### **Supporting Information**

for

# Synthesis of novel derivatives of 5hydroxymethylcytosine and 5-formylcytosine as tools for epigenetics

Anna Chentsova, Era Kapourani and Athanassios Giannis\*

Address: Institut für Organische Chemie, Fakultät für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany

Email: Athanassios Giannis - giannis@uni-leipzig.de

### Experimental details and analytical data of all synthesized compounds

#### **Table of Contents**

| General experimental methods:                                                                         | S3   |
|-------------------------------------------------------------------------------------------------------|------|
| 3',5'-Di( <i>tert</i> -butyldimethylsilyl)-5-(1-hydroxyethyl)-2'-deoxycytidine ( <b>2a</b> )          | S4   |
| 5-(1-Hydroxyethyl)-2'-deoxycytidine ( <b>3a</b> )                                                     | S5   |
| 3',5'-Di( <i>tert</i> -butyldimethylsilyl)-5-(1-hydroxy-3-(trimethylsilyl)prop-2-ynyl)-2'-            |      |
| deoxycytidine ( <b>2b</b> ) and 3',5'-( <i>tert</i> -butyldimethylsilyl)-5-(1-hydroxyprop-2-ynyl)-2'- |      |
| deoxycytidine (2e)                                                                                    | S5   |
| 5-(1-Hydroxyprop-2-ynyl)-2'-deoxycytidine ( <b>3b</b> )                                               | S7   |
| 3',5'-Di( <i>tert</i> -butyldimethylsilyl)-5-(1-hydroxy-3-phenylprop-2-ynyl)-2'-deoxycytidine         | (2c) |
|                                                                                                       |      |
| 5-(1-Hydroxy-3-phenylprop-2-ynyl)-2'-deoxycytidine ( <b>3c</b> )                                      | S9   |
| 3',5'-Di( <i>tert</i> -butyldimethylsilyl)-5-(1-hydroxyprop-2-enyl)-2'-deoxycytidine ( <b>2d</b> )    |      |
| 5-(1-Hydroxyprop-2-enyl)-2'-deoxycytidine ( <b>3d</b> )                                               |      |

<sup>\*</sup> Corresponding author

| $3',5'$ -Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-5-formyl-2'-                            |
|------------------------------------------------------------------------------------------------------------------------------|
| deoxycytidine (4)                                                                                                            |
| $3^{\circ}, 5^{\circ}$ -Di(tert-butyldimethylsilyl)- $N^{4}$ , $N^{4}$ -bis(2,2,2-trichloro-tert-butyloxycarbonyl)-5-formyl- |
| 2'-deoxycytidine ( <b>5</b> )                                                                                                |
| $3',5'-Di(tert-butyldimethylsilyl)-N^4-(2,2,2-trichloro-tert-butyloxycarbonyl)-5-(1-$                                        |
| hydroxyethyl)-2'-deoxycytidine ( $\mathbf{6a}$ ) and $6$ -(( $2R$ , $4S$ , $5R$ )- $4$ -( $tert$ -butyldimethylsilyloxy)-5-  |
| (( <i>tert</i> -butyldimethylsilyloxy)methyl)tetrahydrofuran-2-yl)-4-methyl-1 <i>H</i> -pyrimido[4,5-                        |
| d][1,3]oxazine-2,7(4H,6H)-dione ( <b>7a</b> )                                                                                |
| $3',5'-Di(tert-butyldimethylsilyl)-N^4-(2,2,2-trichloro-tert-butyloxycarbonyl)-5-(1-hydroxy-3-$                              |
| (trimethylsilyl)prop-2-ynyl)-2'-deoxycytidine ( <b>6b</b> ) and 6-((2R,4S,5R)-4-(tert-                                       |
| butyldimethylsilyloxy)-5-(( <i>tert</i> -butyldimethylsilyloxy)methyl)tetrahydrofuran-2-yl)-4-                               |
| ((trimethylsilyl)ethynyl)-1H-pyrimido[4,5- $d$ ][1,3]oxazine-2,7(4 $H$ ,6 $H$ )-dione ( <b>7b</b> )S14                       |
| $3',5'-Di(tert-butyldimethylsilyl)-N^4-(2,2,2-trichloro-tert-butyloxycarbonyl)-5-(1-hydroxy-3-$                              |
| phenylprop-2-ynyl)-2'-deoxycytidine ( $6c$ ) and $6$ -(( $2R,4S,5R$ )-4-( $tert$ -butyldimethylsilyloxy)-                    |
| 5-(( <i>tert</i> -butyldimethylsilyloxy)methyl)tetrahydrofuran-2-yl)-4-(phenylethynyl)-1 <i>H</i> -                          |
| pyrimido[4,5- <i>d</i> ][1,3]oxazine-2,7(4 <i>H</i> ,6 <i>H</i> )-dione ( <b>7c</b> )                                        |
| 6-((2R,4S,5R)-4-(tert-Butyldimethylsilyloxy)-5-((tert-                                                                       |
| butyldimethylsilyloxy)methyl)tetrahydrofuran-2-yl)-4-vinyl-1 <i>H</i> -pyrimido[4,5-                                         |
| d][1,3]oxazine-2,7(4H,6H)-dione ( <b>7d</b> )                                                                                |
| $3',5'$ -Di( <i>tert</i> -butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro- <i>tert</i> -butyloxycarbonyl)-3,6-dihydro-5-        |
| formyl-6-methyl-2'-deoxycytidine (8a)                                                                                        |
| $3',5'$ -Di( <i>tert</i> -butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro- <i>tert</i> -butyloxycarbonyl)-3,6-dihydro-5-        |
| formyl-6-(trimethylsilylethynyl)-2'-deoxycytidine ( <b>8b</b> )                                                              |
| $3',5'$ -Di( <i>tert</i> -butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-3,6-dihydro-5-                 |
| formyl-6-(2-phenylethynyl)-2'-deoxycytidine ( <b>8c</b> )                                                                    |
| $3^{\circ}, 5^{\circ}$ -Di(tert-butyldimethylsilyl)- $N^{4}$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-3,6-dihydro-5-         |
| formyl-6-vinyl-2'-deoxycytidine ( <b>8d</b> ) and 3',5'-( <i>tert</i> -butyldimethylsilyl)- $N^4$ , $N^4$ -bis(2,2,2-        |
| trichloro- <i>tert</i> -butyloxycarbonyl)-3,6-dihydro-5-formyl-6-vinyl-2'-deoxycytidine ( <b>8e</b> ) S22                    |
| 3',5'-Di( <i>tert</i> -butyldimethylsilyl)-3,6-dihydro-5-formyl-6-methyl-2'-deoxycytidine ( <b>9a</b> )S23                   |
| 3',5'-Di( <i>tert</i> -butyldimethylsilyl)-3,6-dihydro-5-formyl-6-(trimethylsilylethynyl)-2'-                                |
| deoxycytidine (9b)                                                                                                           |
| 3',5'-Di( <i>tert</i> -butyldimethylsilyl)-3,6-dihydro-5-formyl-6-(2-phenylethynyl)-2'-deoxycytidine                         |
| ( <b>9c</b> )                                                                                                                |
| 3',5'-Di( <i>tert</i> -butyldimethylsilyl)-3,6-dihydro-5-formyl-6-vinyl-2'-deoxycytidine <b>9d</b>                           |
| NMR Spectra:                                                                                                                 |

### **General experimental methods:**

All reactions were run under an atmosphere of argon unless otherwise indicated. Room temperature refers to 22 °C, ambient pressure to 1013 hPa. Reagents and anhydrous solvents were transferred via oven-dried syringe or cannula. Flasks were flame dried under vacuum and cooled under a constant stream of argon. Tetrahydrofuran (THF) was distilled under argon from potassium, dichloromethane from SICAPENT (phosphorus pentoxide on solid support with indicator). Pyridine was purchased from Acros (anhydrous over molecular sieves). All other chemicals were purchased from ABCR, Acros, Aldrich, Alfa Aesar, TCI Europe and VWR at the highest commercially available purity and used as such. Reactions were monitored by thin layer chromatography using Merck silica gel 60 F<sub>254</sub> TLC aluminium sheets and visualized under a UV lamp and/or with anisaldehyde staining solution. Chromatographic purification was performed as flash chromatography on Acros silica gel 35– 70, 60 Å, using a forced flow of eluent (method of Still) or MACHEREY-NAGEL silica gel 60 M C18-Reversed phase. Concentration under reduced pressure was performed by rotary evaporation at 40 °C at the appropriate pressure. NMR spectra were recorded on a Varian Mercury plus 300 (operating at 300 MHz for <sup>1</sup>H and 75 MHz for <sup>13</sup>C acquisitions), a Varian Mercury plus 400 (operating at 400 MHz for  $^{1}$ H, 100 MHz for  $^{13}$ C). Chemical shifts  $\delta$  are reported in ppm with the solvent resonance as internal standard (chloroform- $d_1$ : 7.26 (<sup>1</sup>H NMR), 77.16 (<sup>13</sup>C NMR); methanol-d<sub>4</sub>: 3.31 (<sup>1</sup>H NMR), 49.00 (<sup>13</sup>C NMR); dimethyl sulfoxide- $d_6$ : 2.50 (<sup>1</sup>H NMR), 39.52 (<sup>13</sup>C NMR). Coupling constants J are given in Hertz (Hz). Multiplicities are classified by the following abbreviations: s = singlet, d = doublet, t = triplet and combinations thereof, or m = multiplet or bs = broad signal. High resolution mass spectra were obtained on a Bruker Daltonics ESI-FT-ICR-MS APEX II [7 T]. IR spectra were obtained on an ATI/MATTSON Genesis FT-IR as thin film or KBr disk. Absorbance frequencies are reported in reciprocal centimeters (cm<sup>-1</sup>). Melting points were measured with a Büchi "Melting Point B-540" and are uncorrected. Optical rotation data was obtained with a Schmidt+Haensch Polartronic MHZ-8 at the sodium-D line (589 nm) using a 50 mm pathlength cell in the solvent and concentration indicated.

In <sup>13</sup>C NMR reports of diastereomeric mixtures one value is given in the case of overlapped signals, otherwise the corresponding signal is given in parentheses.

In <sup>1</sup>H NMR reports of diastereomeric mixtures protons marked with asterisk indicate the signals of corresponding minor diastereomer. The ratio of the diastereomers was determined by <sup>1</sup>H NMR.

#### 3',5'-Di(tert-butyldimethylsilyl)-5-(1-hydroxyethyl)-2'-deoxycytidine (2a)

To an ice-cooled solution of aldehyde **1** (100 mg, 207  $\mu$ mol, 1.0 equiv) in THF (2.00 mL) methylmagnesium bromide (3.0 M in Et<sub>2</sub>O; 138  $\mu$ L, 413  $\mu$ mol, 2.0 equiv) was added dropwise and the solution stirred at 0 °C. After one hour the reaction mixture was allowed to warm to room temperature and stirred at this temperature for four hours. Subsequently additional amount of methylmagnesium bromide (3.0 M in Et<sub>2</sub>O; 69.0  $\mu$ L, 207  $\mu$ mol, 1.0 equiv) was added and the reaction mixture was stirred overnight at room temperature. Additional portion of methylmagnesium bromide (3.0 M in Et<sub>2</sub>O; 69.0  $\mu$ L, 207  $\mu$ mol, 1.0 equiv) was then added and the reaction mixture was stirred for another three hours at room temperature before it was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL) and diluted with DCM (10 mL). The phases were separated and the aqueous layer was extracted with DCM (2 × 10 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (DCM/MeOH, 60:1  $\rightarrow$  15:1  $\nu/\nu$ ) to yield a mixture of diastereomeric alcohols **2a** with a ratio of 1.1:1 (99.0 mg, 198  $\mu$ mol, 96%) as a colourless oil.

**R<sub>f</sub>:** 0.37 (DCM/MeOH = 15:1 v/v).

**IR:** (KBr)  $v_{\text{max}} = 2858, 2954, 2857, 1656, 1435, 1095, 838, 780, 554 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (400 MHz, CD<sub>3</sub>OD) δ (ppm) 7.76 (s, 1H, **H-6**), 7.73 (s, 1H, **H-6\***), 6.30-6.26 (m, 2H, **H-1'**, **H-1'\***), 4.74-4.44 (m, 2H, C**H**-CH<sub>3</sub>, C**H\***-CH<sub>3</sub>), 4.47-4.42 (m, 2H, **H-3'**, **H-3'\***), 3.96-3.95 (m, 2H, **H-4'**, **H-4'\***), 3.82-3.81 (m, 4H, **H-5'**, **H-5'\***), 2.36-2.30 (m, 2H, **H-2'**, **H-2'\***), 2.11-2.03 (m, 2H, **H-2'**, **H-2'\***), 1.43-1.42 (m, 6H, CH-C**H**<sub>3</sub>, CH-C**H**<sub>3</sub>\*), 0.93-0.91 (m, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.91 (s, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.12 (s, 12H, Si-(C**H**<sub>3</sub>)<sub>2</sub>, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CD<sub>3</sub>OD) δ (ppm) 165.0 (C-4), 157.9 (C-2), 138.3 (C-6), 89.5 (89.4) (C-4'), 87.4 (87.3) (C-1'), 73.9 (73.8) (C-3'), 65.7 (CH-CH<sub>3</sub>), 64.3 (C-5'), 42.3 (42.1) (C-2'), 26.5 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 26.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 22.9 (22.8) (CH-CH<sub>3</sub>), 19.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.8 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.6 (Si-CH<sub>3</sub>), -4.7 (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>). C-5 is not observed.

**HR-MS:** (ESI positive, MeOH),  $[M+H]^+$  calcd for  $C_{23}H_{46}N_3O_5Si_2$ : 500.29705, found: 500.29727,  $[2M+H]^+$  calcd for  $C_{46}H_{91}N_6O_{10}Si_4$ : 999.58683, found: 999.58716.

#### 5-(1-Hydroxyethyl)-2'-deoxycytidine (3a)

In a polypropylene tube the mixture of epimeric alcohols 2a (98.0 mg, 196 µmol, 1.0 equiv) was dissolved in DCM (10.0 mL) and cooled to 0 °C. Subsequently HF·Et<sub>3</sub>N (64.0 µL, 392 µmol, 2.0 equiv) was added in one portion. The solution was allowed to warm to room temperature and stirred overnight. After addition of TMSOMe (0.700 mL, 5.08 mmol, 26 equiv) the reaction mixture was stirred for another 30 min. The suspension was centrifuged for 10 min at 5000 rpm, the supernatant was collected and the residue was resuspended in DCM and centrifuged for 10 min at 5000 rpm. The procedure was repeated one more time and the crude product was purified by reversed phase column chromatography (H<sub>2</sub>O/MeCN 4:1  $\nu/\nu$ ) to yield a mixture of diastereomeric alcohols 3a (40.0 mg, 147 µmol, 75%) as a colourless oil. A ratio could not be calculated.

IR: (CCl<sub>4</sub>)  $v_{\text{max}} = 3441, 2924, 2360, 1736, 1652, 1383, 1247, 1026, 795, 602, 456 \text{ cm}^{-1}$ .

<sup>1</sup>**H-NMR:** (300 MHz, CD<sub>3</sub>OD) δ (ppm) 8.06 -8.05 (m, 2H, **H-6**, **H-6**\*), 6.31-6.26 (m, 2H, **H-1'\***), 4.75-4.68 (m, 2H, C**H**-CH<sub>3</sub>, C**H**-CH<sub>3</sub>\*), 4.42-4.37 (m, 2H, **H-3'**, **H-3'\***), 3.98-3.94 (m, 2H, **H-4'**, **H-4'\***), 3.87-3.81 (m, 2H, **H-5'**, **H-5'\***), 3.78-3.73 (m, 2H, **H-5'**, **H-5'\***), 2.42-2.34 (m, 2H, **H-2'**, **H-2'\***), 2.21-2.12 (m, 2H, **H-2'**, **H-2'\***), 1.48-1.46 (m, 6H, CH-C**H**<sub>3</sub>, CH-C**H**<sub>3</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CD<sub>3</sub>OD) δ (ppm) 166.1 (C-4), 157.9 (C-2), 139.3 (C-6), 111.8 (111.7) (C-5), 88.90 (88.88) (C-4'), 87.7 (87.6) (C-1'), 71.92 (71.90) (C-3'), 65.8 (65.7) (CH-CH<sub>3</sub>), 62.6 (C-5'), 42.21 (42.18) (C-2'), 22.42 (22.40) (CH-CH<sub>3</sub>).

**HR-MS:** (ESI positive, MeOH),  $[M+Na]^+$  calcd for  $C_{11}H_{17}N_3O_5Na$ : 294.10604, found: 294.10617,  $[2M+Na]^+$  calcd for  $C_{22}H_{34}N_6O_{10}Na$ : 565.22286, found: 565.22330.

3',5'-Di(*tert*-butyldimethylsilyl)-5-(1-hydroxy-3-(trimethylsilyl)prop-2-ynyl)-2'-deoxycytidine (2b) and 3',5'-di(*tert*-butyldimethylsilyl)-5-(1-hydroxyprop-2-ynyl)-2'-deoxycytidine (2e)

To a stirred solution of trimethylsilylacetylene (671  $\mu$ L, 4.71 mmol, 4.0 equiv) in THF (9.00 mL) *n*-BuLi (2.5 M in *n*-hexane; 1.89 mL, 4.71 mmol, 4.0 equiv) was added dropwise at -40 °C. The reaction mixture was warmed to -20 °C. After stirring at this temperature for one hour reaction mixture was cooled down to -40 °C and a solution of aldehyde **1** (570 mg, 1.18 mmol, 1.0 equiv) in THF (11.0 mL) was added dropwise. The reaction was stirred at -40 °C for three hours, thereafter at -20 °C for 30 min. The reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (20 mL), diluted with Et<sub>2</sub>O (30 mL) and the aqueous layer extracted with Et<sub>2</sub>O (3 × 10 mL). The combined organic phases were dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. Purification by silica gel chromatography (DCM/MeOH, 60:1  $\rightarrow$  15:1 v/v) yielded mixture of diastereomeric alcohols **2b** with a ratio of 1.9:1 (296 mg, 509  $\mu$ mol, 43 %) as yellow solid and a mixture of diastereomeric alcohols **2e** with a ratio of 1.2:1 (154 mg, 302  $\mu$ mol, 26%) as a slight yellow oil.

#### **2b**:

**R<sub>f</sub>:** 0.21 (DCM/MeOH = 30:1 v/v).

**IR:** (KBr)  $v_{max} = 3427, 2955, 2858, 1658, 1604, 1385, 1253, 1094, 840, 779, 555 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (300 MHz, CD<sub>3</sub>OD) δ (ppm) 7.96 (s, 1H, **H-6**), 7.95 (s, 1H, **H-6\***), 6.24-6.17 (m, 2H, **H-1'**, **H-1'\***), 5.30 (s, 2H, C**H**-OH, C**H\***-OH), 4.45-4.41 (m, 2H, **H-3'**, **H-3'\***), 4.03-3.98 (m, 2H, **H-4'**, **H-4'\***), 3.83-3.81 (m, 4H, **H-5'**, **H-5'\***), 2.48-2.40 (m, 2H, **H-2'**, **H-2'\***), 2.14-2.01 (m, 2H, **H-2'**, **H-2'\***), 0.92-0.91 (m, 36H, 2xSi-C(C**H**<sub>3</sub>)<sub>3</sub>, 2xSi-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.19-0.18 (m, 18H, Si-(C**H**<sub>3</sub>)<sub>3</sub>, Si-(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.12-0.11 (m, 24H, 2xSi-(C**H**<sub>3</sub>)<sub>2</sub>, 2xSi-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 162.8 (162.6) (C-4), 154.9 (C-2), 140.2 (139.9) (C-6), 106.6 (C-5), 102.3 (102.1) (C=C-TMS), 92.8 (92.5) (C=C-TMS), 88.7 (88.5) (C-4'), 87.3 (87.1) (C-1'), 72.8 (72.5) (C-3'), 63.5 (63.4) (C-5'), 60.3 (60.2) (CH-OH), 42.1 (41.8) (C-2'), 26.19 (26.16) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 26.0 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.59 (18.57) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 0.05 (Si-(CH<sub>3</sub>)<sub>3</sub>), -4.31 (-4.34) (Si-CH<sub>3</sub>), -4.63 (-4.65) (Si-CH<sub>3</sub>), -5.06 (Si-CH<sub>3</sub>), -5.11 (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, EtOAc),  $[M+Na]^+$  calcd for  $C_{27}H_{51}N_3O_5Si_3Na$ : 604.30287, found: 604.30327,  $[2M+H]^+$  calcd for  $C_{54}H_{103}N_6O_{10}Si_6$ : 1163.63458, found: 1163.63592,  $[2M+Na]^+$  calcd for  $C_{54}H_{102}N_6O_{10}Si_6Na$ : 1185.61652, found: 1185.61555.

