Supporting Information

for

Relay cross metathesis reactions of

vinylphosphonates

Raj K. Malla, Jeremy N. Ridenour and Christopher D. Spilling*

Address: Department of Chemistry and Biochemistry, University of Missouri St. Louis,

One University Boulevard, St. Louis, MO 63121, USA

Email: Christopher D. Spilling - cspill@umsl.edu

* Corresponding author

Experimental procedures, characterization data, ¹H and ¹³C spectra for all new compounds

Table of contents

General experimental	S3
Experimental procedure and spectral data for 14a &14b	S3
Experimental procedure and spectral data for 20a & 20b	S4
Experimental procedure and spectral data for 21a & 21b	S5
General procedure for relay cross metathesis	S6
Experimental procedure and spectral data for 16b & 22	S7
Experimental procedure and spectral data for 23	S8
Experimental procedure and spectral data for 24	S8

Experimental procedure and spectral data for 25	S9
Experimental procedure and spectral data for 26	S10
Experimental procedure and spectral data for 7	S10
Spectral data for 27	S11
Experimental procedure for 16b from 14b	S11
Experimental procedure and spectral data for 24 & 32	S12
Experimental procedure for 16b from 14a and 14b	S13
Selective mono allylation of 12b	S13–S14
¹ H, ¹³ C NMR and ³¹ P NMR spectra of 14a	S15–S16
¹ H, ¹³ C NMR and ³¹ P NMR spectra of 14b	S17–S18
¹ H, ¹³ C NMR and ³¹ P NMR spectra of 20a	S19–S20
¹ H, ¹³ C NMR and ³¹ P NMR spectra of 20b	S21–S22
¹ H and ¹³ C NMR spectra of 21a	S23–S24
¹ H- ¹ H COSY and ³¹ P NMR spectrum of 21a	S25
¹ H, ¹³ C NMR and ³¹ P NMR spectra of 21b	S26–S27
¹ H- ¹ H COSY spectrum of 21b	S28
¹ H NMR spectrum of 16b	S29
¹ H NMR spectrum of 23	S30
¹ H and ¹³ C NMR spectra of 24	S31–S32
¹ H and ¹³ C NMR spectra of 25	S33–S34
¹ H and ¹³ C NMR spectra of 26	S35–S36
¹ H- ¹ H COSY spectrum of 26	S37
¹ H NMR and ¹ H- ¹ H COSY spectra of 7	S38
¹ H- ¹ H COSY spectrum of 7	S39
¹ H and ¹³ C NMR spectra of 27	S40
¹ H- ¹ H COSY spectrum of 27	S41
¹ H, ³¹ P decoupled ¹ H and ³¹ P NMR spectra of 22	S42
¹ H- ¹ H COSY spectrum of 22	S43
¹ Hand ¹³ C NMR spectra of 32	S44
¹ H- ¹ H COSY and ³¹ P NMR spectrum of 32	S45
Cross metathesis of mixture of mono- and di-allyl vinylphosphonates	S46

General Experimental Details

All reactions were carried out in oven dried glassware under an atmosphere of argon unless otherwise noted. ¹H, ¹³C and ³¹P NMR spectra were recorded at 300, 75 and 121 MHz respectively. ¹H NMR spectra are referenced to CDCl₃ (7.27 ppm), ¹³C NMR spectra are referenced to the center line of CDCl₃ (77.23 ppm) and ³¹P NMR spectra are referenced to external H₃PO₄. Coupling constants, *J*, are reported in Hz.

Experimental procedure and spectral data for 14a &14b

(*E*)-Allyl methyl hept-1-en-1-ylphosphonate and (*E*)-Diallyl hept-1-en-1-ylphosphonate (14a and 14b). To a solution of dimethyl vinylphosphonate 12b (80.0 mg, 0.39 mmol) and allyl bromide (0.25 mL, 5 eq) in dry toluene (0.45 mL) was added TBAI (8 mg, 5 mol%) and the resulting mixture was heated at reflux. After 18 hours there was 87% conversion based on ³¹P NMR analysis. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (SiO₂, gradient 10–40 % EtOAc in hexanes) to give 14a (28 mg, 31%) and 14b (25 mg, 25%) as oils.

