ –C	$DH^{\Theta}O-P$ hydrogen bond [$1 - \alpha$ -Ara-1P]	No C ³ –OH [2	$[^{\Theta}O-P$ hydrogen bond 2 – α -Ara-1P]	
1.24	1275 1076	8,392 8,224 6,187 6,187 6,237 8,237	12-55 10-57 10	
Total energy (binding energy C3 - <i>exo</i> conformation; C1 : 0 . Hydrogen bond: C ³ OHOP): -717 325.8 kcal/mol; 460 <i>e</i> ; dipole moment 7.387 D. 2 1.68 Å.	Total energy (binding energy): C3-exo conformation; C1: 0.41 No Hydrogen bond(s)	-717 323.1 kcal/mol; 7 <i>e</i> ; dipole moment 8.775 D.	
Torsion angles	Experimental coupling constants (Hz)	Torsion angles	Experimental coupling constants (Hz)	
H1/H2 94° H1/P (³ J) 113° H2/H3 83° H3/H4 94° P/C ² 122°.	4.70 5.18 (4JH2,P < 1.0 Hz $ 3.40 ≈1.0 6.41 $	H1/H2 100° H1/P (³ J) 58° H2/H3 80° H3/H4 79° P/C ² 174°.	$\frac{4.70}{5.18} ({}^{4}J_{\rm H2,P} < 1.0 \text{ Hz})$ $\frac{3.40}{\approx 1.0}$ 6.41	
<i>Comment</i> : the experimental ovicinal protons are inconsistent	coupling constants values for H1/H2 and H2/H3 nt with calculated torsion angles.	<i>Comment</i> : the experimental covicinal protons are inconsistent	upling constants values for H1/H2 and H2/H3 with calculated torsion angles.	

β-D-Arabinopyranose	e-1-phosphate (dilitium salt)	$[3 - \alpha$ -Ara-1P]			
		8.45 4.05 4.05 8.27 8.44 0.57 8.275	82.41 4716 84776 8.497 8.497 8.499 8.499 8.499 8.499 8.499 8.499 8.499 8.499		
		Total energy (binding energy): $-{}^{3}T_{2}$ conformation; C1: 0.435 e; d No hydrogen bond(s) [The less s	717 311.7 kcal/mol; lipole moment 6.658 D. table conformer]		
		Torsion angles	Experimental coupling constants (Hz)		
		H1/H2 162° H1/P (³ J) 40° H2/H3 167° H3/H4 159° P/C ² 166°.	4.70 5.18 (${}^{4}J_{\rm H2,P} < 1.0 \rm Hz$) 3.40 ≈ 1.0 6.41		
		<i>Comment</i> : the best correlation b whole, it appears that the observe (two-three) of conformers	etween experimental and calculated data. On the ed data resulted from an equilibrium of a number		

 4 – Figure S1 2-Deoxy-2-fluoro-β-D-arabinofuranose-1-phosphate (12b) [HyperChem 8.1; AMBER Force Field starting approximation then the ab initio calculations (3-21G/total charge equal to zero; Polak-Ribiere conjugate gradient)] The W-arrangement of P–O–C1–C2–H2 (⁴J_{31P, H1α} = 1.28 Hz)

5 – **Table S4**. The geometry optimization of the tautomeric structures of the sp²-hybridized N^9 nitrogen atoms of 2chloroadenine, 2-aminoadenine (DAP), hypoxanthine, allopurinol and 5-aza-7-deazaguanine analyzed by the ab initio method [6-31G** level; restricted Polak–Ribiere (RPR) conjugate gradient; using basis set of parameters; mapped function shown from red to green to blue].

Tautomeric structures	$\Delta E_{\rm T} = E_{\rm T}^{\rm N9sp3} - E_{\rm T}^{\rm N9sp2}$	The partial charges of selected atoms				Remarks
with N^{9} sp2 hybridized hydrogen atom	<mark>(kcal/mol</mark>)	N ⁹ sp2 hybridized	O ⁶ carbonyl group	C^6 -NH ₂	$N^7 (N^8)$ sp2 hybridized tautomer	
	-10.2	-0.560	-	-0.783	-0.569	
Mapped function values: minimum -0.258; maximum +0.902	-11.1	-0.581	-	-0.790	-0.581	
Mapped function values: minimum -0.289; maximum +0.775	-0	0.563	0.618		0.520	
	~0	-0.578]	-0.613]	-	-0.520	Data in brackets are for N ² -acetyl- guanine
Mapped function values: minimum -0.195; maximum +0.406						
Mapped function values: minimum -0.257; maximum +0.409	-4.9	-0.385	-0.596	-	-	Lowest nucleopheliciy of the sp2 hybridized <i>N</i> ⁹ atom
	-3.5	-0.600	-0.585	-	-	Highest nucleopheliciy of the sp2 hybridized N ⁹ atom
Mapped function values: minimum -0.171; maximum +0.427						

6 – The HPLC and mass spectrometry data on the one-pot cascade synthesis of clofarabine from 2-deoxy-2-fluoro-D-arabinose and 2-chloroadenine

8) $R_t = 10.993 - [M+H] = 304.0614 - 9 - (2 - deoxy - 2 - fluoro - \beta - D - arabino furanosyl) - 2 - chloroadenine (Clofarabine)$

1) $R_{\rm t} = 0.83$ and 1.60 – impurities

3) $R_t = 1.84 - [M+H] = 428.0393 - Adenosine-5'-diphosphate (from ATP)$

4) $R_t = 1.94 - [M+H] = 348.0726 - Adenosine-5'-monophosphate (from ATP): [M+H] = 136.0610 - adenine; [M+H] = 268.1062 - adenosine.$