#### **2e:**

**R**<sub>f</sub>: 0.15 (DCM/MeOH = 30:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 3444, 2929, 1660, 1361, 1256, 1093, 837, 780 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (300 MHz, CD<sub>3</sub>OD) δ (ppm) 8.01 (s, 1H, **H-6\***), 7.99 (s, 1H, **H-6**), 6.26-6.20 (m, 2H, **H-1'**, **H-1'\***), 5.34-5.32 (m, 2H, C**H**-OH, C**H\***-OH), 4.47-4.44 (m, 2H, **H-3'**, **H-3'\***), 4.01-3.98 (m, 2H, **H-4'**, **H-4'\***), 3.82-3.79 (m, 4H, **H-5'**, **H-5'\***), 3.15-3.13 (m, 2H, C≡C-**H**, C≡C-**H\***), 2.47-2.38 (m, 2H, **H-2'**, **H-2'\***), 2.13-2.03 (m, 2H, **H-2'**, **H-2'\***), 0.91-0.90 (m, 36H, 2xSi-C(C**H**<sub>3</sub>)<sub>3</sub>, 2xSi-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.11 (s, 24H, 2xSi-(C**H**<sub>3</sub>)<sub>2</sub>, 2xSi-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CD<sub>3</sub>OD) δ (ppm) 164.5 (C-4), 157.7 (C-2), 140.3 (C-6), 108.4 (C-5), 89.8 (89.7) (C-4'), 88.1 (88.0) (C-1'), 82.4 (82.3) (C=C-H), 76.72 (76.69) (C=C-H), 74.2

(74.1) (**C-3'**), 64.38 (64.35) (**C-5'**), 59.81 (59.77) (**CH-OH**), 42.4 (42.3) (**C-2'**), 26.43 (26.41) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 26.21 (26.18) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 19.2 (19.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.8 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.56 (-4.55) (Si-CH<sub>3</sub>), -4.7 (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>), -5.30 (-5.32) (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, MeOH),  $[M+H]^+$  calcd for  $C_{24}H_{44}N_3O_5Si_2$ : 510.2814, found: 510.28181,  $[2M+H]^+$  calcd for  $C_{48}H_{87}N_6O_{10}Si_4$ : 1019.55553, found: 1019.55476.

#### 5-(1-Hydroxyprop-2-ynyl)-2'-deoxycytidine (3b)

To a solution of epimeric alcohols **2b** (68.6 mg, 118 µmol, 1.0 equiv) in EtOAc (2.80 mL) in a polypropylene tube pyridine (44.0 µL, 542 µmol, 4.6 equiv) and HF·pyridine (70% HF, 13.5 µL, 514 µmol, 4.4 equiv) were added subsequently. After stirring for six hours another portion of pyridine (44.0 µL, 542 µmol, 4.6 equiv) and HF·pyridine (70% HF, 13.5 µL, 514 µmol, 4.4 equiv) was added to the reaction mixture. After stirring for 23 hours an additional portion of pyridine (44.0 µL, 542 µmol, 4.6 equiv) and HF·pyridine (70% HF, 13.5 µL, 514 µmol, 4.4 equiv) was added and the stirring was continuing overnight. After addition of TMSOMe (0.50 mL, 3.63 mmol, 31 equiv) and stirring for one hour, a suspension was formed and centrifuged for 10 min at 3000 rpm. The supernatant was collected, the residue resuspended in EtOAc and centrifuged for 10 min at 3000 rpm. The crude product was purified by reversed phase column chromatography (H<sub>2</sub>O/MeCN 4:1  $\nu/\nu$ ) to yield a mixture of diastereomeric alcohols **3b** (20.0 mg, 71.1 µmol, 60%) as a white solid. A ratio could not be calculated.

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 3444$ , 2921, 2239, 1733, 1625, 1384, 711, 602, 454 cm<sup>-1</sup>.

<sup>1</sup>**H NMR** (400 MHz, CD<sub>3</sub>OD) δ (ppm) 8.22-8.20 (m, 2H, **H-6**, **H-6\***), 6.27-6.24 (m, 2H, **H-1'**, **H-1'\***), 5.31-5.30 (m, 2H, C**H**-OH, C**H\***-OH), 4.37-4.33 (m, 2H, **H-3'**, **H-3'\***), 3.96-3.94 (m, 2H, **H-4'**, **H-4'\***), 3.81-3.71 (m, 4H, **H-5'**, **H-5'\***), 3.13-3.12 (m, 2H, C≡C-**H**, C≡C-**H\***), 2.42-2.36 (m, 2H, **H-2'**, **H-2'\***), 2.17-2.09 (m, 2H, **H-2'**, **H-2'\***).

<sup>13</sup>C-NMR: (75 MHz, CD<sub>3</sub>OD) δ (ppm): 165.5 (C-4), 157.8 (C-2), 141.1 (C-6), 108.0 (C-5), 89.0 (C-4'), 87.82 (87.79) (C-1'), 82.4 (C≡C-H), 76.73 (76.66) (C≡C-H), 72.20 (72.17) (C-3'), 63.00 (62.95) (C-5'), 60.0 (CH-OH), 42.1 (C-2').

**HR-MS:** (ESI positive, MeOH),  $[M+H]^+$  calcd for  $C_{12}H_{16}N_3O_5$ : 282.10845, found: 282.10885,  $[M+Na]^+$  calcd for  $C_{12}H_{15}N_3O_5Na$ : 304.09039, found: 304.09060,  $[2M+H]^+$  calcd for  $C_{24}H_{31}N_6O_{10}$ : 563.20962, found: 563.20940.

### 3',5'-Di(*tert*-butyldimethylsilyl)-5-(1-hydroxy-3-phenylprop-2-ynyl)-2'-deoxycytidine (2c)

To a stirred solution of phenylacetylene (91.0  $\mu$ L, 827  $\mu$ mol, 4.0 equiv) in THF (1.50 mL) at -78 °C n-BuLi (2.5 M in n-hexane; 331  $\mu$ L, 827  $\mu$ mol, 4.0 equiv) was added dropwise. After stirring the reaction mixture at this temperature for 90 min a solution of aldehyde **1** (100 mg, 207  $\mu$ mol, 1.0 equiv) in THF (2.00 mL) was added dropwise. The reaction was stirred at -78 °C for three hours thereafter at -50 °C till no starting material was detected by TLC. The reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL), diluted with DCM (10 mL). The aqueous layer was extracted with DCM (3 × 10 mL). The combined organic phases were washed with brine (10 mL) and dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. Purification by silica gel chromatography (DCM/MeOH, 60:1  $\rightarrow$  15:1  $\nu/\nu$ ) yielded a mixture of diastereomeric alcohols **2c** with a ratio of 1.2:1 (82.0 mg, 140  $\mu$ mol, 68%) as a slight yellow oil.

**R<sub>f</sub>:** 0.24 (DCM/MeOH = 30:1 v/v).

**IR:** (KBr)  $v_{\text{max}} = 3420, 2929, 1655, 1470, 1384, 1095, 838, 780, 558 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (300 MHz, CD<sub>3</sub>OD) δ (ppm) 8.08 (d, J = 0.8 Hz, 1H, **H-6\***), 8.06 (d, J = 0.7 Hz, 1H, **H-6**), 7.49-7.45 (m, 4H, C**H** aromat., C**H\*** aromat.), 7.40-7.36 (m, 6H, C**H** aromat., C**H\*** aromat.), 6.29-6.23 (m, 2H, **H-1'**, **H-1'\***), 5.58 (5.57) (m, 2H, C**H**-OH, C**H\***-OH), 4.47-4.42 (m, 2H, **H-3'**, **H-3'\***), 4.02-3.99 (m, 2H, **H-4'**, **H-4'\***), 3.78-3.74 (m, 4H, **H-5'**, **H-5'\***), 2.51-2.42 (m, 2H, **H-2'**, **H-2'\***), 2.15-2.05 (m, 2H, **H-2'**, **H-2'\***), 0.93 (s, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.88 (s, 9H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>), 0.87 (s, 9H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.11 (m, 12H, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*), 0.04 (m, 6H), 0.03 (s, 3H), 0.02 (s, 3H).

<sup>13</sup>C-NMR: (75 MHz, CD<sub>3</sub>OD) δ (ppm) 164.9 (C-4), 158.1 (C-2), 140.2 (C-6), 132.7 (132.6) (C aromat.), 130.03 (130.00) (C aromat.), 129.62 (129.61) (C aromat.), 123.3 (C aromat.), 89.75 (89.72), 88.1 (88.0), 87.6 (87.5), 74.3 (74.2) (C-3'), 64.6 (C-5'), 60.6 (60.5) (CH-OH), 42.46 (42.40) (C-2'), 26.39 (26.36) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 26.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 19.11 (19.08) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.8 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.6 (Si-CH<sub>3</sub>), -4.7 (Si-CH<sub>3</sub>), -5.2 (-5.3) (Si-CH<sub>3</sub>), -5.3 (-5.4) (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, MeOH),  $[M+H]^+$  calcd for  $C_{30}H_{48}N_3O_5Si_2$ : 586.31270, found: 586.31259,  $[2M+H]^+$  calcd for  $C_{60}H_{95}N_6O_{10}Si_4$ : 1171.61813, found: 1171.61902.

#### 5-(1-Hydroxy-3-phenylprop-2-ynyl)-2'-deoxycytidine (3c)

In a polypropylene tube the mixture of epimeric alcohols **2c** (75.0 mg, 128  $\mu$ mol, 1.0 equiv) was dissolved in EtOAc (3.70 mL), subsequently pyridine (52.0  $\mu$ L, 640  $\mu$ mol, 5.0 equiv) and HF·pyridine (70% HF, 48.0  $\mu$ L, 1.92 mmol, 15 equiv) were added and the reaction mixture was stirred overnight at room temperature. After addition of TMSOMe (0.50 mL, 3.84 mmol, 30 equiv) and stirring for one hour the suspension was centrifuged for 10 min at 3000 rpm and the crude product was purified by reversed phase column chromatography (H<sub>2</sub>O/MeCN 4:1  $\rightarrow$  2:1  $\nu/\nu$ ) to yield a mixture of diastereomeric alcohols **3c** with a ratio of 1.1:1 (33.0 mg, 92.3  $\mu$ mol, 72%) as a colourless oil.

IR: (CCl<sub>4</sub>)  $v_{\text{max}} = 3355, 2922, 1660, 1488, 1299, 1093, 1029, 758, 607, 454 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (300 MHz, CD<sub>3</sub>OD) δ (ppm) 8.21 (s, 1H, **H-6'**), 8.19 (s, 1H, **H-6'\***) 7.49-7.46 (m, 4H, C**H** aromat., C**H\*** aromat.), 7.36-7.34 (m, 6H, C**H** aromat., C**H\*** aromat.), 6.25 (m, 2H, **H-1'**, **H-1'\***), 5.54 (s, 2H, C**H**-OH, C**H\***-OH), 4.36-4.32 (m, 2H, **H-3'**, **H-3'\***), 3.97-3.92 (m, 2H, **H-4'**, **H-4'\***), 3.72-3.68 (m, 4H, **H-5'**, **H-5'\***), 2.45-2.36 (m, 2H, **H-2'**, **H-2'\***), 2.18-2.09 (m, 2H, **H-2'**, **H-2'\***).

<sup>13</sup>C-NMR: (100 MHz, CD<sub>3</sub>OD) δ (ppm) 165.5 (C-4), 157.8 (C-2), 141.0 (140.9) (C-6), 132.7 (C aromat.), 129.9 (C aromat.), 129.6 (C aromat.), 123.5 (C aromat.), 108.2 (C-5), 89.03 (88.97) (C-4'), 87.9 (87.8), 87.70 (87.68), 87.5 (87.4), 72.3 (72.2) (C-3'), 63.04 (62.98), 60.8 (60.7), 42.08 (42.06) (C-2').

**HR-MS:** (ESI positive, MeOH),  $[M+H]^+$  calcd for  $C_{18}H_{20}N_3O_5$ : 358.13975, found: 358.13957,  $[M+Na]^+$  calcd for  $C_{18}H_{19}N_3O_5Na$ : 380.12169, found: 380.12140,  $[2M+H]^+$  calcd for  $C_{36}H_{39}N_6O_{10}$ : 715.27222, found: 715.27221

#### 3',5'-Di(tert-butyldimethylsilyl)-5-(1-hydroxyprop-2-enyl)-2'-deoxycytidine (2d)

To an ice-cooled solution of aldehyde 1 (50.0 mg, 103  $\mu$ mol, 1.0 equiv) in THF (1.00 mL) vinylmagnesium bromide (1.0 M in THF; 155  $\mu$ L, 155  $\mu$ mol, 1.5 equiv) was added dropwise. After stirring for 20 min the reaction mixture was allowed to warm to room temperature and

was stirred for additional two hours. Subsequently an additional amount of vinylmagnesium bromide (1.0 M in THF; 258  $\mu$ L, 258  $\mu$ mol, 2.5 equiv) was added at 0 °C and the reaction mixture was stirred overnight at room temperature. The reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL) and diluted with Et<sub>2</sub>O (10 mL). The phases were separated and the aqueous layer was extracted with Et<sub>2</sub>O (2 × 5 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (DCM/MeOH, 60:1  $\rightarrow$  15:1  $\nu/\nu$ ) to yield a mixture of diastereomeric alcohols **2d** with a ratio of 1.1:1 (41.0 mg, 0.19 mmol, 77%) as a slight yellow solid.

**R<sub>f</sub>:** 0.36 (DCM/MeOH = 15:1 v/v).

**IR:** (KBr)  $v_{\text{max}} = 3420$ , 1638, 1428, 1385, 1093, 838, 780, 550 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (300 MHz, CD<sub>3</sub>OD) δ (ppm) 7.75 (s, 1H, **H-6\***), 7.73 (s, 1H, **H-6**), 6.29-6.24 (m, 2H, **H-1'**, **H-1'\***), 6.01-5.95 (m, 2H, C**H**=CH<sub>2</sub>, C**H\***=CH<sub>2</sub>), 5.43-5.35 (m, 2H, CH=C**H<sub>2</sub>**, CH=C**H<sub>2</sub>\***), 5.28-5.23 (m, 2H, CH=C**H<sub>2</sub>**, CH=C**H<sub>2</sub>\***), 5.06-5.04 (m, 2H, CH-OH, C**H\***-OH), 4.46-4.43 (m, 2H, **H-3'**, **H-3'\***), 3.99-3.92 (m, 2H, **H-4'**, **H-4'\***), 3.81-3.80 (m, 4H, **H-5'**, **H-5'\***), 2.39-2.31 (m, 2H, **H-2'**, **H-2'\***), 2.14-1.98 (m, 2H, **H-2'**, **H-2'\***), 0.93 (s, 18H, Si-C(C**H<sub>3</sub>**)<sub>3</sub>, Si-C(C**H<sub>3</sub>**)<sub>3</sub>\*), 0.91 (s, 18H, Si-C(C**H<sub>3</sub>**)<sub>3</sub>, Si-C(C**H<sub>3</sub>**)<sub>3</sub>\*), 0.12 (s, 12H, Si-(C**H<sub>3</sub>**)<sub>2</sub> Si-(C**H<sub>3</sub>**)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (75 MHz, CD<sub>3</sub>OD) δ (ppm) 165.1 (C-4), 157.8 (C-2), 139.7 (C-6), 139.04 (138.97) (CH=CH<sub>2</sub>), 116.7 (116.6) (CH=CH<sub>2</sub>), 89.52 (89.47) (C-4'), 87.5 (C-1'), 73.96 (73.94), 70.7 (70.5), 64.4 (C-5'), 42.34 (42.26) (C-2'), 26.5 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 26.4 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 19.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.8 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.5 (Si-CH<sub>3</sub>), -4.7 (Si-CH<sub>3</sub>), -5.18 (Si-CH<sub>3</sub>), -5.23 (Si-CH<sub>3</sub>). C-5 is not observed.

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH),  $[M+H]^+$  calcd for  $C_{24}H_{46}N_3O_5Si_2$ : 512.29705, found: 512.29713.

#### 5-(1-Hydroxyprop-2-enyl)-2'-deoxycytidine (3d)

In a polypropylene tube mixture of epimeric alcohols 2d (134 mg, 262 µmol, 1.0 equiv) was dissolved in EtOAc (6.00 mL). Subsequently pyridine (97.0 µL, 1.20 mmol, 4.6 equiv) and HF·pyridine (70% HF, 30.0 µL, 1.15 mmol, 4.4 equiv) were added and the solution was stirred for six hours. An additional portion of pyridine (97.0 µL, 1.20 mmol, 4.6 equiv) and HF·pyridine (70% HF, 30.0 µL, 1.15 mmol, 4.4 equiv) was added to the reaction mixture which was stirred for 46 hours. After the addition of TMSOMe (1.00 mL, 7.24 mmol, 28 equiv) a suspension was formed, which was stirred for two hours and centrifuged for 10 min at 3000 rpm. The supernatant was then collected and the residue resuspended in EtOAc and centrifuged for 10 min at 3000 rpm. The procedure was repeated one more time. The

reaction yielded a mixture of diastereomeric alcohols 3d (54.0 mg, 191  $\mu$ mol, 73%) as a slight yellow oil. A ratio could not be calculated.

**IR:** (KBr)  $v_{max} = 3419$ , 1656, 1603, 1516, 1480, 1300, 1257, 1094, 1054, 931, 789, 765, 545 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (400 MHz, CD<sub>3</sub>OD) δ (ppm) 8.02-8.01 (m, 2H, **H-6**, **H-6\***), 6.26-6.23 (m, 2H, **H-1'**, **H-1'\***), 6.12-5.93 (m, 2H, C**H**=CH<sub>2</sub>, C**H**=CH<sub>2</sub>\*), 5.42-5.36 (m, 2H, CH=C**H**<sub>2</sub>, CH=C**H**<sub>2</sub>\*), 5.27-5.24 (m, 2H, CH=C**H**<sub>2</sub>, CH=C**H**<sub>2</sub>\*), 5.04-5.02 (m, 2H, C**H**-OH, C**H\***-OH), 4.38-4.34 (m, 2H, **H-3'**, **H-3'\***), 3.95-3.92 (m, 2H, **H-4'**, **H-4'\***), 3.83-3.66 (m, 4H, **H-5'**, **H-5'\***), 2.39-2.33 (m, 2H, **H-2'**, **H-2'\***), 2.16-2.10 (m, 2H, **H-2'**, **H-2'\***).

<sup>13</sup>C-NMR: (75 MHz, CD<sub>3</sub>OD) δ (ppm) 165.7 (C-4), 157.7 (C-2), 140.6 (C-6), 139.1 (139.0) (CH=CH<sub>2</sub>), 116.51 (116.45) (CH=CH<sub>2</sub>), 109.5 (C-5), 88.9 (C-4'), 87.6 (C-1'), 71.87 (71.85) (C-3'), 70.8 (70.70) (CH-OH), 62.6 (C-5'), 42.13 (42.09) (C-2').

**HR-MS:** (ESI positive, MeOH),  $[M+H]^+$  calcd for  $C_{12}H_{18}N_3O_5$ : 284.12410, found: 284.12412,  $[M+Na]^+$  calcd for  $C_{12}H_{17}N_3O_5Na$ : 306.10604, found: 306.10606.

## 3',5'-Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-5-formyl-2'-deoxycytidine (4)

To a solution of aldehyde **1** (0.500 g, 1.03 mmol, 1.0 equiv) in DCM (4.00 mL) pyridine (100  $\mu$ L, 1.24 mmol, 1.2 equiv) was added. The reaction mixture was cooled to 0 °C whereby the solution of TCBocCl (0.300 g, 1.25 mmol, 1.2 equiv) in DCM (2.00 mL) was added dropwise. The resulting clear solution was warmed to room temperature and stirred overnight. Subsequently it was poured into ice. After the phases were separated and the aqueous layer was extracted with DCM (3 × 5 mL), the combined organic phases were washed several times with saturated aqueous CuSO<sub>4</sub> solution and dried over MgSO<sub>4</sub>. The solvents were removed under reduced pressure. The crude product was purified by column chromatography (Hex/EtOAc, 6:1  $\rightarrow$  1:1  $\nu/\nu$ ) to yield **4** (395 mg, 5.75  $\mu$ mol, 56%) as a yellow solid.

**R<sub>f</sub>:** 0.48 (Hex/EtOAc = 2:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 2954$ , 2857, 1778, 1663, 1564, 1489, 1386, 1254, 1142, 1029, 837, 782 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (400 MHz, CDCl<sub>3</sub>) δ (ppm) 10.63 (s, 1H, N**H**), 9.46 (s, 1H, C**H**O), 8.71 (s, 1H, **H-6**), 6.19 (dd, J = 6.0, 6.0 Hz, 1H, **H-1'**), 4.35-4.32 (m, 1H, **H-3'**), 4.10-4.07 (m, 1H, **H-4'**), 3.98 (dd, J = 11.7, 2.5 Hz, 1H, **H-5'**), 3.78 (dd, J = 11.7, 2.5 Hz, 1H, **H-5'**), 2.71-2.65 (m, 1H,

**H-2'**), 2.13-2.06 (m, 1H, **H-2'**), 2.00-1.99 (m, 6H,  $C(CH_3)_2$ ), 0.89 (s, 18H,  $2xSi-C(CH_3)_3$ ), 0.10 (s, 3H,  $Si-CH_3$ ), 0.07 (s, 6H,  $2xSi-CH_3$ ), 0.06 (s, 3H,  $Si-CH_3$ ).