14a IR (neat, NaCl) 2958, 2929, 2859, 1633 cm⁻¹; ¹H NMR (CDCl₃) δ 6.8 (1H, ddt, $J_{\text{HH}} = 17.1$, 6.6 Hz, $J_{\text{HP}} = 21.7$ Hz), 5.93 (1H, m), 5.62 (1H, ddt, $J_{\text{HH}} = 17.1$, 1.6, $J_{\text{HP}} = 21.7$ Hz), 5.34 (1H, ddd, $J_{\text{HH}} = 17.1$, 3.0, 1.5 Hz), 5.23 (1H, dd, $J_{\text{HH}} = 10.4$, 1.3 Hz), 4.50 (2H, m), 3.70 (3H, d, $J_{\text{HP}} = 11.1$ Hz), 2.22 (2H, dq, $J_{\text{HH}} = 7.1$, 1.9 Hz), 1.44 (2H, m), 1.27 (4H, m), 0.87 (3H, t, $J_{\text{HH}} = 6.8$ Hz); ¹³C NMR (CDCl₃) δ 155.2 (d, $J_{\text{CP}} = 4.5$ Hz), 133.2 (d, $J_{\text{CP}} = 6.5$ Hz), 118.1, 115.8 (d, $J_{\text{CP}} = 4.5$ Hz); ¹³C NMR (CDCl₃) δ 155.2 (d, $J_{\text{CP}} = 4.5$ Hz), 133.2 (d, $J_{\text{CP}} = 6.5$ Hz), 118.1, 115.8 (d, $J_{\text{CP}} = 4.5$ Hz); ¹³C NMR (CDCl₃) δ 155.2 (d, $J_{\text{CP}} = 4.5$ Hz), 133.2 (d, $J_{\text{CP}} = 6.5$ Hz), 118.1, 115.8 (d, $J_{\text{CP}} = 4.5$ Hz); ¹³C NMR (CDCl₃) δ 155.2 (d, $J_{\text{CP}} = 4.5$ Hz), 133.2 (d, $J_{\text{CP}} = 6.5$ Hz), 118.1, 115.8 (d,

=187.7 Hz), 66.3 (d, J_{CP} = 5.1 Hz), 52.4 (d, J_{CP} = 5.7 Hz), 34.4 (d, J_{CP} = 22.0 Hz), 31.4, 27.6, 22.6, 14.1; ³¹P NMR (CDCl₃) δ 20.8; HRMS (FAB, NBA, MH⁺) calcd for C₁₁H₂₂O₃P: 233.1306, found 233.1305.

14b IR (neat, NaCl) 2959, 2953, 2869, 1628 cm⁻¹; ¹H NMR (CDCl₃) δ 6.81 (1H, ddt, $J_{HH} = 17.1$, 6.6 Hz, $J_{HP} = 21.6$ Hz), 5.94 (2H, m), 5.66 (1H, ddt = 17.1, 1.6 Hz, $J_{HP} = 21.7$ Hz), 5.34 (2H, ddd, $J_{HH} = 17.1$, 3.0, 1.5 Hz), 5.23 (2H, dd, $J_{HH} = 10.4$, 1.2 Hz), 4.51 (4H, dd, $J_{HH} = 7.2$, 6.1 Hz), 2.22 (2H, dq, $J_{HH} = 7.1$, 1.9 Hz), 1.45 (2H, m), 1.29 (4H, m), 0.88 (3H, t, $J_{HH} = 6.8$ Hz); ¹³C NMR (CDCl₃) δ 154.9 (d, $J_{CP} = 4.5$ Hz), 133.2 (d, $J_{CP} = 6.6$ Hz), 118, 116.4 (d, $J_{CP} = 187.8$ Hz), 66.3 (d, $J_{CP} = 5.4$ Hz), 34.4 (d, $J_{CP} = 22.2$ Hz), 31.4, 27.6, 22.6, 14.2; ³¹P NMR (CDCl₃) δ 19.8; HRMS (FAB, NBA, MH⁺) calcd for C₁₃H₂₄O₃P: 259.1463, found 259.1455.

Experimental procedure and spectral data for 20a & 20b

(*E*)-Allyl methyl (2-(tetrahydrofuran-2-yl)vinyl)phosphonate and (*E*)-Diallyl (2-(tetrahydrofuran-2-yl)vinyl)phosphonate (20a and 20b). To a solution of vinyl phosphonate 19 (120 mg, 0.58 mmol) and allyl bromide (0.87 mL, 1.5 mmol) in dry toluene (2 mL) was added TBAI (11 mg, 5 mol%). The resulting solution was heated at reflux. After 36 hours there was 76% conversion based on ³¹P NMR analysis. The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (SiO₂, gradient 10–40 % EtOAc in hexanes) to give 20a (62 mg, 46%) and 20b (40 mg, 27%) as oils.