<sup>13</sup>C-NMR: (75 MHz, CDCl<sub>3</sub>) δ (ppm) 187.3 (CHO), 159.8 (C-2), 154.0 (NHCOO), 152.5 (C-6), 147.2 (C-4), 105.2 (CCl<sub>3</sub>), 90.3 (C-5), 89.2 (C-4'), 88.7 (C-1'), 71.6 (C-3'), 62.7 (C-5'), 42.9 (C-2'), 26.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.9 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 21.6 (C(CH<sub>3</sub>)), 21.5 (C(CH<sub>3</sub>)) 18.6 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.4 (Si-CH<sub>3</sub>), -4.8 (Si-CH<sub>3</sub>), -5.1 (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>). C(CH<sub>3</sub>)<sub>2</sub> is not observed.

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH), [M+H]<sup>+</sup> calcd for C<sub>27</sub>H<sub>47</sub>Cl<sub>3</sub>N<sub>3</sub>O<sub>7</sub>Si<sub>2</sub>: 686.20126, found: 686.20085.

Melting range: 46 °C - 48 °C.

**Optical rotation:**  $\left[\alpha\right]_{D}^{24} \left(\deg \text{ cm}^{3} \text{ g}^{-1} \text{ dm}^{-1}\right) = +26.8 \text{ (c} = 1.0, \text{ CHCl}_{3}).$ 

3',5'-(tert-Butyldimethylsilyl)- $N^4$ ,  $N^4$ -bis(2,2,2-trichloro-tert-butyloxycarbonyl)-5-formyl-2'-deoxycytidine (5)

To a solution of aldehyde **1** (1.50 g, 3.10 mmol, 1.0 equiv) in DCM (44.0 mL) and pyridine (30.0 mL) a solution of TCBocCl (5.22 g, 21.7 mmol, 7.0 equiv) in DCM (12.0 mL) was added dropwise at room temperature. After stirring at this temperature overnight the reaction mixture was poured into ice. After phase separation, the aqueous layer was extracted with DCM (3 × 30 mL). The combined organic phases were washed with brine and dried over MgSO<sub>4</sub>. The solvents were removed under reduced pressure. The crude product was purified by column chromatography (Hex/EtOAc,  $20:1 \rightarrow 1:1 \ v/v$ ) to yield **5** (1.39 g, 1.56 mmol, 50%) as a yellow solid.

**R**<sub>f</sub>: 0.61 (Hex/EtOAc = 2:1 v/v).

**IR:** (KBr)  $v_{\text{max}} = 3441$ , 2954, 1819, 1686, 1520, 1389, 1289, 1110, 838, 792 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (400 MHz, CDCl<sub>3</sub>) δ (ppm) 9.62 (s, 1H, CHO), 8.90 (s, 1H, **H-6**), 6.19 (dd, J = 5.8, 5.8 Hz, 1H, **H-1'**), 4.37-4.41 (m, 1H, **H-3'**), 4.06-4.08 (m, 1H, **H-4'**), 3.99 (dd, J = 11.6, 2.9 Hz, 1H, **H-5'**), 3.81 (dd, J = 11.6, 2.9 Hz, 1H, **H-5'**), 2.62-2.68 (m, 1H, **H-2'**), 2.03-2.09 (m, 1H, **H-2'**), 1.92-1.91 (m, 12H, 2xC(C**H**<sub>3</sub>)<sub>2</sub>, 0.92 (s, 9H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, 0.12 (s, 3H, Si-C**H**<sub>3</sub>), 0.11 (s, 9H, 3xSi-C**H**<sub>3</sub>);

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 183.3 (CHO), 160.9 (C-2), 153.6 (NCOO), 152.0 (C-6), 146.1 (C-4), 113.5, 105.4 (CCl<sub>3</sub>), 91.7, 88.8 (C-4'), 88.3 (C-1'), 70.3 (C-3'), 62.1 (C-5'), 42.4 (C-2'), 26.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.8 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 21.39 (C(CH<sub>3</sub>)<sub>2</sub>), 21.36 (C(CH<sub>3</sub>)<sub>2</sub>), 18.7 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.4 (Si-CH<sub>3</sub>), -4.7 (Si-CH<sub>3</sub>), -4.9 (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH), [M+Na]<sup>+</sup> calcd for C<sub>32</sub>H<sub>51</sub>C<sub>16</sub>N<sub>3</sub>O<sub>9</sub>Si<sub>2</sub>Na: 910.11872, found: 910.11808.

Melting range: 64 °C-66 °C.

**Optical rotation:**  $\left[\alpha_{D}^{24} \left(\text{deg cm}^{3} \text{ g}^{-1} \text{ dm}^{-1}\right) = +31.6 \text{ (c} = 1.0, \text{ CHCl}_{3}\right).$ 

3',5'-Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-5-(1-hydroxyethyl)-2'-deoxycytidine (6a) and 6-((2R,4S,5R)-4-(tert-butyldimethylsilyloxy)methyl)tetrahydrofuran-2-yl)-4-methyl-1H-pyrimido[4,5-d][1,3]oxazine-2,7(4H,6H)-dione (7a)

To an ice-cooled solution of aldehyde **4** (81.0 mg, 118 µmol, 1.0 equiv) in THF (3.00 mL) methylmagnesium bromide (3.0 M in Et<sub>2</sub>O; 78.0 µL, 236 µmol, 2.0 equiv) was added dropwise and the solution was allowed to warm to room temperature. After one hour the reaction mixture was cooled down to 0 °C and an additional amount of methylmagnesium bromide (3.0 M in Et<sub>2</sub>O; 78.0 µL, 236 µmol, 2.0 equiv) was added dropwise. The reaction mixture was stirred overnight at room temperature. Afterwards the reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL) and diluted with DCM (5 mL). The phases were separated and the aqueous layer was extracted with DCM (2 × 5 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (Hex/EtOAc, 20:1  $\rightarrow$  2:1 v/v and than DCM/MeOH, 30:1  $\rightarrow$  15:1 v/v) to yield a mixture of diastereomeric alcohols **6a** (23 mg, 32.7 µmol, 28%) as yellow oil (a ratio could not be calculated) and a mixture of diastereomers **7a** with a ratio of 1.9:1 (22 mg, 41.8 µmol, 35%) as a slight yellow oil.

6a:

**R<sub>f</sub>:** 0.57 (Hex/EtOAc =  $3:1 \ v/v$ ).

Due to spontaneous cyclisation of **6a** to **7a** <sup>1</sup>H-NMR spectrum of **6a** contains compound **7a**.

<sup>1</sup>**H-NMR:** (300 MHz, CDCl<sub>3</sub>) δ (ppm) 12.05 (s, 2H), 7.60 (s, 1H, **H-6**), 7.59 (s, 1H, **H-6\***), 6.28-6.21 (m, 2H, **H-1'\***), 4.72-4.67 (m, 2H, C**H**-CH<sub>3</sub>, C**H\***-CH<sub>3</sub>), 4.40-4.36 (m, 2H,

**H-3'**, **H-3'\***), 4.00-3.97 (m, 2H, **H-4'**, **H-4'\***), 3.81-3.77 (m, 4H, **H-5'**, **H-5'\***), 2.39-2.30 (m, 2H, **H-2'**, **H-2'\***), 2.07-1.95 (m, 14H, **H-2'**, **H-2'\***,  $C(CH_3)_2$ ,  $C(CH_3)_2$ , 1.50-1.46 (m, 3H, CH-CH<sub>3</sub>, CH-CH<sub>3</sub>\*), 0.91 (s, 18H, Si- $C(CH_3)_3$ , Si- $C(CH_3)_3$ \*), 0.89 (s, 18H, Si- $C(CH_3)_3$ , Si- $C(CH_3)_3$ \*), 0.10 (s, 12H, Si- $(CH_3)_2$ ), 0.08-0.07 (m, 12H, Si- $(CH_3)_2$ ), Si- $(CH_3)_2$ \*).

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH), [M+H]<sup>+</sup> calcd for C<sub>28</sub>H<sub>51</sub>Cl<sub>3</sub>N<sub>3</sub>O<sub>7</sub>Si<sub>2</sub>: 702.23256, found: 702.23273.

7a:

**R<sub>f</sub>:** 0.24 (DCM/MeOH = 30:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 2929, 2857, 1758, 1669, 1561, 1489, 1362, 1254, 1077, 837, 780, 668 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (300 MHz, CDCl<sub>3</sub>) δ (ppm) 8.38 (bs, 2H, N**H**, N**H\***), 8.00 (d, J = 1.1 Hz, 1H, **H-6**), 7.94 (d, J = 1.2 Hz, 1H, **H-6\***), 6.24-6.17 (m, 2H, **H-1'**, **H-1'\***), 5.36-5.28 (m, 2H, C**H**-CH<sub>3</sub>, C**H\***-CH<sub>3</sub>), 4.37-4.30 (m, 2H, C-3', C-3'\*), 4.08-3.99 (m, 2H, C-4', C-4'\*), 3.93-3.84 (m, 2H, C-5', C-5'\*), 3.78-3.73 (m, 2H, C-5', C-5'\*), 2.64-2.56 (m, 2H, C-2', C-2'\*), 2.03-1.89 (m, 2H, C-2', C-2'\*), 1.65 (d, J = 1.0 Hz, 3H, CH-C**H**<sub>3</sub>), 1.62 (d, J = 0.8 Hz, 3H, CH-C**H**<sub>3</sub>\*), 0.90-0.88 (m, 36H, 2xSi-C(C**H**<sub>3</sub>)<sub>3</sub>, 2xSi-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.09-0.06 (m, 24H, 2xSi-(C**H**<sub>3</sub>)<sub>2</sub>, 2xSi-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (75 MHz, CDCl<sub>3</sub>) δ (ppm) 159.1 (158.9) (C-4), 154.6 (C-2), 149.8 (149.6) (NHCOO), 138.4 (138.1) (C-6), 101.6 (101.3) (C-5), 88.8 (88.7) (C-4'), 88.0 (87.7) (C-1'), 72.9 (72.7), 72.1 (72.0), 63.0 (62.9) (C-5'), 42.8 (42.7) (C-2'), 26.1 (26.0) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.9 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 20.9 (20.3) (CH-CH<sub>3</sub>), 18.6 (18.50) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.14 (18.12) (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.4 (-4.5) (Si-CH<sub>3</sub>), -4.8 (Si-CH<sub>3</sub>), -5.1 (-5.2) (Si-CH<sub>3</sub>), -5.3 (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, MeOH),  $[M+Na]^+$  calcd for  $C_{24}H_{43}N_3O_6Si_2Na$ : 548.25826, found: 548.25858,  $[2M+Na]^+$  calcd for  $C_{48}H_{86}N_6O_{12}Si_4Na$ : 1073.52730, found: 1073.52735.

3',5'-Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-5-(1-hydroxy-3-(trimethylsilyl)prop-2-ynyl)-2'-deoxycytidine (6b) and 6-((2R,4S,5R)-4-(tert-butyldimethylsilyloxy)-5-((tert-butyldimethylsilyloxy)methyl)tetrahydrofuran-2-yl)-4-((trimethylsilyl)ethynyl)-1H-pyrimido[4,5-d][1,3]oxazine-2,7(4H,6H)-dione (7b)

To a stirred solution of trimethylsilylacetylene (124  $\mu$ L, 873  $\mu$ mol, 4.0 equiv) in THF (1.50 mL) *n*-BuLi (2.5 M in *n*-hexane; 349  $\mu$ L, 873  $\mu$ mol, 4.0 equiv) was added dropwise at -40 °C. The reaction mixture was stirred at this temperature for one hour. After the reaction mixture was cooled down to -60 °C a solution of aldehyde **4** (150 mg, 218  $\mu$ mol, 1.0 equiv) in THF

(1.50 mL) was added dropwise. The reaction mixture was stirred at -60 °C for two and a half hours and thereafter at -50 °C for 30 min. The reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL), diluted with DCM (5 mL) and the aqueous layer was extracted with DCM (3 × 5 mL). The combined organic phases were washed with brine, dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. Purification by silica gel chromatography (Hex/EtOAc,  $20:1 \rightarrow 1:1 \ v/v$  and than DCM/MeOH,  $30:1 \rightarrow 15:1 \ v/v$ ) yielded a mixture of diastereomeric alcohols **6b** with a ratio of 2:1 (72.0 mg, 91.7 µmol, 42%) as a yellow oil and a mixture of diastereomers **7b** with a ratio of 1.1:1 (40.0 mg, 65.8 µmol, 30%) as a yellow oil.

#### 6b:

**R**<sub>f</sub>: 0.55 (Hex/EtOAc = 3:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{max} = 3337$ , 2955, 2858, 1769, 1666, 1564, 1472, 1371, 1253, 1030, 840, 786 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (400 MHz, CDCl<sub>3</sub>) δ (ppm) 12.02 (bs, 2H), 7.94 (s, 1H, **H-6**), 7.90 (s, 1H, **H-6\***), 6.19-6.12 (m, 2H, **H-1'**, **H-1'\***), 5.38 (s, 1H, C**H**-OH), 5.31(s, 1H, C**H\***-OH), 4.37-4.35 (m, 2H, **H-3'**, **H-3'\***), 4.05-4.01 (m, 2H, **H-4'**, **H-4'\***), 3.80-3.71 (m, 4H, **H-5'**, **H-5'\***), 2.46-2.43 (m, 2H, **H-2'**, **H-2'\***), 2.09-2.01 (m, 2H, **H-2'**, **H-2'\***), 1.95 (s, 12H, C(C**H**<sub>3</sub>)<sub>2</sub>, C(C**H**<sub>3</sub>)<sub>2</sub>\*), 0.90 (s, 36H, 2xSi-C(C**H**<sub>3</sub>)<sub>3</sub>, 2xSi-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.19 (s, 18H, Si-(C**H**<sub>3</sub>)<sub>3</sub>, Si-(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.09-0.08 (m, 24H, 2xSi-(C**H**<sub>3</sub>)<sub>2</sub>, 2xSi-(C**H**<sub>3</sub>)<sub>2</sub>\*).

In <sup>13</sup>C-NMR spectrum of **6b** signals of **7b** could be observed due to spontaneous cyclisation of diastereomeric alcohols **6b**.

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 159.6, 147.2, 138.3, 112.7, 106.3, 102.5, 97.7, 96.9, 92.1, 88.8, 87.4, 73.12 (72.8), 63.5, 60.5, 41.7, 26.0, 25.9, 21.43, 21.40, 18.5, 18.1, 0.01, -4.50, -4.69, -5.14, -5.18.

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH),  $[M+H]^+$  calcd for  $C_{32}H_{57}Cl_3N_3O_7Si_3$ : 784.25644, found: 784.25647,  $[M+Na]^+$  calcd for  $C_{32}H_{56}Cl_3N_3O_7Si_3Na$ : 806.23838, found: 806.23818.

#### **7b**:

**R<sub>f</sub>:** 0.27 (DCM/MeOH = 30:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{max}$  =3186, 2929, 2857, 1766, 1673, 1564, 1491, 1362, 1316, 1252, 1058, 840, 780, 669 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (300 MHz, CDCl<sub>3</sub>) δ (ppm) 8.22 (s, 1H, **H-6**), 8.19 (s, 1H, **H-6\***), 6.21-6.14 (m, 2H, **H-1'**, **H-1'\***), 5.81 (d, J = 1.0 Hz, 1H, CH\*-C≡C-TMS), 5.80 (d, J = 0.9 Hz, 1H, CH\*-C≡C-TMS), 4.57 (bs, 2H), 4.35-4.32 (m, 2H, **H-3'**, **H-3'\***), 4.10-4.07 (m, 1H, **H-4'**), 4.10-4.03 (m, 1H, **H-4'\***), 3.89-3.84 (m, 2H, **H-5'**, **H-5'\***), 3.80-3.74 (m, 2H, **H-5'**, **H-5'\***), 2.73-2.56 (m, 2H, **H-2'**, **H-2'\***), 2.08-1.98 (m, 2H, **H-2'**, **H-2'\***), 0.91-0.88 (m, 36H, 2xSi-C(CH<sub>3</sub>)<sub>3</sub>, 2xSi-C(CH<sub>3</sub>)<sub>3</sub>\*), 0.20 (s, 9H, Si-(CH<sub>3</sub>)<sub>3</sub>), 0.19 (s, 9H, Si-(CH<sub>3</sub>)<sub>3</sub>\*), 0.09-0.07 (m, 24H, 2xSi-(CH<sub>3</sub>)<sub>2</sub>, 2xSi-(CH<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (75 MHz, CDCl<sub>3</sub>) δ (ppm) 158.7 (C-4), 154.6 (C-2), 148.7 (NHCOO), 140.1 (C-6), 97.9 (C-5), 97.0 (C=C-TMS), 96.5 (C=C-TMS), 89.1 (C-4'), 88.6 (C-1'), 72.3 (72.0) (C-3'), 66.2 (65.9) (CH-C=C-TMS), 63.0 (C-5'), 42.8 (C-2'), 26.2 (26.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 26.0

(25.9) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.4 (18.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>), - 0.029 (-0.351) (Si-(CH<sub>3</sub>)<sub>3</sub>), -4.4 (Si-CH<sub>3</sub>), -4.8 (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>), -5.3 (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, MeOH),  $[M+Na]^+$  calcd for  $C_{28}H_{49}N_3O_6Si_3Na$ : 630,28269, found: 630.28187.

3',5'-Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-5-(1-hydroxy-3-phenylprop-2-ynyl)-2'-deoxycytidine (6c) and 6-((2R,4S,5R)-4-(tert-butyldimethylsilyloxy)-5-((tert-butyldimethylsilyloxy)methyl)tetrahydrofuran-2-yl)-4-(phenylethynyl)-1H-pyrimido[4,5-d][1,3]oxazine-2,7(4H,6H)-dione (7c)

To a stirred solution of phenylacetylene (77.0  $\mu$ L, 698  $\mu$ mol, 4.0 equiv) in THF (1.50 mL) at -85 °C 1.89 ml of n-BuLi (2.5 M in n-hexane; 279  $\mu$ L, 698  $\mu$ mol, 4.0 equiv) was added dropwise. Subsequently the temperature was increased to -40 °C in the course of 1 hour and lowered to -78 °C. A solution of aldehyde **4** (120 mg, 175  $\mu$ mol, 1.0 equiv) in THF (3.00 mL) was added dropwise and this mixture stirred for one hour. The reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL), diluted with DCM (5 mL) and the aqueous layer was extracted with DCM (3  $\times$  5 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO<sub>4</sub> and the solvents were rotary evaporated. Purification by silica gel chromatography (Hex/EtOAc, 20:1  $\rightarrow$  2:1  $\nu/\nu$  and than DCM/MeOH, 30:1  $\rightarrow$  15:1  $\nu/\nu$ ) yielded a mixture of diastereomeric alcohols **6c** with a ratio of 1.6:1 (58.0 mg, 73.5  $\mu$ mol, 47% brsm) as a yellow oil and a mixture of diastereomers **7c** with a ratio of 1.4:1 (32.0 mg, 52.3  $\mu$ mol, 34% brsm) as an orange solid. And 14.0 mg (2.04  $\mu$ mol, 12%) of recovered starting material.

#### 6c:

**R**<sub>f</sub>: 0.18 (Hex/EtOAc = 4:1 v/v)

**IR:** (CCl<sub>4</sub>)  $v_{max} = 3390, 2929, 1770, 1664, 1562, 1255, 1148, 1028, 837, 781 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (300 MHz, CDCl<sub>3</sub>) δ (ppm) 12.04 (bs, 2H), 8.01 (s, 2H, **H-6**, **H-6\***), 7.49-7.42 (m, 4H, C**H** aromat., C**H\*** aromat.), 7.37-7.28 (m, 6H, C**H** aromat., C**H\*** aromat.), 6.23-6.15 (m, 2H, **H-1'**, **H-1'\***), 5.61 (s, 1H, C**H**-C≡C-Ph), 5.57 (s, 1H, C**H\***-C≡C-Ph) 4.37-4.33 (m, 2H, **H-3'**, **H-3'\***), 4.03-3.99 (m, 2H, **H-4'**, **H-4'\***), 3.73-3.58 (m, 4H, **H-5'**, **H-5'\***), 2.50-2.40 (m, 2H, **H-2'**, **H-2'\***), 2.06-1.99 (m, 2H, **H-2'**, **H-2'\***), 1.96 (s, 12H, C(C**H**<sub>3</sub>)<sub>2</sub>, C(C**H**<sub>3</sub>)<sub>2</sub>\*), 0.89 (s, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.85-0.84 (m, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>2</sub>\*), 0.07-0.06 (m, 12H, Si-(C**H**<sub>3</sub>)<sub>2</sub>, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 159.7, 147.2, 137.9, 131.9 131.8, 128.92, 128.88, 128.50, 128.47, 122.3, 113.1, 106.3, 89.1, 88.84, 88.75, 87.3, 87.2, 86.9, 86.2, 73.0 (72.9),

63.4 (63.3), 60.6 (60.4), 41.8 (41.6), 26.02 (26.0), 25.91, 25.85, 21.44 (21.42), 18.43 (18.42), 18.10 (18.09), -4.55, -4.73, -5.30, -5.42.

**HR-MS:** (ESI positive, MeOH),  $[M+Na]^+$  calcd for  $C_{35}H_{52}Cl_3N_3O_7Si_2Na$ : 810.23071, found: 810.22997.

7c:

**R<sub>f</sub>:** 0.24 (DCM/MeOH = 30:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 2928, 2857, 1765, 1669, 1564, 1491, 1254, 1093, 1031, 837, 782, 603 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (300 MHz, CDCl<sub>3</sub>) δ (ppm) 8.31 (s, 1H, **H-6**), 8.26 (s, 1H, **H-6\***), 7.45 (m, 4H, C**H** aromat., C**H\*** aromat.), 7.41-7.30 (m, 6H, C**H** aromat., C**H\*** aromat.), 6.23-6.18 (m, 2H, **H-1'**, **H-1'\***), 6.09 -6.07 (m, 2H, C**H**-C≡C-Ph, C**H\***-C≡C-Ph), 4.35-4.32 (m, 2H, **H-3'**, **H-3'\***), 4.07-4.04 (m, 2H, **H-4'**, **H-4'\***), 3.88-3.80 (m, 2H, **H-5'**, **H-5'\***), 3.76-3.71 (m, 2H, **H-5'**, **H-5'\***), 2.69-2.59 (m, 2H, **H-2'**, **H-2'\***), 2.08-1.99 (m, 2H, **H-2'**, **H-2'\***), 0.88-0.87 (m, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.86-0.85 (m, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.08-0.05 (m, 12H, Si-(C**H**<sub>3</sub>)<sub>2</sub>, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 158.8 (C-4), 155.0 (C-2), 148.8 (NHCOO), 140.1 (139.7) (C-6), 132.3 (132.1) (C aromat.), 130.0 (129.9) (C aromat.), 128.7 (C aromat.), 120.7 (C aromat.), 98.2 (C-5), 90.2 (90.0), 89.1 (88.8), 88.5 (88.2), 81.7 (81.5), 72.2 (C-3'), 66.5 (66.3) (CH-C≡C-Ph), 63.0 (62.9) (C-5'), 42.8 (42.6) (C-2'), 26.1 (26.0) Si-C(CH<sub>3</sub>)<sub>3</sub>, 26.0 (25.9) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.5 (18.4) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.4 (-4. 5) (Si-CH<sub>3</sub>), -4.76 (-4.78) (Si-CH<sub>3</sub>), -5.3 (Si-CH<sub>3</sub>), -5.35 (-5.37) (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, MeOH),  $[M+Na]^+$  calcd for  $C_{31}H_{45}N_3O_6Si_2Na$ : 634.27391, found: 634.27421,  $[2M+Na]^+$  calcd for  $C_{62}H_{90}N_6O_{12}Si_4Na$ : 1245.55860, found: 1245.55822.

6-((2R,4S,5R)-4-(tert-Butyldimethylsilyloxy)-5-((tert-butyldimethylsilyloxy)methyl)tetrahydrofuran-2-yl)-4-vinyl-1<math>H-pyrimido[4,5-d][1,3]oxazine-2,7(4H,6H)-dione (7d)

To an ice-cooled solution of aldehyde **4** (182 mg, 265  $\mu$ mol, 1.0 equiv) in THF (3.00 mL) vinylmagnesium bromide (0.7 M in THF; 757  $\mu$ l, 530  $\mu$ mol, 2.0 equiv) was added dropwise and the solution was stirred at 0 °C for 30 min. The reaction mixture was allowed to warm to room temperature whereby it was stirred for three hours. The reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL) and diluted with Et<sub>2</sub>O (5 mL). After phase separation the aqueous layer was extracted with Et<sub>2</sub>O (2 × 5 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced

pressure. The crude product was purified by column chromatography (DCM/MeOH,  $30:1 \rightarrow 15:1 \ v/v$ ) to yield a mixture of diastereomers **7d** with a ratio of 2.3:1 (98.0 mg, 182 µmol, 69%) as a slight yellow oil.

#### 7d:

**R<sub>f</sub>:** 0.27 (DCM/MeOH = 30:1 v/v).

**IR:** (KBr)  $v_{max} = 3428, 2954, 2858, 1759, 1663, 1567, 1384, 1254, 1093, 838, 780 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (400 MHz, DMSO) δ (ppm) 11.31 (bs, 2H, N**H**, N**H**\*), 7.84 (s, 1H, **H-6**), 7.80 (s, 1H, **H-6**\*), 6.09-5.94 (m, 4H, **H-1**', **H-1**'\*, C**H=**CH<sub>2</sub>, C**H\*=**CH<sub>2</sub>), 5.84 (d, J = 6.0 Hz, 1H, C**H\***-CH=CH<sub>2</sub>), 5.80 (d, J = 6.1 Hz, 1H, C**H**-CH=CH<sub>2</sub>), 5.41-5.34 (m, 4H, CH=C**H**<sub>2</sub>, CH=C**H**<sub>2</sub>\*), 4.34-4.30 (m, 2H, **H-3**', **H-3**'\*), 3.93-3.89 (m, 2H, **H-4**', **H-4**'\*), 3.77-3.65 (m, 4H, **H-5**', **H-5**'\*), 2.34-2.27 (m, 2H, **H-2**', **H-2**'\*), 2.16-2.08 (m, 2H, **H-2**', **H-2**'\*), 0.87 (s, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.85 0.84 (m, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.07 (s, 12H, Si-(C**H**<sub>3</sub>)<sub>2</sub>, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*), 0.04 (s, 12H, Si-(C**H**<sub>3</sub>)<sub>2</sub>, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, DMSO) δ (ppm) 159.4 (159.3) (C-4), 154.0 (C-2), 149.9 (149.8) (NH-COO), 139.4 (139.0) (CH=CH<sub>2</sub>), 134.1 (133.9) (C-6), 119.6 (119.4) (CH=CH<sub>2</sub>), 98.8 (98.5) (C-5), 87.8 (87.7) (C-4'), 86.9 (86.7) (C-1'), 75.4, 75.3 (CH-CH=CH<sub>2</sub>), 72.34 (72.30) (C-3'), 62.8, 62.7 (C-5'), 40.7 (40.5) (C-2'), 25.8 (25.7) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.7 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.0 (17.9) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 17.7 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.8 (Si-CH<sub>3</sub>), -5.0 (Si-CH<sub>3</sub>), -5.5 (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, DCM/MeOH),  $[M+Na]^+$  calcd for  $C_{25}H_{43}N_3O_6Si_2Na$ : 560.25881, found: 560.25898,  $[2M+Na]^+$  calcd for  $C_{50}H_{86}N_6O_{12}Si_4Na$ : 1097.52785 found: 1097.52679.

## 3',5'-Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-3,6-dihydro-5-formyl-6-methyl-2'-deoxycytidine (8a)

To an ice-cooled solution of aldehyde **5** (80.0 mg, 89.8  $\mu$ mol, 1.0 equiv) in THF (2.00 mL) methylmagnesium bromide (3.0 M in Et<sub>2</sub>O; 60.0  $\mu$ L, 180  $\mu$ mol, 2.0 equiv) was added dropwise and the solution was stirred for three hours. The reaction mixture was then allowed to warm to room temperature whereby it was stirred for three hours. Subsequently it was cooled to 0 °C and an additional amount of methylmagnesium bromide (3.0 M in Et<sub>2</sub>O; 30.0  $\mu$ L, 90.0  $\mu$ mol, 1.0 equiv) was added dropwise. The reaction mixture was stirred overnight at room temperature, then quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL) and diluted with DCM (5 mL). The phases were separated and the aqueous layer extracted with DCM (2 × 5 mL). The combined organic layers were washed with brine (10 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was

purified by column chromatography (Hex/EtOAc,  $20:1 \rightarrow 2:1 \ v/v$ ) to yield a mixture of diastereomers **8a** (24.0 mg, 34.1 mmol, 38%) with a ratio of 2.4:1 as a yellow oil.

**R**<sub>f</sub>: 0.23 (Hex/EtOAc = 10:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 2929$ , 1705, 1598, 1387, 1254, 1146, 836, 785 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (300 MHz, CDCl<sub>3</sub>) δ (ppm) 11.87 (bs, 2H, NHCOO, NH\*COO), 9.59 (s, 1H, NH), 9.56 (s, 1H, NH\*), 9.07 (s, 1H, CHO), 9.06 (s, 1H, CHO\*), 6.18 (dd, J = 8.6, 5.7 Hz, 1H, H-1'), 6.10-6.02 (m, 1H, H-1'\*), 4.62 (q, J = 6.6 Hz, 1H, H-6\*), 4.46 (q, J = 6.4 Hz, 1H, H-6), 4.40-4.34 (m, 2H, H-3', H-3'\*), 3.86-3.82 (m, 1H, H-4'), 3.82-3.79 (m, 1H, H-4'\*), 3.74-3.70 (m, 4H, H-5', H-5'\*), 2.22-2.15 (m, 1H, H-2'\*), 2.13-2.01 (m, 2H, H-2', H-2'\*), 1.98-1.97 (m, 7H, H-2', C(CH<sub>3</sub>), C(CH<sub>3</sub>)\*), 1.96 (s, 6H, C(CH<sub>3</sub>), C(CH<sub>3</sub>)\*), 1.38 (d, J = 6.4 Hz, 3H, CH-CH<sub>3</sub>), 1.33-1.28 (m, 3H, CH-CH<sub>3</sub>\*), 0.91 (s, 18H, Si-C(CH<sub>3</sub>)<sub>3</sub>, Si-C(CH<sub>3</sub>)<sub>3</sub>\*), 0.89-0.88 (m, 18H, Si-C(CH<sub>3</sub>)<sub>3</sub>, Si-C(CH<sub>3</sub>)<sub>3</sub>\*), 0.09-0.06 (m, 24H, 2xSi-(CH<sub>3</sub>)<sub>2</sub>, 2xSi-(CH<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (75 MHz, CDCl<sub>3</sub>) δ (ppm) 186.5 (186.4) (CHO), 151.7 (NHCOO), 150.3 (C-2), 147.5 (C-4), 105.1 (CCl<sub>3</sub>), 96.3 (96.2) (C-5), 91.2 (C(CH<sub>3</sub>)<sub>2</sub>), 87.0 (86.4) (C-4'), 85.4 (85.41) (C-1'), 72.7 (72.3) (C-3'), 63.6 (63.3) (C-5'), 46.7 (46.3) (C-6), 38.9 (C-2'), 26.11 (26.09) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 26.0 (25.9) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 24.7 (CH-CH<sub>3</sub>), 21.68 (21.66) (C(CH<sub>3</sub>)<sub>2</sub>), 21.64 (21.63) (C(CH<sub>3</sub>)<sub>2</sub>), 18.6 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.5 (Si-CH<sub>3</sub>), -4.60 (-4.62) (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>), -5.27 (-5.29) (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH),  $[M+H]^+$  calcd for  $C_{28}H_{51}Cl_3N_3O_7Si_2$ : 702.23256, found: 702.23296,  $[M+Na]^+$  calcd for  $C_{28}H_{50}Cl_3N_3O_7Si_2Na$ : 724.21451, found: 724.21520.

## 3',5'-Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-3,6-dihydro-5-formyl-6-(trimethylsilylethynyl)-2'-deoxycytidine (8b)

To a stirred solution of trimethylsilylacetylene (51.1  $\mu$ L, 359  $\mu$ mol, 4.0 equiv) in THF (0.60 mL) at -40 °C, n-BuLi (2.5 M in n-hexane; 144  $\mu$ L, 359  $\mu$ mol, 4.0 equiv) was added dropwise. The temperature was increased to -20 °C whereby the reaction mixture was stirred for one hour. Afterwards the temperature was lowered again to -40 °C. A solution of aldehyde 5 (80.0 mg, 89.8  $\mu$ mol, 1.0 equiv) in THF (1.50 mL) was added dropwise and the reaction mixture was stirred at -50 °C for three hours. The reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl (3 mL), diluted with DCM (5 mL) and the aqueous layer extracted with DCM (3 × 5 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. Purification by chromatography (Hex/EtOAc 30:1  $\rightarrow$  15:1  $\nu/\nu$ ) afforded diastereomer 8b

(42.9 mg, 54.6  $\mu$ mol, 61%) as a yellow oil and diastereomer **8b\*** (13.6 mg, 17.3  $\mu$ mol, 19%) as a yellow oil. The total yield of the reaction is 80 % (56.5 mg, 91.7  $\mu$ mol).

diastereomer 8b

**R**<sub>f</sub>: 0.68 (Hex/EtOAc = 5:1 v/v).

IR: (CCl<sub>4</sub>)  $v_{\text{max}} = 2926$ , 1715, 1666, 1603, 1463, 1252, 1140, 1030, 839, 777, 597 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (400 MHz, CDCl<sub>3</sub>) δ (ppm) 11.86 (s, 1H, N**H**COO), 9.65 (s, 1H, N**H**), 9.13 (s, 1H, C**H**O), 5.87 (dd, J = 7.8, 5.7 Hz, 1H, **H-1'**), 5.21 (s, 1H, **H-6**), 4.38–4.35 (m, 1H, **H-3'**), 3.92–3.89 (m, 1H, **H-4'**), 3.74–3.63 (m, 2H, **H-5'**), 2.28–2.21 (m, 1H, **H-2'**), 2.14–2.09 (m, 1H, **H-2'**), 1.98 (s, 3H, C(C**H**<sub>3</sub>)<sub>2</sub>), 1.96 (s, 3H, C(C**H**<sub>3</sub>)<sub>2</sub>), 0.91 (s, 9H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>), 0.89 (s, 9H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>), 0.13 (s, 9H, Si-(C**H**<sub>3</sub>)<sub>3</sub>), 0.07 (m, 12H, 2 x Si-(C**H**<sub>3</sub>)<sub>2</sub>).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 186.4 (CHO), 151.6 (NHCOO), 149.7 (C-2), 147.9 (C-4), 105.1 (CCl<sub>3</sub>), 103.2 (C≡C-TMS), 92.4 (C-5), 91.4 (C(CH<sub>3</sub>)<sub>2</sub>), 88.6 (C≡C-TMS), 87.7 (C-4'), 87.0 (C-1'), 73.0 (C-3'), 63.8 (C-5'), 43.5 (C-6), 39.5 (C-2'), 26.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.9 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 21.6 (C(CH<sub>3</sub>)<sub>2</sub>), 18.6 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -0.01 (Si-(CH<sub>3</sub>)<sub>3</sub>), -4.5 (Si-CH<sub>3</sub>), -4.6 (Si-CH<sub>3</sub>), -5.1 (Si-CH<sub>3</sub>), -5.1 (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, DCM/MeOH), [M+Na]<sup>+</sup> calcd for C<sub>32</sub>H<sub>56</sub>Cl<sub>3</sub>N<sub>3</sub>O<sub>7</sub>Si<sub>3</sub>Na: 806.23838, found: 806.23863.

**Optical rotation:**  $\left[\alpha\right]_{D}^{2.5} \left(\deg \ cm^{3} \ g^{-1} \ dm^{-1}\right) = +6.0 \ (c = 1.0, \ CHCl_{3}).$ 

diastereomer 8b\*:

**R<sub>f</sub>:** 0.60 (Hex/EtOAc = 5:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{max}$  =3326, 2928, 1712, 1667, 1602, 1463, 1386, 1252, 1141, 1027, 839, 778 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (400 MHz, CDCl<sub>3</sub>) δ (ppm) 11.84 (s, 1H, N**H**\*COO), 9.66 (s, 1H, N**H**\*), 9.10 (s, 1H, C**H**O\*), 6.23 (dd, J = 8.3, 5.9 Hz, 1H, **H-1'\***), 5.38 (s, 1H, **H-6\***), 4.41-4.38 (m, 1H, **H-4'\***), 3.85-3.67 (m, 3H, **H-3'\***, **H-5'\***), 2.58-2.51 (m, 1H, **H-2'\***), 2.06-2.01 (m, 1H, **H-2'\***), 1.99 (s, 3H, C(C**H**<sub>3</sub>)<sub>2</sub>\*), 1.97 (s, 3H, C(C**H**<sub>3</sub>)<sub>2</sub>\*), 0.93 (s, 9H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.10 (s, 3H, Si-C**H<sub>3</sub>\***), 0.08 (m, 6H, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 186.5 (CHO), 151.7 (NHCOO), 149.5 (C-2), 148.0 (C-4), 105.1 (CCl<sub>3</sub>), 104.4 (C≡C-TMS), 92.5 (C-5), 91.4 (C(CH<sub>3</sub>)<sub>2</sub>), 89.1 (C≡C-TMS), 86.4 (C-4'), 84.4 (C-1'), 72.3 (C-3'), 63.3 (C-5'), 40.3 (C-6), 38.2 (C-2'), 26.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.9 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 21.7 (C(CH<sub>3</sub>)<sub>2</sub>), 18.7 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.2 (Si-C(CH<sub>3</sub>)<sub>3</sub>), -0.1 (Si-(CH<sub>3</sub>)<sub>3</sub>), -4.4 (Si-CH<sub>3</sub>), -4.6 (Si-CH<sub>3</sub>), -5.1 (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, DCM/MeOH),  $[M+Na]^+$  calcd for  $C_{32}H_{56}Cl_3N_3O_7Si_3Na$ : 806.23838, found: 806.23854.

**Optical rotation:**  $\left[\alpha\right]_{D}^{22} \left(\deg cm^{3} g^{-1} dm^{-1}\right) = +10.14 (c = 0.46, CHCl_{3}).$ 

## 3',5'-Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-3,6-dihydro-5-formyl-6-(2-phenylethynyl)-2'-deoxycytidine (8c)

To a stirred solution of phenylacetylene (49.3  $\mu$ L, 449  $\mu$ mol, 4.0 equiv) in THF (1.50 mL) at -78 °C n-BuLi (2.5 M in *n*-hexane; 180  $\mu$ L, 449  $\mu$ mol, 4.0 equiv) was added dropwise, whereby the reaction mixture was stirred for 80 min. Subsequently a solution of aldehyde **5** (100 mg, 112  $\mu$ mol, 1.0 equiv) in THF (2.10 mL) was added dropwise. The temperature was increased to -50 °C, whereby the mixture was stirred for 140 min. The reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL), diluted with DCM (5 mL) and the aqueous layer extracted with DCM (3 × 5 mL). The combined organic phases were washed with brine (10 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. Purification by silica gel chromatography (Hex/EtOAc, 20:1  $\rightarrow$  1:1  $\nu/\nu$ ) yielded a mixture of diastereomers **8c** with a ratio of 1.1:1 (63.0 mg, 79.8  $\mu$ mol, 71%) as a yellow oil.

 $R_f$ : 0.26 (Hex/EtOAc = 10:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{max} = 3323$ , 2929, 1710, 1601, 1470, 1389, 1256, 1208, 1141, 1028, 837, 784, 690 cm<sup>-1</sup>.

<sup>1</sup>H-NMR: (400 MHz, CDCl<sub>3</sub>) δ (ppm) 11.88-11.87 (m, 2H, NHCOO, NH\*COO), 9.75-9.74 (m, 2H, NH, NH \*), 9.21 (s, 1H, CHO), 9.19 (s, 1H, CHO\*), 7.38-7.34 (m, 4H, CH aromat., CH\* aromat.), 7.32-7.27 (m, 6H, CH aromat., CH\* aromat.), 6.26 (dd, J = 7.8, 6.0 Hz, 1H, H-1'\*), 6.03 (dd, J = 7.9, 5.7 Hz, 1H, H-1'), 5.65 (s, 1H, H-6\*), 5.46 (s, 1H, H-6), 4.46-4.43 (m, 1H, H-4'\*), 4.39-4.38 (m, 1H, H-3'), 3.95-3.92 (m, 1H, H-4'), 3.86-3.82 (m, 2H, H-5'), 3.71-3.69 (m, 3H, H-3'\*, H-5'\*), 2.62-2.55 (m, 1H, H-2'\*), 2.27-2.20 (m, 1H, H-2'), 2.18-2.09 (m, 2H, H-2', H-2'\*), 1.96-1.95 (m, 12H, C(CH<sub>3</sub>)<sub>2</sub>, C(CH<sub>3</sub>)<sub>2</sub>\*), 0.92 (s, 6H, Si-C(CH<sub>3</sub>), Si-C(CH<sub>3</sub>)\*), 0.89-0.88 (m, 24H, 2xSi-C(CH<sub>3</sub>), 2xSi-C(CH<sub>3</sub>)\*), 0.86 (s, 6H, Si-C(CH<sub>3</sub>), Si-C(CH<sub>3</sub>)\*), 0.12-0.11 (m, 6H, Si-CH<sub>3</sub>, Si-CH<sub>3</sub>\*), 0.09-0.07 (m, 6H, Si-CH<sub>3</sub>, Si-CH<sub>3</sub>\*), 0.05-0.04 (m, 6H, Si-CH<sub>3</sub>, Si-CH<sub>3</sub>\*), 0.02 (s, 6H, Si-CH<sub>3</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 186.4 (186.3) (CHO), 151.61 (151.58) (NHCOO), 150.0 (149.5) (C-2), 148.2 (148.0) (C-4), 131.9 (131.7) (C aromat.), 128.9 (128.7) (C aromat.), 128.5 (128.3) (C aromat.), 122.3 (122.0) (C aromat.), 105.0 (CCl<sub>3</sub>), 92.65 (92.62) (C-5), 91.4 (C(CH<sub>3</sub>)<sub>2</sub>), 88.2, 87.7, 87.4, 86.5, 86.4, 84.4, 84.0, 83.6, 81.3, 72.8 (72.0) (C-3'), 63.7 (63.2) (C-5'), 42.9 (40.2) (C-6), 39.6 (38.6) (C-2'), 26.2 (26.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.91 (25.88) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 21.7 (21.6) (C(CH<sub>3</sub>)<sub>2</sub>), 21.64 (21.59) (C(CH<sub>3</sub>)<sub>2</sub>), 18.7 (18.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.6 (18.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.49 (-4.54) (Si-CH<sub>3</sub>), -4.63 (-4.71) (Si-CH<sub>3</sub>), -5.1 (-5.2) (Si-CH<sub>3</sub>), -5.2 (-5.3) (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, DCM/MeOH), [M+Na]<sup>+</sup> calcd for C<sub>35</sub>H<sub>52</sub>Cl<sub>3</sub>N<sub>3</sub>O<sub>7</sub>Si<sub>2</sub>Na: 810.23016, found: 810.22984.

3',5'-Di(tert-butyldimethylsilyl)- $N^4$ -(2,2,2-trichloro-tert-butyloxycarbonyl)-3,6-dihydro-5-formyl-6-vinyl-2'-deoxycytidine (8d) and 3',5'-Di(tert-butyldimethylsilyl)- $N^4$ ,  $N^4$ -bis(2,2,2-trichloro-tert-butyloxycarbonyl)-3,6-dihydro-5-formyl-6-vinyl-2'-deoxycytidine (8e)

To an ice-cooled solution of aldehyde **5** (100 mg, 112  $\mu$ mol, 1.0 equiv) in THF (2.30 mL) vinylmagnesium bromide (0.7 M in THF; 320  $\mu$ L, 225  $\mu$ mol, 2.0 equiv) was added dropwise and the solution was stirred at 0 °C. After 135 min the reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL) and diluted with Et<sub>2</sub>O (5 mL). The phases were separated and the aqueous layer was extracted with Et<sub>2</sub>O (2 × 5 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (Hex/EtOAc, 20:1  $\rightarrow$  1:1  $\nu/\nu$ ) to yield a mixture of diastereomers **8d** with a ratio of 2.6:1 (32.0 mg, 44.7  $\mu$ mol, 37%) as a yellow oil and a mixture of diastereomers **8e** with a ratio of 5.7:1 (18.0 mg, 19.6  $\mu$ mol, 17%) as a yellow oil.

#### 8d:

**R<sub>f</sub>:** 0.44 (Hex/EtOAc = 4:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{max} = 3328$ , 2929, 2857, 1707, 1665, 1599, 1515, 1389, 1254, 1209, 1140, 1026, 836, 778 cm<sup>-1</sup>.

<sup>1</sup>H-NMR: (400 MHz, CDCl<sub>3</sub>) δ (ppm) 11.94 (s, 1H, NHCOO), 11.86 (s, 1H, NH\*COO), 9.58 (s, 2H, NH, NH\*), 9.07 (s, 1H, CHO\*), 9.03 (s, 1H, CHO), 6.23 (dd, J = 8.5, 5.8 Hz, 1H, H-1\*), 6.09 (dd, J = 8.3, 5.6 Hz, 1H, H-1'), 6.04-5.91 (m, 1H, CH-CH=CH<sub>2</sub>), 5.85-5.76 (m, 1H, CH-CH\*=CH<sub>2</sub>), 5.16-5.12 (m, 2H, CH-CH=CH<sub>2</sub>, CH-CH=CH<sub>2</sub>\*), 5.12-5.05 (m, 2H, CH-CH=CH<sub>2</sub>, CH-CH=CH<sub>2</sub>\*), 5.04-5.02 (m, 1H, H-6\*), 4.90-4.89 (m, 1H, H-6), 4.37-4.30 (m, 2H, H-3', H-3'\*), 3.86-3.84 (m, 1H, H-4'), 3.78-3.75 (m, 1H, H-4'\*), 3.73-3.72 (m, 2H, H-5'\*), 3.70-3.68 (m, 2H, H-5'), 2.19-2.10 (m, 2H, H-2', H-2'\*), 2.03-1.99 (m, 1H, H-2') 1.99-1.87 (m, 13H, H-2'\*, C(CH<sub>3</sub>)<sub>2</sub>, C(CH<sub>3</sub>)<sub>2</sub>\*), 0.91-0.90 (m, 18H, Si-C(CH<sub>3</sub>)<sub>3</sub>, Si-C(CH<sub>3</sub>)<sub>3</sub>\*), 0.88 (s, 18H, Si-C(CH<sub>3</sub>)<sub>3</sub>), Si-C(CH<sub>3</sub>)<sub>3</sub>\*), 0.08 (s, 6H, Si-(CH<sub>3</sub>)<sub>2</sub>\*), 0.07-0.05 (m, 18H, Si-(CH<sub>3</sub>)<sub>2</sub>\*, 2xSi-(CH<sub>3</sub>)<sub>2</sub>).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 186.9 (186.8) (CHO), 151.7 (NHCOO), 150.3 (C-2), 148.0 (147.8) (C-4), 138.2 (137.8) (CH=CH<sub>2</sub>), 115.3 (114.3) (CH=CH<sub>2</sub>), 105.1 (CCl<sub>3</sub>), 93.2 (C-5), 91.3 (C(CH<sub>3</sub>)<sub>2</sub>), 86.2 (C-4'), 84.6 (C-1'), 72.5 (72.1) (C-3'), 63.4 (C-5'), 52.3 (51.1) (C-6), 39.1 (38.7) (C-2'), 26.14 (26.10) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 21.7 (21.6) (C(CH<sub>3</sub>)<sub>2</sub>), 18.6

 $(Si-C(CH_3)_3)$ , 18.2 (18.1)  $(Si-C(CH_3)_3)$ , -4.5  $(Si-CH_3)$ , -4.6  $(Si-CH_3)$ , -5.1  $(Si-CH_3)$ , -5.2  $(Si-CH_3)$ .

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH), [M+Na]<sup>+</sup> calcd for C<sub>29</sub>H<sub>50</sub>Cl<sub>3</sub>N<sub>3</sub>O<sub>7</sub>Si<sub>2</sub>Na: 736.21451, found: 736.21428.

8e:

**R<sub>f</sub>:** 0.34 (Hex/EtOAc = 3:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 2929, 2857, 1816, 1654, 1463, 1389, 1257, 1138, 837, 789 cm<sup>-1</sup>.$ 

<sup>1</sup>**H-NMR:** (400 MHz, CDCl<sub>3</sub>) δ (ppm) 9.61 (s, 1H, CHO), 9.59 (s, 1H, CHO\*), 6.08-5.96 (m, 2H, H-1', H-1'\*), 5.87-5.74 (m, 2H, CH=CH<sub>2</sub>, CH\*=CH<sub>2</sub>), 5.26-5.15 (m, 2H, CH=CH<sub>2</sub>, CH=CH<sub>2</sub>\*), 5.13-5.02 (m, 4H, CH=CH<sub>2</sub>, CH-CH=CH<sub>2</sub>, CH=CH<sub>2</sub>\*, CH\*-CH=CH<sub>2</sub>), 4.42-4.23 (m, 2H, H-3', H-3'\*), 3.86-3.74 (m, 2H, H-4', H-4'\*), 3.74-3.60 (m, 2H, H-5', H-5'\*), 3.54-3.50 (m, 2H, H-5', H-5'\*), 2.15-2.08 (m, 2H, H-2', H-2'\*), 2.03-1.85 (m, 26H, H-2', H-2'\*,  $2xC(CH_3)_2$ ,  $2xC(CH_3)_2$ \*), 0.91-0.89 (m, 36H,  $2xSi-C(CH_3)_3$ ,  $2xSi-C(CH_3)_3$ \*), 0.11-0.06 (m, 24H,  $2xSi-(CH_3)_2$ ,  $2xSi-(CH_3)_2$ \*).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 183.9 (CHO), 153.5 (C-2), 149.7 (NCOO) 142.8 (C-4), 135.6 (CH=CH<sub>2</sub>), 116.4 (CH=CH<sub>2</sub>), 111.9 (C-5), 104.9 (CCl<sub>3</sub>), 92.5 (C(CH<sub>3</sub>)<sub>2</sub>), 86.9 (C-4'), 85.4 (C-1'), 72.5 (72.3)(C-3'), 63.5 (C-5'), 50.9 (C-6), 38.0 (C-2'), 26.2 (26.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.97 (25.90) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 21.5 (21.4) (C(CH<sub>3</sub>)<sub>2</sub>), 18.6 (18.2), -4.5 (-4.6), -5.2.

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH), [M+Na]<sup>+</sup> calcd for C<sub>34</sub>H<sub>55</sub>Cl<sub>6</sub>N<sub>3</sub>O<sub>9</sub>Si<sub>2</sub>Na: 938,15002, found: 938,15004.

#### 3',5'-Di(*tert*-butyldimethylsilyl)-3,6-dihydro-5-formyl-6-methyl-2'-deoxycytidine (9a)

10% Cd–Pb couple (80.0 mg, 711 µmol cadmium, 5.0 equiv) was added in one portion to a vigorously stirred mixture of diastereomers **8a** (100 mg, 142 µmol, 1.0 equiv) in THF (2.20 mL) and aqueous NH<sub>4</sub>OAc (1.0 M, 2.20 mL). After stirring for three and a half hours another portion of 10% Cd–Pb (80.0 mg, 712 µmol, 5.0 equiv) was added. The reaction mixture was stirred at room temperature overnight, and then the solids were filtered and rinsed with H<sub>2</sub>O and DCM. The phases were separated and the aqueous layer was extracted with DCM (2 × 5 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (DCM/MeOH,  $60:1 \rightarrow 15:1 \ v/v$ ) to yield a mixture of diastereomers **9a** with a ratio of 2.4:1 (28.5 mg, 56.0 µmol, 40%) as a pale yellow waxy solid.

**R<sub>f</sub>:** 0.32 (DCM/MeOH = 15:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 2929$ , 2857, 1698, 1655, 1541, 1382, 1338, 1255, 1081, 835, 777, 667 cm<sup>-1</sup>.

<sup>1</sup>H-NMR: (300 MHz, CDCl<sub>3</sub>) δ (ppm) 9.64 (s, 1H, NH), 9.55 (s, 1H, NH\*), 8.91 (s, 2H, CHO, CHO\*), 6.20-6.13 (m, 1H, H-1'), 6.13-6.07 (m, 1H, H-1'\*), 4.55 (q, J = 6.4 Hz, 1H, H-6\*), 4.40-4.33 (m, 3H, H-6, H-3', H-3'\*), 3.83-3.79 (m, 2H, H-4', H-4'\*), 3.73-3.65 (m, 4H, H-5', H-5'\*), 2.22-2.02 (m, 2H, H-2', H-2'\*), 1.97-1.84 (m, 2H, H-2', H-2'\*), 1.34 (d, J = 6.4 Hz, 3H, CH-CH<sub>3</sub>), 1.29-1.23 (m, 3H, CH-CH<sub>3</sub>\*), 0.91 (s, 18H, Si-C(CH<sub>3</sub>)<sub>3</sub>, Si-C(CH<sub>3</sub>)<sub>3</sub>\*), 0.89-0.88 (m, 18H, Si-C(CH<sub>3</sub>)<sub>3</sub>, Si-C(CH<sub>3</sub>)<sub>3</sub>\*), 0.08 (s, 12H, Si-(CH<sub>3</sub>)<sub>2</sub>, Si-(CH<sub>3</sub>)<sub>2</sub>\*), 0.07 (s, 12H, Si-(CH<sub>3</sub>)<sub>2</sub>, Si-(CH<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 182.9 (182.7) (CHO), 153.6 (153.5), 153.3, 92.8 (C-5), 86.8 (86.3) (C-4'), 84.9 (84.7) (C-1'), 72.8 (72.3) (C-3'), 63.6 (63.3) (C-5'), 47.2 (46.5) (C-6), 38.5 (38.1) (C-2'), 26.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.93 (25.90) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.7 (25.3) (CH-CH<sub>3</sub>), 18.5 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.2 (18.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.5 (Si-CH<sub>3</sub>), -4.59 (-4.62) (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>), -5.3 (-5.4) (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH), [M+H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>46</sub>N<sub>3</sub>O<sub>5</sub>Si<sub>2</sub>: 500.29705, found: 500.29709, [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>45</sub>N<sub>3</sub>O<sub>5</sub>Si<sub>2</sub>Na: 522.27900, found: 522.27887.

### 3',5'-Di(*tert*-butyldimethylsilyl)-3,6-dihydro-5-formyl-6-(trimethylsilylethynyl)-2'-deoxycytidine (9b)

10% Cd–Pb couple (44.0 mg, 391 µmol cadmium, 2.9 equiv) was added in one portion to a vigorously stirred solution of diastereomer **8b** (106 mg, 134 µmol, 1.0 equiv) in THF (2.00 mL) and aqueous NH<sub>4</sub>OAc (1.0 M, 2.00 mL). After stirring for three and a half hours the solids were filtered and rinsed with H<sub>2</sub>O and DCM. The phases were separated and the aqueous layer was extracted with DCM (2 × 10 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (DCM/MeOH, 60:1  $\rightarrow$  15:1  $\nu/\nu$ ) to yield diastereomer **9b** (60.6 mg, 104 µmol, 77%) as a yellow waxy solid.

**R<sub>f</sub>:** 0.36 (DCM/MeOH = 15:1 v/v).

**IR:** (KBr)  $v_{max} = 2929$ , 2858, 2166, 1706, 1543, 1463, 1362, 1252, 1081, 778, 667, 569 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (400 MHz, CDCl<sub>3</sub>) δ (ppm) 9.40 (s, 1H, NH), 8.96 (s, 1H, CHO), 5.95 (dd, J = 8.4, 5.6 Hz, 1H, **H-1'**), 5.04 (s, 1H, **H-6**), 4.39-4.37 (m, 1H, **H-4'**), 3.90-3.87 (m, 1H, **H-3'**), 3.75 (dd, J = 10.8, 4.4 Hz, 1H, **H-5'**), 3.64 (dd, J = 10.8, 5.7 Hz, 1H, **H-5'**), 2.27-2.21 (m, 1H, **H-2'**), 1.99 (ddd, J = 12.9, 5.7, 2.2 Hz, 1H, **H-2'**), 0.91 (s, 9H, Si-C(CH<sub>3</sub>)<sub>3</sub>), 0.88 (s, 9H, Si-C(CH<sub>3</sub>)<sub>3</sub>), 0.11 (s, 9H, Si-(CH<sub>3</sub>)<sub>3</sub>), 0.09-0.08 (m, 6H, Si-(CH<sub>3</sub>)<sub>2</sub>), 0.07 (s, 6H, Si-(CH<sub>3</sub>)<sub>2</sub>).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 182.9 (CHO), 153.4, 152.8, 104.7 (C $\equiv$ C-TMS), 89.3 (C $\equiv$ C-TMS), 87.4 (C-4'), 86.2 (C-1'), 73.0 (C-3'), 64.0 (C-5'), 43.7 (C-6), 38.2 (C-2'), 26.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.9 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.6 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.1 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 0.1 (Si-(CH<sub>3</sub>)<sub>3</sub>), -4.6 (Si-CH<sub>3</sub>), -5.1 (Si-CH<sub>3</sub>). C-5 is not observed.

**HR-MS:** (ESI positive, MeOH),  $[M+Na]^+$  calcd for  $C_{27}H_{51}N_3O_5Si_3Na$ : 604.30287, found: 604.30347.

**Optical rotation:**  $\left[\alpha\right]_{D}^{2.5} \left(\deg \text{ cm}^{3} \text{ g}^{-1} \text{ dm}^{-1}\right) = +18.8 \text{ (c} = 1, \text{ CHCl}_{3}).$ 

### 3',5'-Di(*tert*-butyldimethylsilyl)-3,6-dihydro-5-formyl-6-(2-phenylethynyl)-2'-deoxycytidine (9c)

10% Cd–Pb couple (121 mg, 1.08 mmol cadmium, 5.0 equiv) was added in one portion to a vigorously stirred mixture of diastereomers **8c** (170 mg, 215  $\mu$ mol, 1.0 equiv) in THF (3.00 mL) and aqueous NH<sub>4</sub>OAc (1.0 M, 3.00 mL). After stirring for three hours the solids were filtered and rinsed with H<sub>2</sub>O and DCM. The phases were separated and the aqueous layer was extracted with DCM (2 × 10 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (DCM/MeOH, 60:1  $\rightarrow$  15:1  $\nu/\nu$ ) to yield a mixture of diastereomers **9c** with a ratio of 1:1 (55.0 mg, 93.9  $\mu$ mol, 44%) as a yellow oil.

**R<sub>f</sub>:** 0.32 (DCM/MeOH = 15:1 v/v).

**IR:** (CCl<sub>4</sub>)  $v_{max} = 3308$ , 2928, 2857, 1700, 1659, 1541, 1362, 1254, 1097, 834, 779, 690 cm<sup>-1</sup>.

<sup>1</sup>**H-NMR:** (300 MHz, CDCl<sub>3</sub>) δ (ppm) 9.64-9.59 (m, 2H, N**H**, N**H\***), 9.04 (bs, 2H, C**H**O, C**H**O\*), 7.37-7.35 (m, 4H, C**H** aromat., C**H\*** aromat.), 7.30-7.21 (m, 6H, C**H** aromat., C**H\*** aromat.), 6.23 (dd, J = 6.9, 6.9 Hz, 1H, **H-1\***), 6.17-6.04 (m, 1H, **H-1\*\***), 5.54 (s, 1H, **H-6**), 5.30 (s, 1H, **H-6\***), 4.45-4.40 (m, 2H), 3.93-3.89 (m, 1H), 3.85-3.77 (m, 3H), 3.75-3.72 (m, 1H), 3.70-3.60 (m, 2H), 2.67-2.58 (m, 1H), 2.31-2.22 (m, 1H), 2.14-1.96 (m, 2H, m, 2H, **H-2\***, **H-2\*\***), 0.93 (s, 9H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>), 0.88 (s, 9H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.87-0.86 (m, 18H, Si-C(C**H**<sub>3</sub>)<sub>3</sub>), Si-C(C**H**<sub>3</sub>)<sub>3</sub>\*), 0.12 (s, 6H, Si-(C**H**<sub>3</sub>)<sub>2</sub>), 0.08 (s, 6H, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*), 0.04 (s, 6H, Si-(C**H**<sub>3</sub>)<sub>2</sub>), 0.00 (s, 6H, Si-(C**H**<sub>3</sub>)<sub>2</sub>\*).

<sup>13</sup>C-NMR: (100 MHz, CDCl<sub>3</sub>) δ (ppm) 183.0 (182.7) (CHO), 153.8 (153.6), 153.3 (152.5), 131.9 (131.8) (C aromat.), 128.5 (C aromat.), 128.4 (128.3) (C aromat.), 128.3 (C aromat.), 122.7 (122.6) (C aromat.), 89.4 (89.3), 88.8, 87.3, 86.4, 85.7, 84.2, 83.2, 83.0, 72.9 (72.2) (C-3'), 63.9 (63.3) (C-5'), 43.1 (41.0) (C-6'), 38.4 (38.0) (C-2'), 26.2 (26.1) (Si-C(CH<sub>3</sub>)<sub>3</sub>),

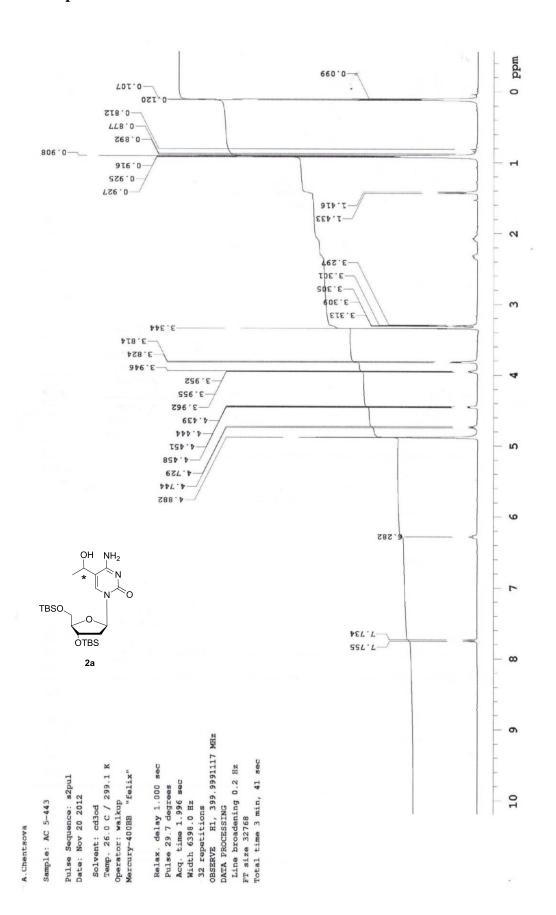
25.9 (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.6 (18.5) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.13 (18.10) (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.5 (-4.56) (Si-CH<sub>3</sub>), -4.57 (-4.67) (Si-CH<sub>3</sub>), -5.12 (-5.23) (Si-CH<sub>3</sub>), -5.31 (-5.32) (Si-CH<sub>3</sub>).

**HR-MS:** (ESI positive, CHCl<sub>3</sub>/MeOH), [M+H]<sup>+</sup> calcd for C<sub>30</sub>H<sub>48</sub>N<sub>3</sub>O<sub>5</sub>Si<sub>2</sub>: 586.31270, found: 586.31308, [M+Na]<sup>+</sup> calcd for C<sub>30</sub>H<sub>47</sub>N<sub>3</sub>O<sub>5</sub>Si<sub>2</sub>Na: 608.29465, found: 608.29493.

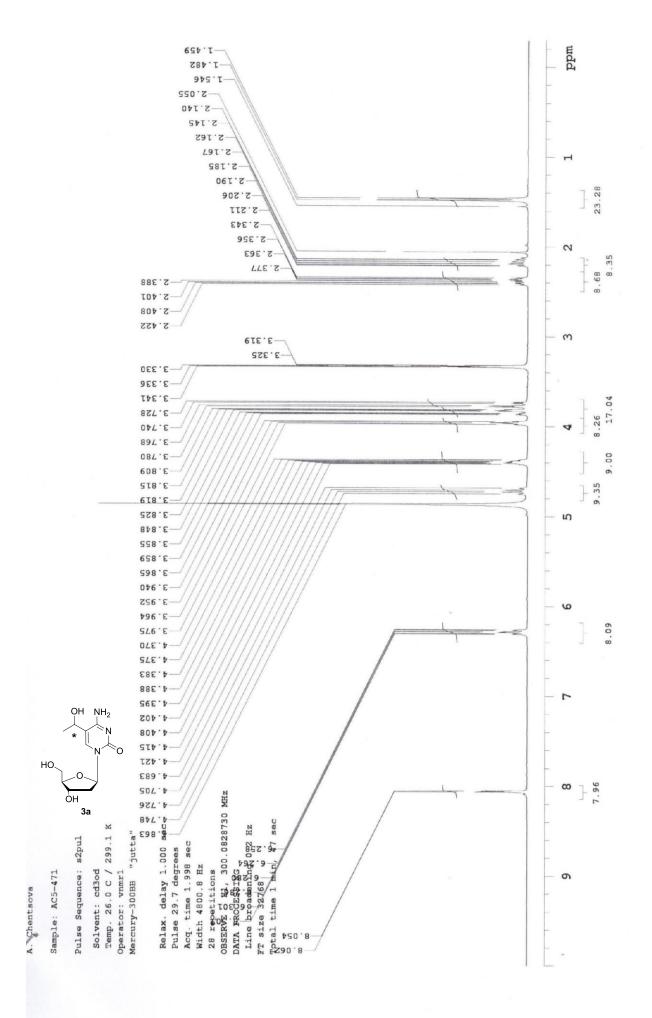
#### 3',5'-Di(tert-butyldimethylsilyl)-3,6-dihydro-5-formyl-6-vinyl-2'-deoxycytidine (9d)

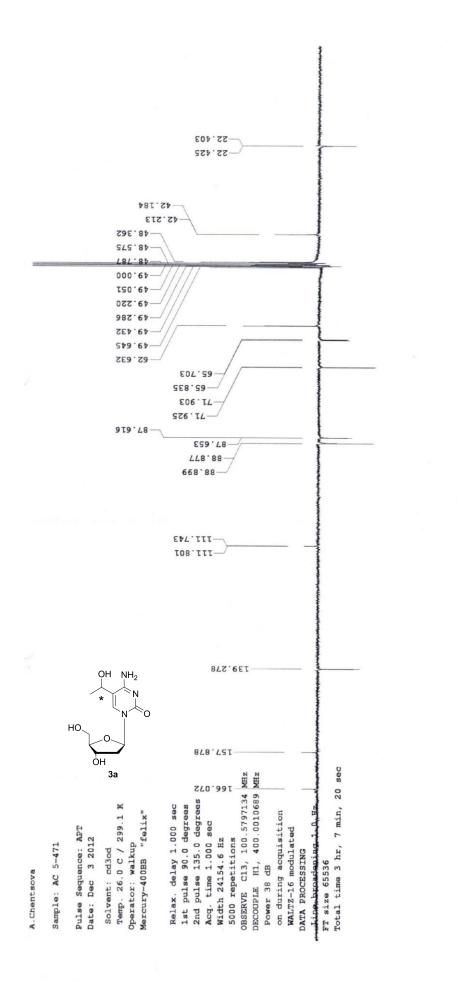
10% Cd–Pb couple (19.7 mg, 175  $\mu$ mol cadmium, 5.0 equiv) was added in one portion to a vigorously stirred mixture of diastereomers **8d** (25.0 mg, 34.9  $\mu$ mol, 1.0 equiv) in THF (1.10 mL) and aqueous NH<sub>4</sub>OAc (1.0 M, 1.10 mL). The reaction mixture was stirred at room temperature overnight, and then the solids were filtered and rinsed with H<sub>2</sub>O and DCM. The phases were separated and the aqueous layer was extracted with DCM (2  $\times$  5 mL). The combined organic layers were washed with brine (5 mL), dried over MgSO<sub>4</sub> and the solvents were removed under reduced pressure. The crude product was purified by column chromatography (DCM/MeOH, 30:1  $\nu/\nu$ ) to yield a mixture of the diastereomers **9d** with a ratio of 2.6:1 (11.0 mg, 21.5  $\mu$ mol, 61%) as a yellow waxy solid.

**R**<sub>f</sub>: 0.47 (DCM/MeOH = 15:1 v/v).

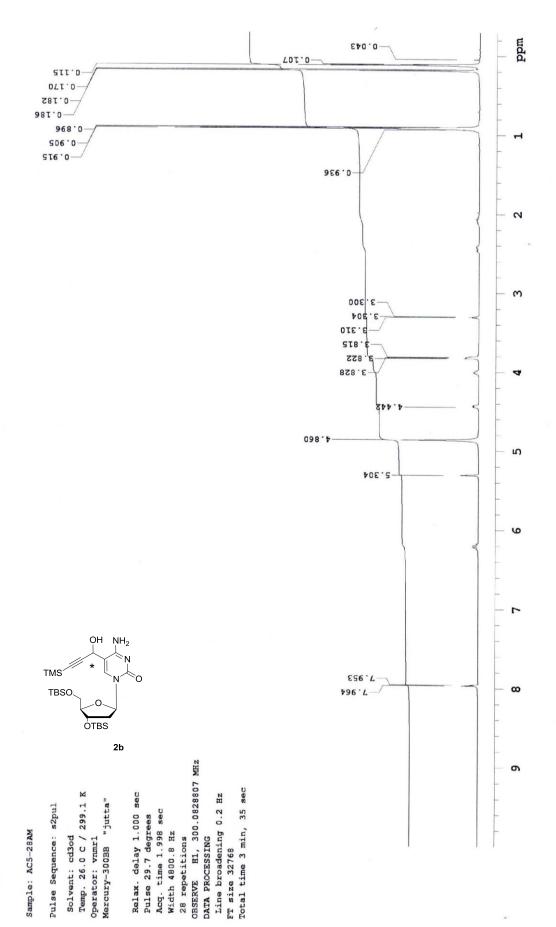

**IR:** (CCl<sub>4</sub>)  $v_{\text{max}} = 3343$ , 2928, 2857, 1698, 1655, 1541, 1362, 1255, 1096, 836, 778 cm<sup>-1</sup>.

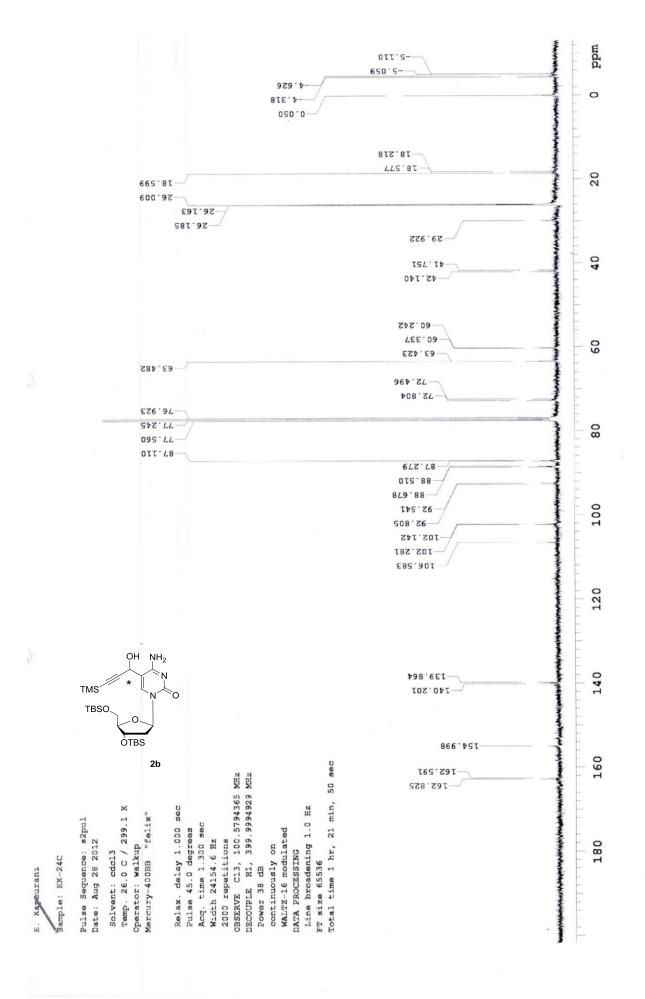
<sup>1</sup>**H-NMR:** (300 MHz, CDCl<sub>3</sub>) δ (ppm) 9.42 (s, 2H, N**H**, N**H** \*), 8.91 (s, 1H, C**HO**\*), 8.86 (s, 1H, C**HO**), 6.22 (dd, J = 8.7, 5.6 Hz, 1H, **H-1**\*), 6.12 (dd, J = 8.7, 5.6 Hz, 1H, **H-1**\*), 5.98 (ddd, J = 17.1, 10.1, 4.7 Hz, 1H, CH-CH=CH<sub>2</sub>), 5.78 (ddd, J = 17.0, 10.1, 5.5 Hz, 1H, CH-CH\*=CH<sub>2</sub>), 5.11-4.97 (m, 4H, CH-CH=CH<sub>2</sub>, CH-CH=CH<sub>2</sub>\*), 4.93 (d, J = 5.4 Hz, 1H, **H-6**\*), 4.76 (d, J = 4.7 Hz, 1H, **H-6**), 4.36-4.33 (m, 2H, **H-3**\*, **H-3**\*\*), 3.85-3.81 (m, 1H, **H-4**\*), 3.78-3.76 (m, 1H, **H-4**\*\*), 3.72- 3.67 (m, 4H, **H-5**\*, **H-5**\*\*), 2.23-2.09 (m, 2H, **H-2**\*, **H-2**\*\*), 1.97-1.84 (m, 2H, **H-2**\*, **H-2**\*\*), 0.91-0.88 (m, 36H, 2xSi-C(CH<sub>3</sub>)<sub>3</sub>, 2xSi-C(CH<sub>3</sub>)<sub>3</sub>\*), 0.08-0.06 (m, 24H, 2xSi-(CH<sub>3</sub>)<sub>2</sub>, 2xSi-(CH<sub>3</sub>)<sub>2</sub>\*).

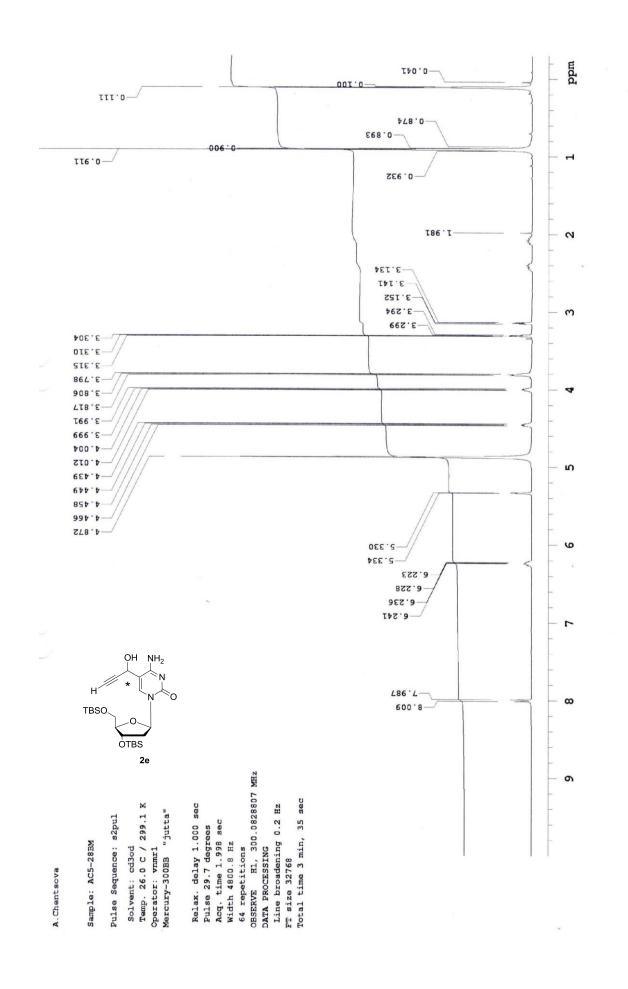

<sup>13</sup>C-NMR: (75 MHz, CDCl<sub>3</sub>) δ (ppm) 183.4 (CHO), 153.8, 153.2, 139.5 (CH=CH<sub>2</sub>), 114.7 (CH=CH<sub>2</sub>), 87.0 (C-4'), 85.3 (C-1'), 72.4 (C-3'), 63.5 (C-5'), 52.8 (C-6), 38.2 (C-2'), 26.14 (26.11) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 25.92 (25.90) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.60 (18.55) (Si-C(CH<sub>3</sub>)<sub>3</sub>), 18.15 (18.13) (Si-C(CH<sub>3</sub>)<sub>3</sub>), -4.5 (Si-CH<sub>3</sub>), -4.6 (Si-CH<sub>3</sub>), -5.2 (Si-CH<sub>3</sub>), -5.3 (Si-CH<sub>3</sub>). C-5 is not observed.

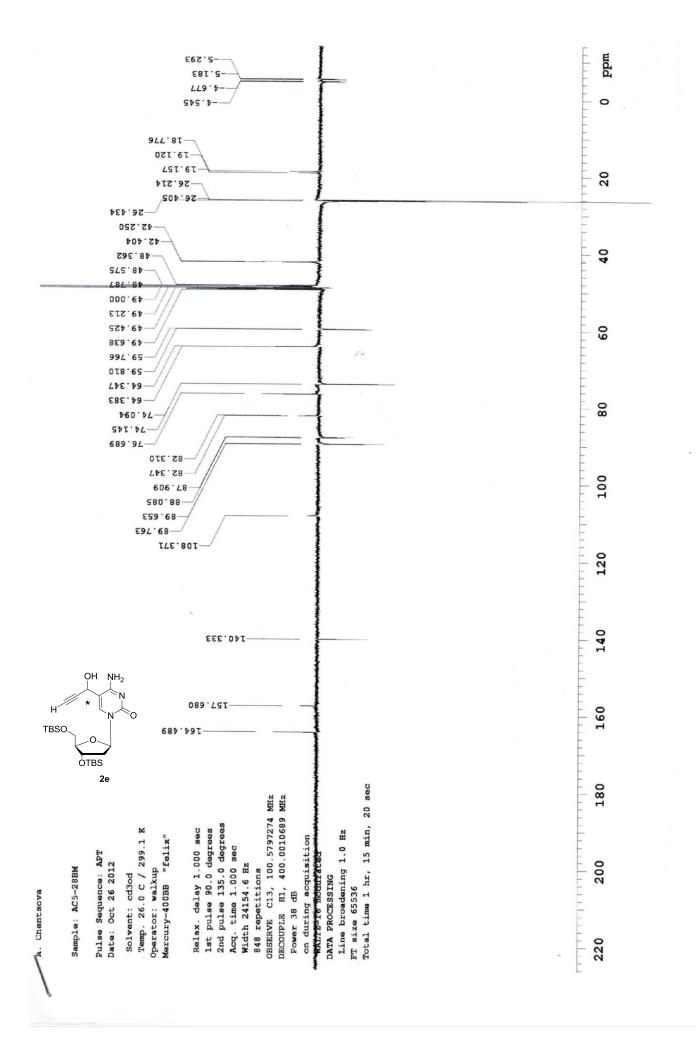

**HR-MS:** (ESI positive, MeOH),  $[M+H]^+$  calcd for  $C_{24}H_{46}N_3O_5Si_2$ : 512.29705, found: 512.29711,  $[M+Na]^+$  calcd for  $C_{24}H_{45}N_3O_5Si_2Na$ : 534.27900, found: 534.27848.

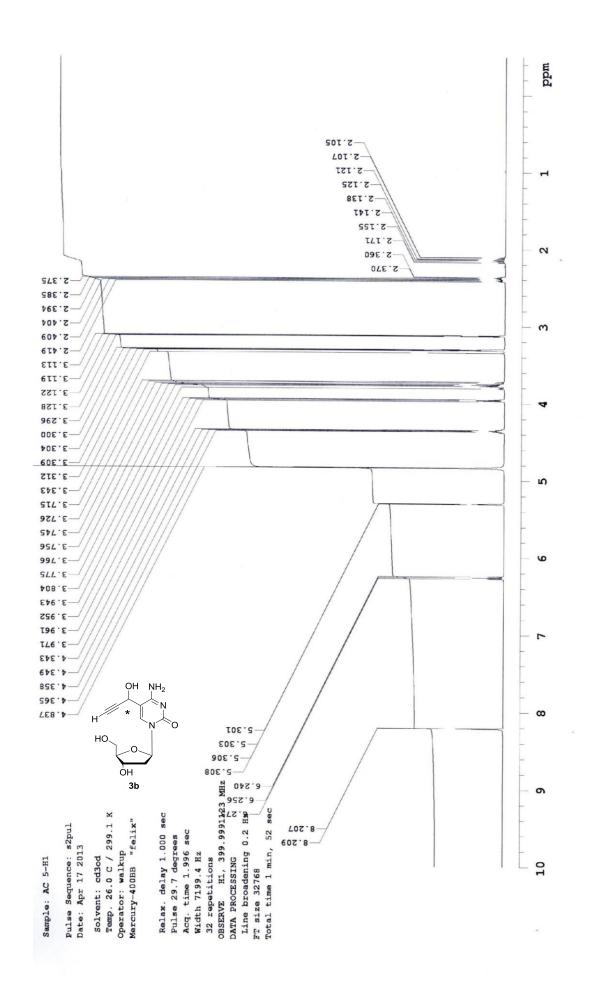
### **NMR Spectra:**

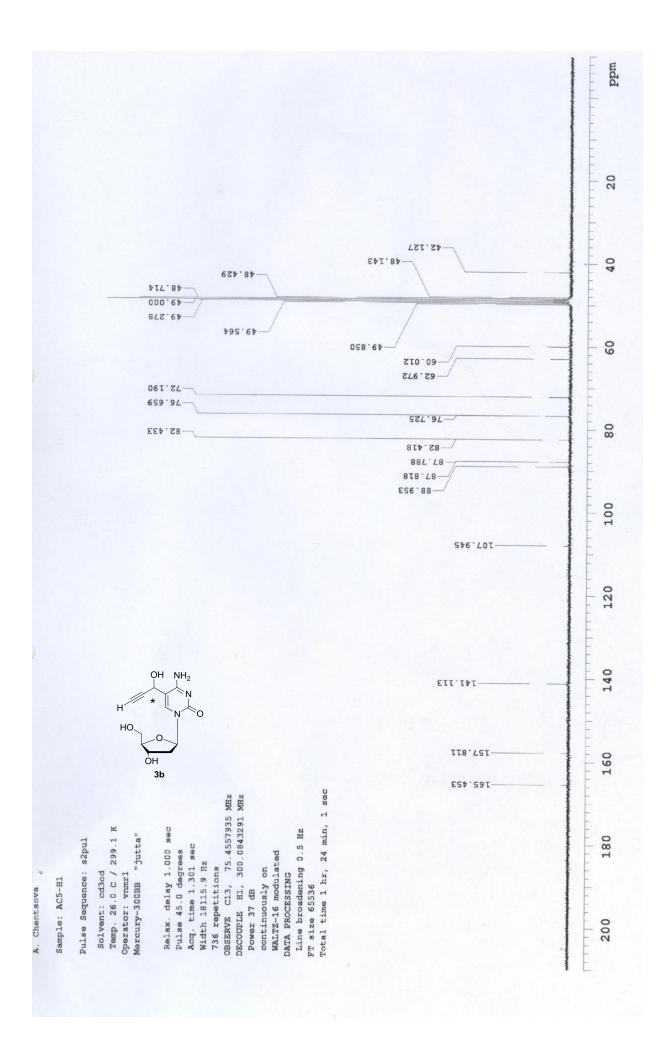


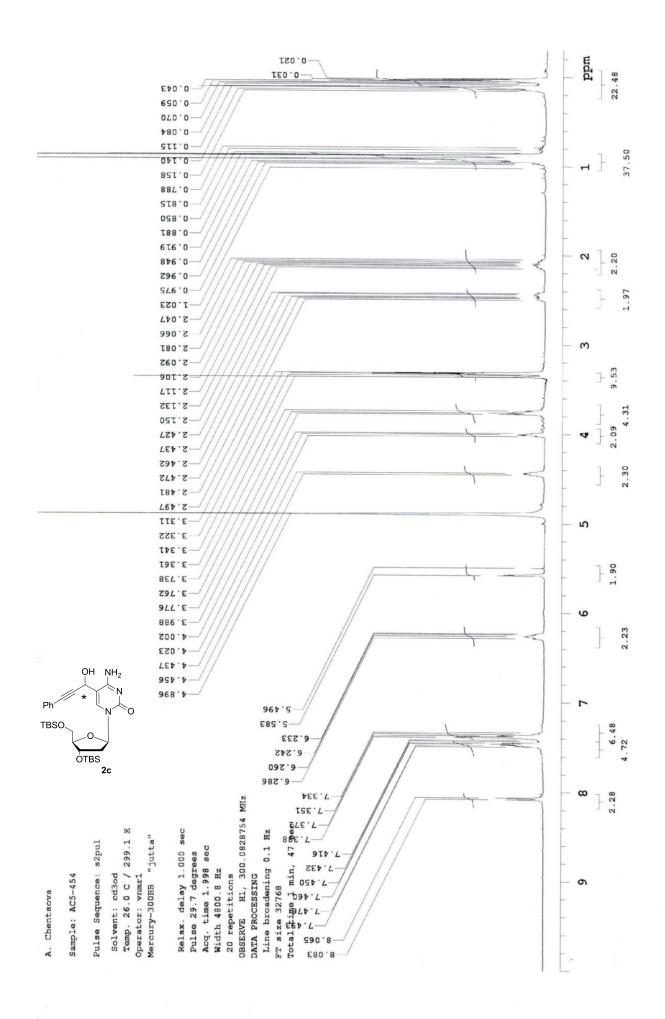



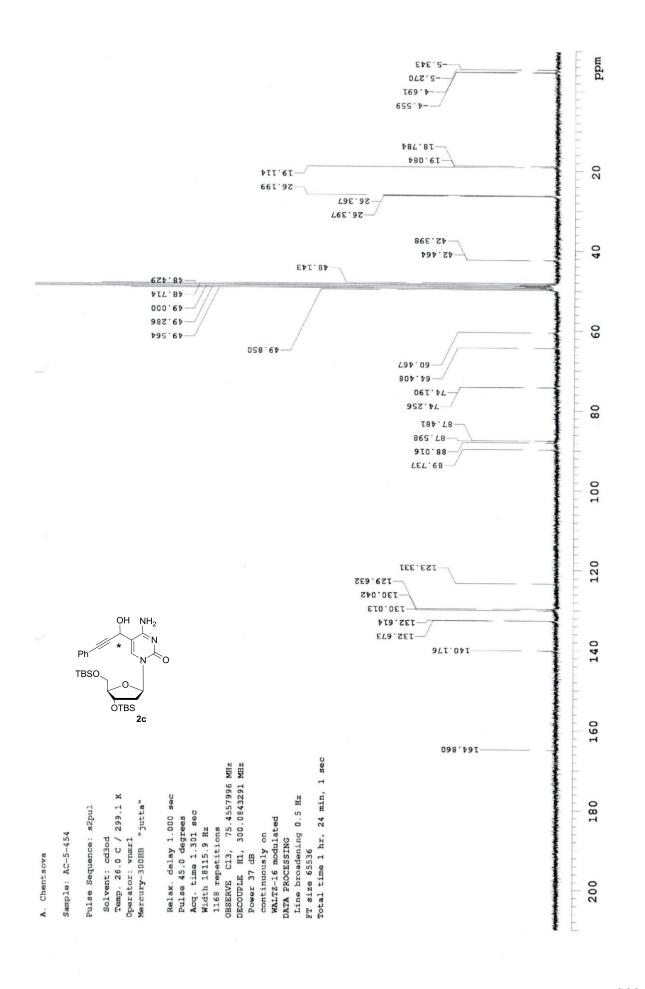



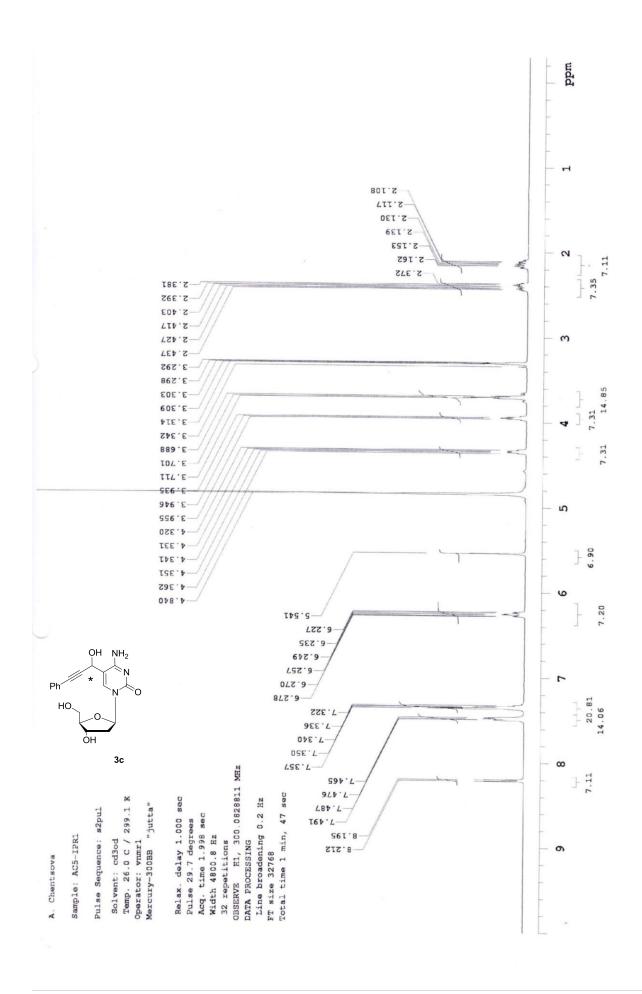



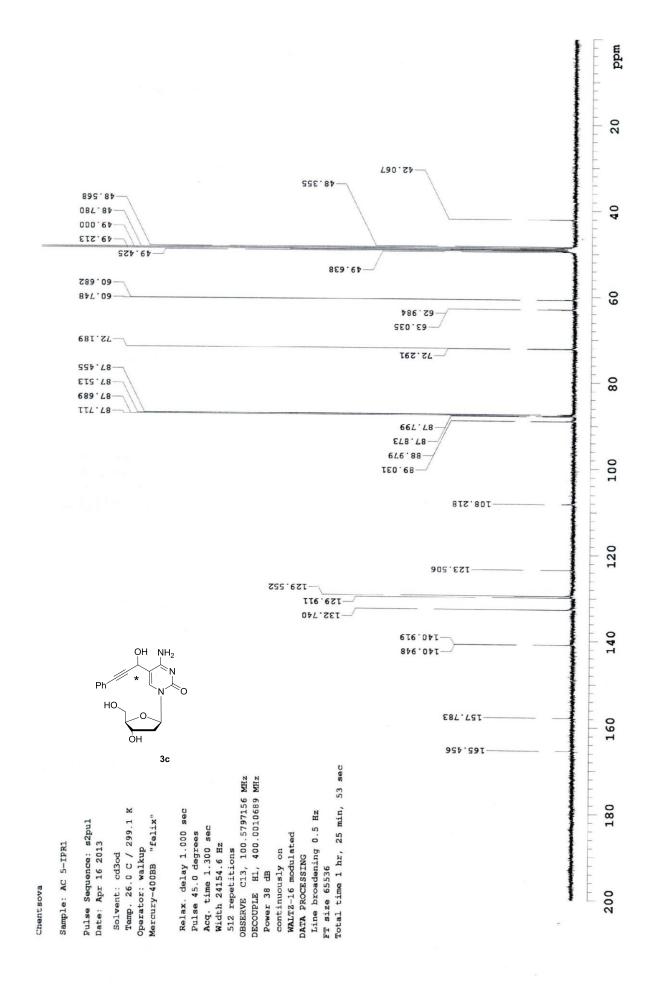



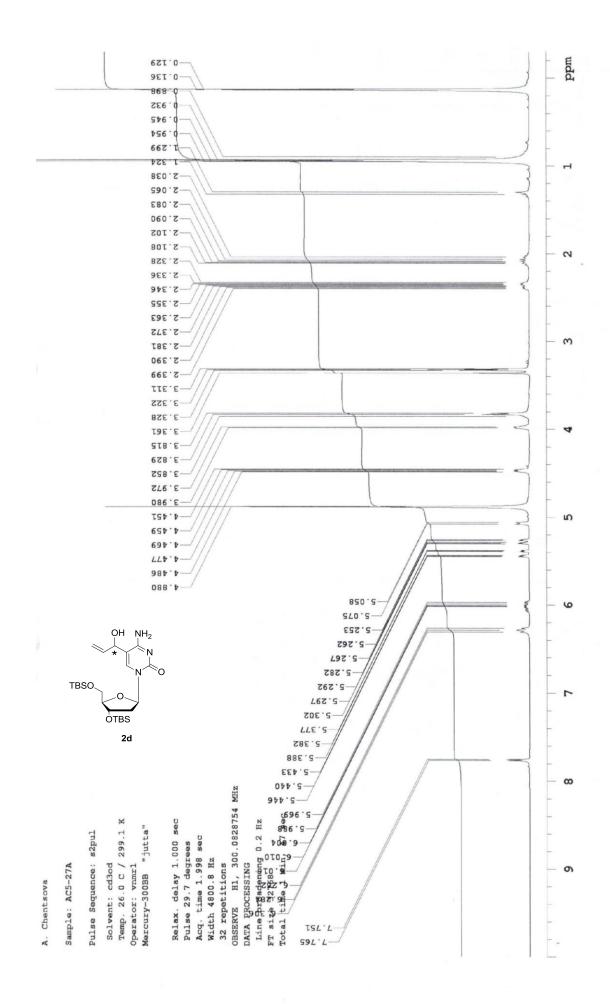



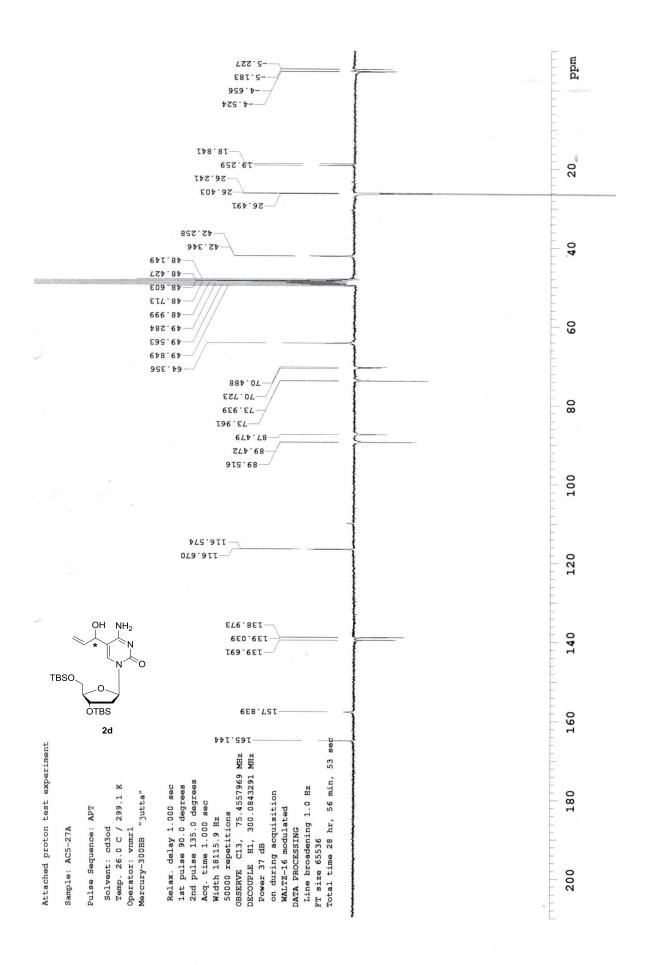



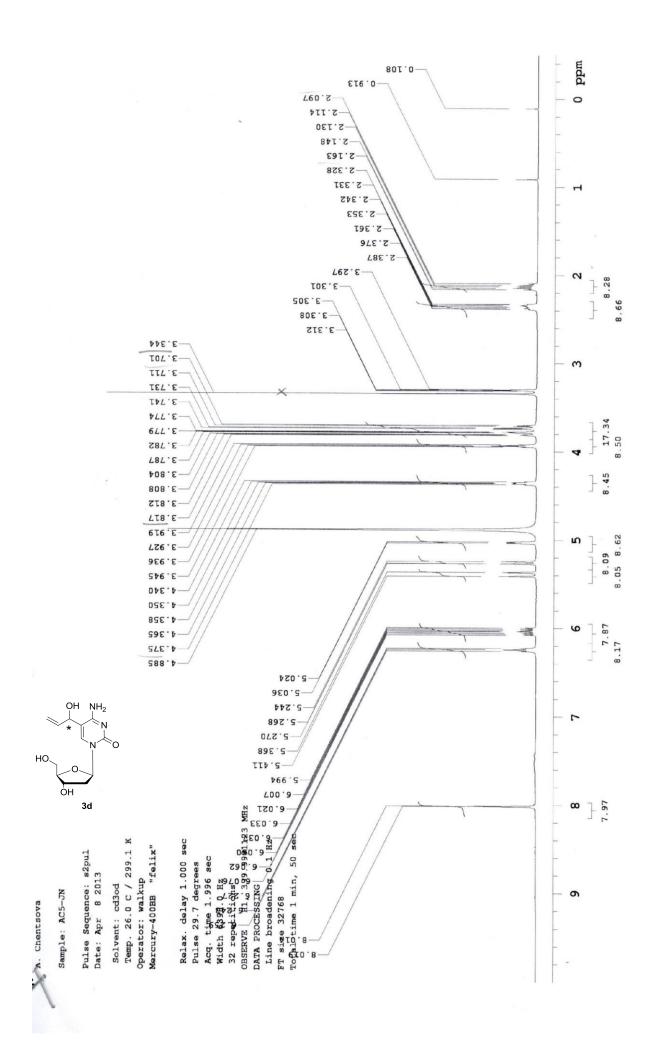



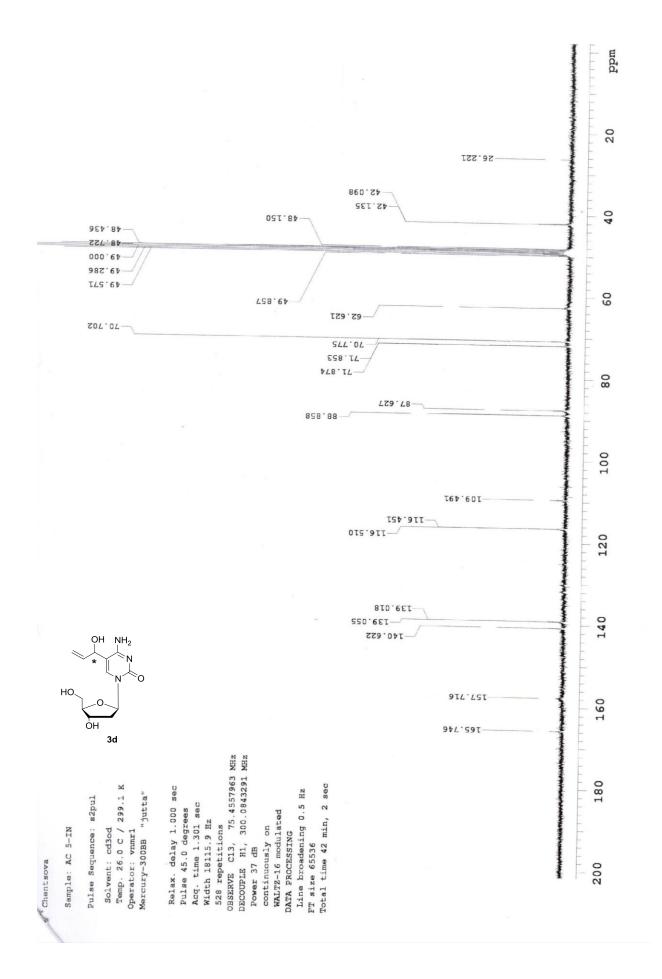



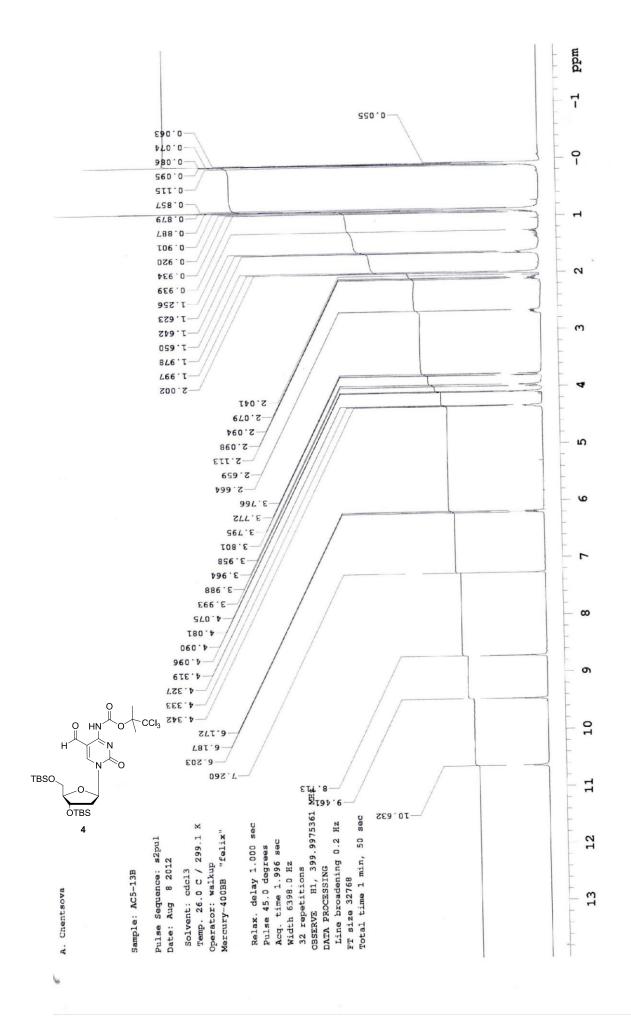



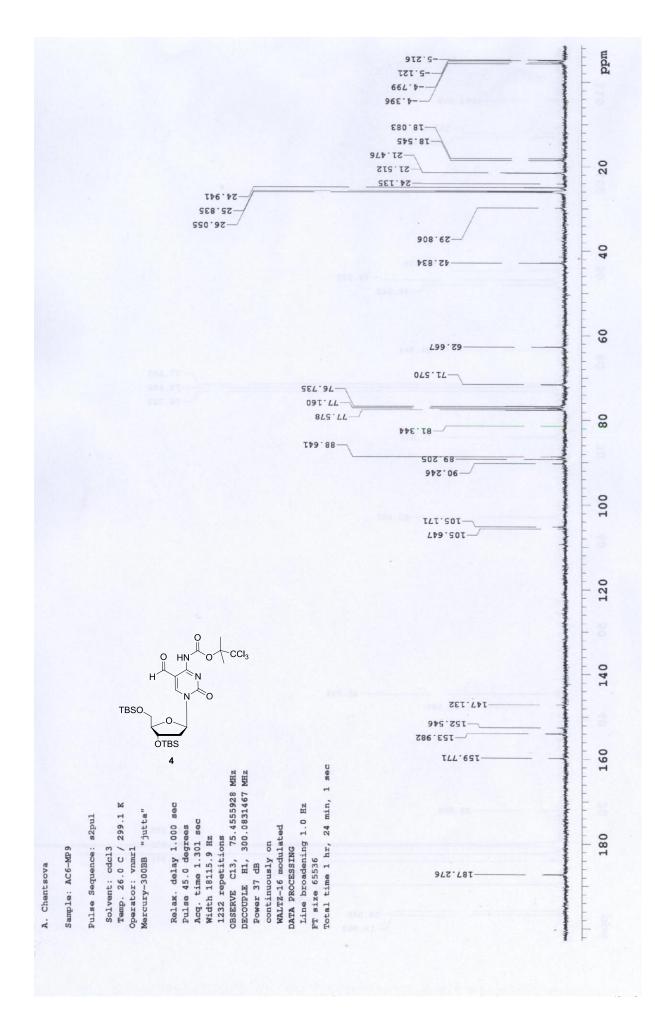



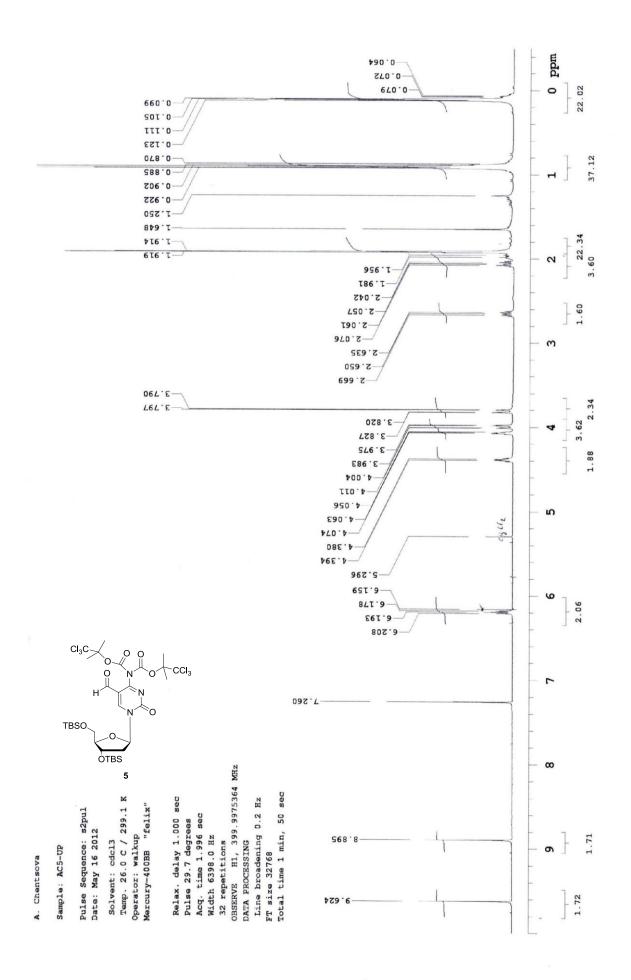



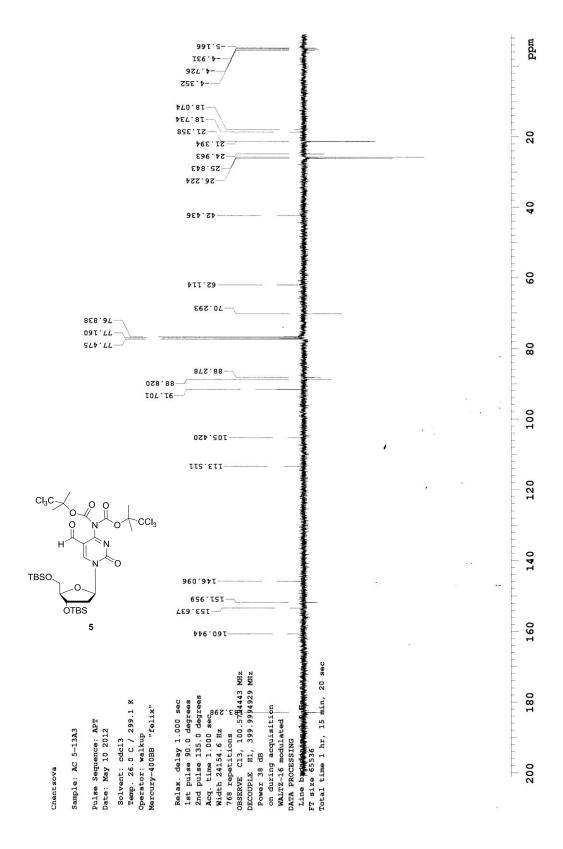



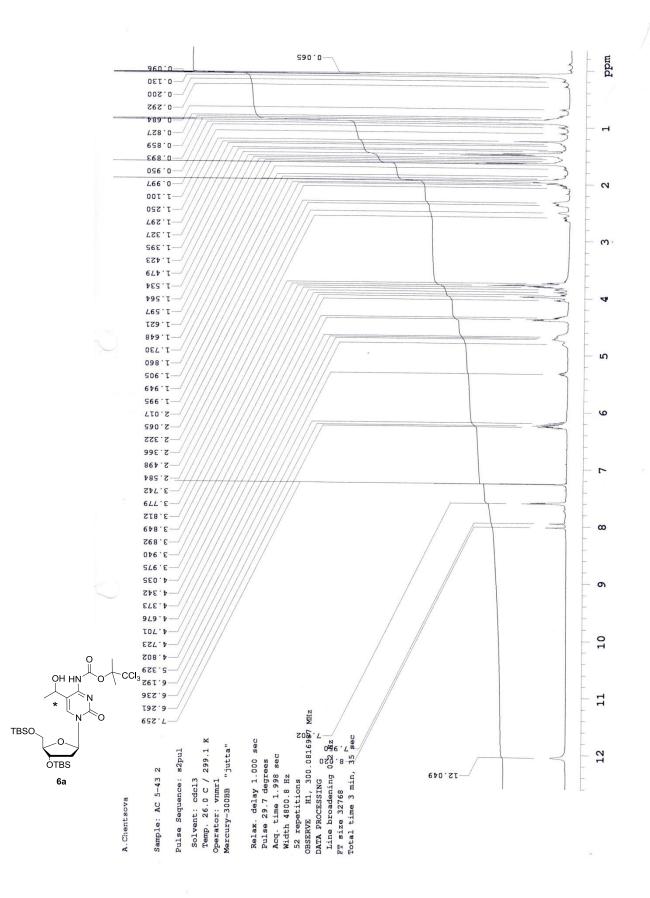



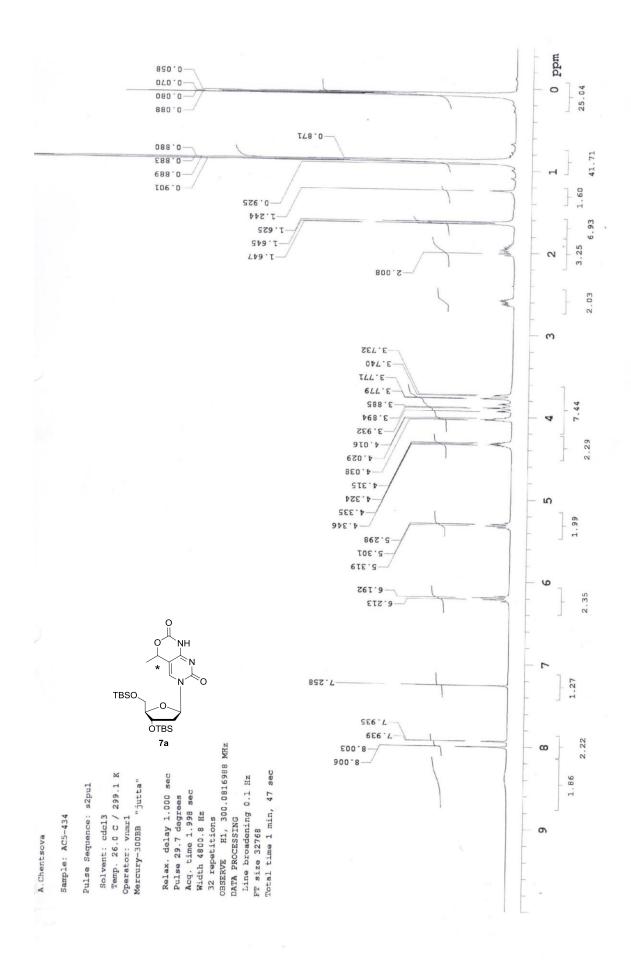



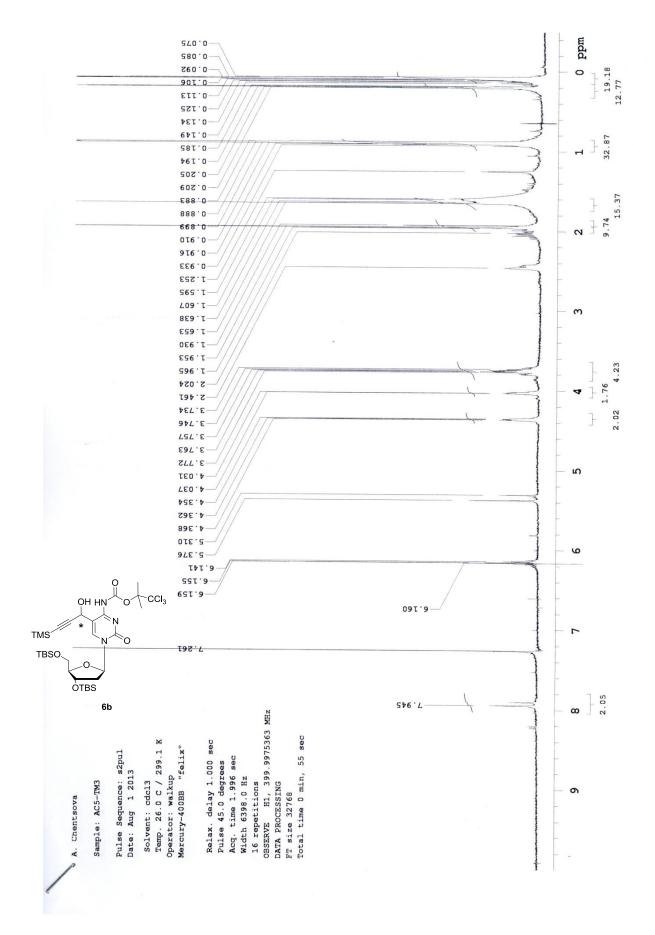



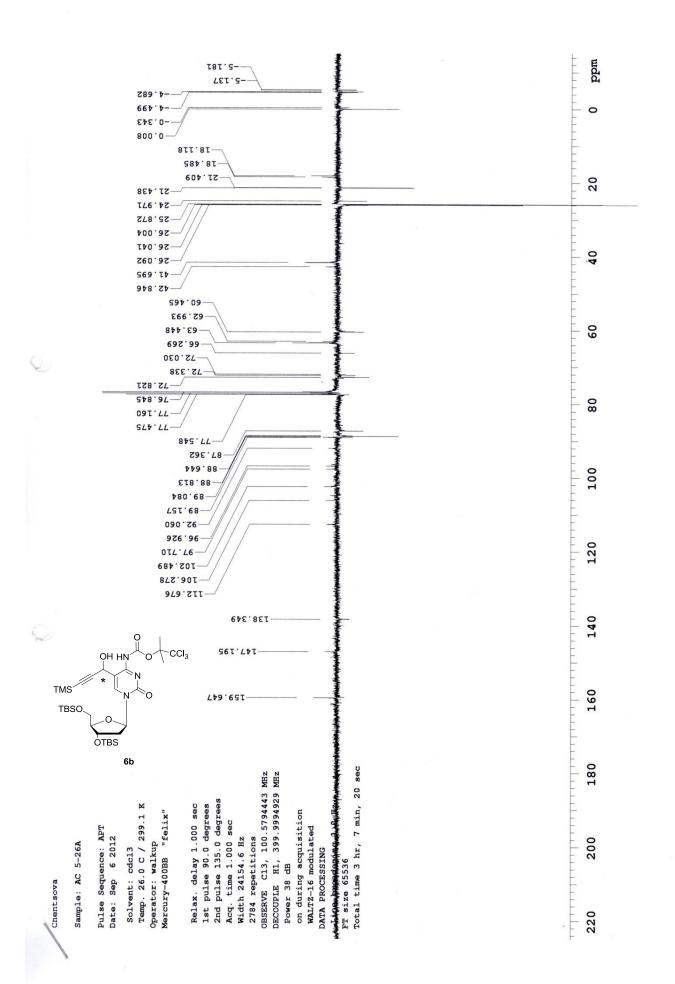



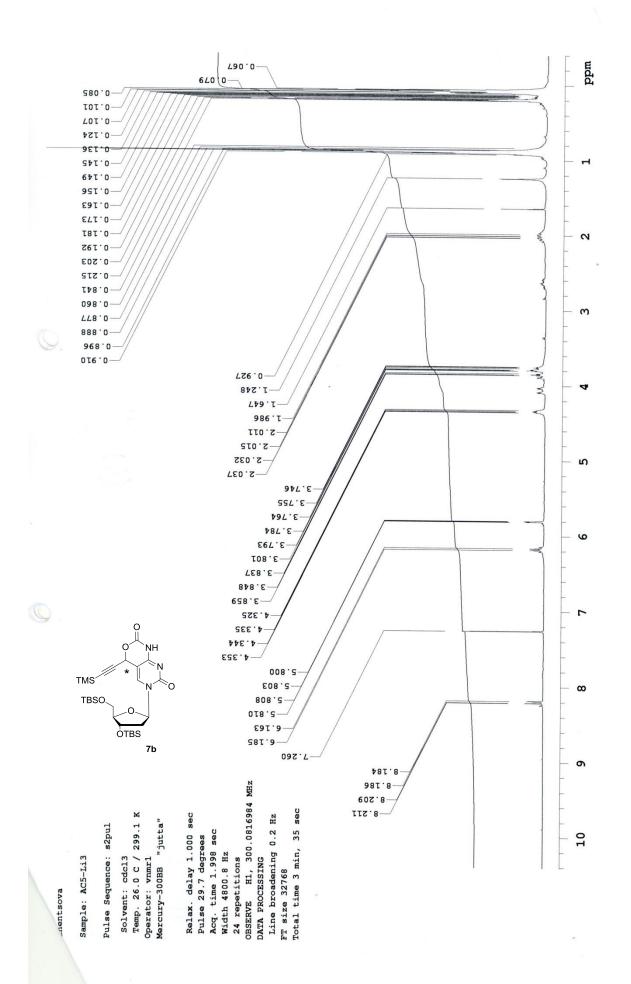



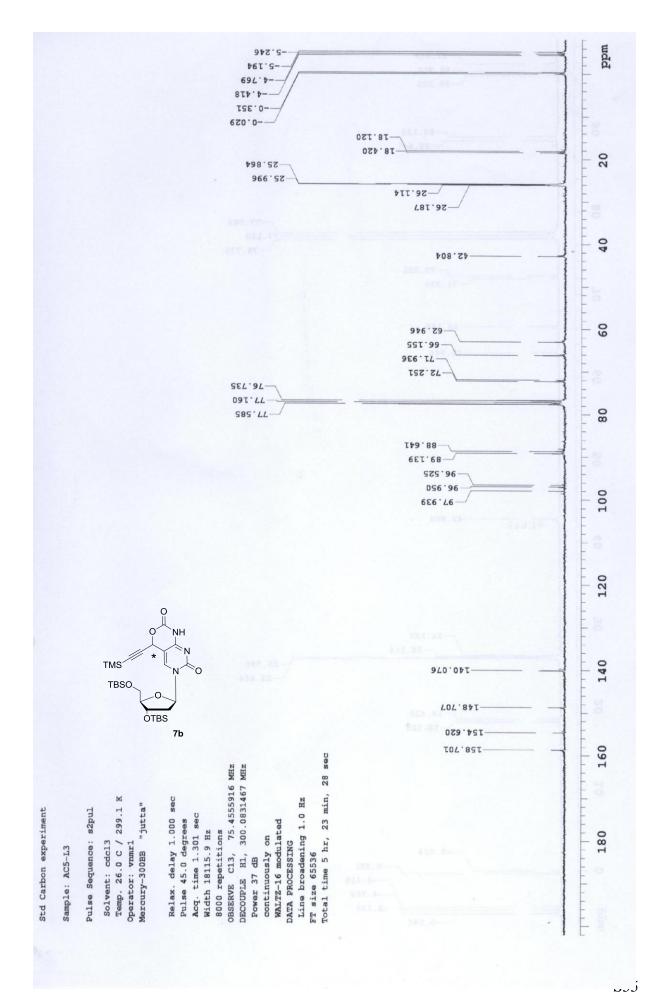



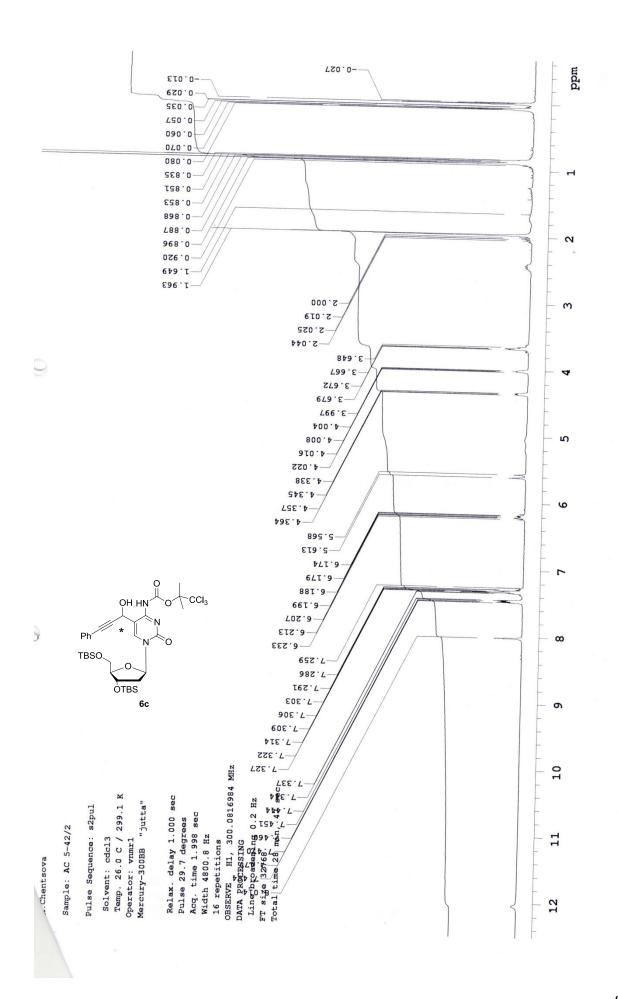




|                                                                                      | \$61.2-<br>8\$2.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mdd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      | 227. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                      | 96E. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | September 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                      | 18.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                      | 82.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                      | \$78. 2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      | 783.SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                      | 76T.SA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      | — 62.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      | 20.02<br>——————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                      | 169.5T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      | 267.767<br>- 77.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                      | 091.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                      | 888. TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Was a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                      | 289.88<br>TTO.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                      | ZE8.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                      | The second of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      | SIT. BEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                      | 109.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                      | O 297.941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Control of the Contro |
|                                                                                      | O NH SE6.8ST SE6.8ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                      | *   N O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| TBSO                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                      | OTBS NHW 2 N | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P. H. P.                                                                             | a" sec<br>31467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| s2pu                                                                                 | 1.000 sec 1.000 sec 301 sec 0ns 75.4555916 MHz 300.0831467 MHz 300.0831467 MHz inted intered i | C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5-434 since:                                                                         | white is a control of the control of | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Seque                                                                                | de]<br>(45.0 time   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18111   18 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.Chentsova Sample: AC5-434 Pulse Sequence: s2pul Solvent: cdc13 Town 26 0 C / 200 1 | Operator: vnnri Mercury-300BB "jutta" Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.301 sec Width 18115.9 Hz 2000 repetitions OBSENVE C13, 75.4555916 DECOUPLE H1, 300.0831467 POWER 37 dBB CONTINUOUSLY ON WALTZ-16 modulated DATA PROCESSING Line broadening 1.0 Hz FT size 65536 Total time 1 hr, 24 min,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| n a n a                                                                              | O Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