20a IR (neat, NaCl), 2959,2955, 2865, 1635 cm⁻¹; ¹H NMR (CDCl₃) δ 6.80 (1H, ddd, $J_{\text{HH}} = 17$, 4.0 Hz, $J_{\text{HP}} = 21$ Hz), 5.93 (2H, m), 5.36 (1H, dd $J_{\text{HH}} = 17.1$, 1.4 Hz,), 5.25 (1H, dd, $J_{\text{HH}} = 10.4$,

1.4 Hz), 4.52 (3H, m), 3.92 (1H, m), 3.83 (1H, m), 3.72 (3H, d, $J_{HP} = 11.2$ Hz), 2.11 (1H, m), 2.94 (2H, m), 1.69 (1H, m)); ¹³C NMR (CDCl₃) δ 153.9 (d, $J_{CP} = 5.3$ Hz), 132.3 (d, $J_{CP} = 9.7$ Hz), 118.1, 114.6 (d, $J_{CP} = 188.2$ Hz), 78.5 (d, $J_{CP} = 21.8$ Hz), 68.8, 66.4 (d, $J_{CP} = 5.3$ Hz), 52.5 (d, $J_{CP} = 5.9$ Hz), 31.6, 25.6; ³¹P NMR (CDCl₃) δ 20.75, 20.72 ppm; HRMS (FAB, MH⁺) calcd for C₁₀H₁₈O₄P: 233.0943, found 233.0946.

20b IR (neat, NaCl), 2928, 2873, 1635 cm⁻¹; ¹H NMR (CDCl₃) δ 6.77 (1H, ddd, $J_{HH} = 17.1$, 9.5 Hz, $J_{HP} = 21.5$ Hz), 5.93 (3H, m), 5.34 (2H, dd $J_{HH} = 17.1$, 1.4 Hz), 5.22 (2H, dd, $J_{HH} = 10.4$, 1.3 Hz), 4.52 (5H, m), 3.93 (1H, m), 3.84 (1H, m), 2.12 (1H, m), 1.90 (2H, m), 1.66 (1H, m); ¹³C NMR (CDCl₃) δ 153.6 (d, $J_{CP} = 5.2$ Hz), 132.2 (d, $J_{CP} = 10.0$ Hz), 118.1, 115.0 (d, $J_{CP} = 188.3$ Hz), 78.4 (d, $J_{CP} = 21.8$ Hz), 68.7, 66.4 (d, $J_{CP} = 5.3$ Hz), 31.5, 25.6; ³¹P NMR (CDCl₃) δ 20.4 ppm; HRMS (FAB, NBA, MH⁺) calcd for C₁₂H₂₀O₄P: 259.1099, found 259.1094.

Experimental procedure and spectral data for 21a & 21b

Allyl methyl ((E)-2-((2S,6R)-6-(4-methoxyphenyl)tetrahydro-2H-pyran-2-yl)vinyl)phosphonate) and Diallyl ((E)-2-((2S,6R)-6-(4-methoxyphenyl)-tetrahydro-2H-pyran-2-yl)vinyl)phosphonate (21a and 21b). To the solution of vinylphosphonate 5 (65 mg, 0.20 mmol) and allyl bromide (0.051 mL, 3 equiv.) in dry toluene (0.5 mL) was added TBAI (15 mg, 20 mol %) and the resulting mixture was heated in microwave reactor. After 5.5 hours of heating the reaction had proceeded to >96% conversion based on ³¹P NMR analysis. The solvent was evaporated under reduced pressure and the crude product was purified by column

chromatography (SiO₂, gradient 10–40 % EtOAc in hexanes) to give pure **21a** (19 mg, 27%) and **21b** (27 mg, 36%) as oils.

21a ¹H NMR (CDCl₃) δ 7.29 (2H, d, $J_{\text{HH}} = 8.6$ Hz), 6.88 (2H, d, $J_{\text{HH}} = 8.7$ Hz), 6.80 (1H, ddd, $J_{\text{HH}} = 17.1$, 9.4 Hz, $J_{\text{HP}} = 21.5$ Hz), 6.04 (1H, dd, $J_{\text{HH}} = 17.2$ Hz, $J_{\text{HP}} = 21.5$ Hz), 5.36 (1H, dd, $J_{\text{HH}} = 17.1$, 1.5 Hz), 5.23 (1H, dd, $J_{\text{HH}} = 10.4$, 1.2 Hz), 4.52 (2H, m), 4.40 (1H, br doublet, $J_{\text{HH}} = 11.2$ Hz), 4.16 (1H, br doublet, $J_{\text{HH}} = 11.6$ Hz), 3.80 (3H, s), 3.74 (d, 1.5H, $J_{\text{HP}} = 11.2$ Hz), 3.72 (d, 1.5H, $J_{\text{HP}} = 11.2$ Hz), 1.99 (1H, m), 1.79 (2H, m), 1.69 (1H, m), 1.51 (1H, m), 1.34 (1H, m); 1³C NMR (CDCl₃) δ 159.0, 153.5 (d, $J_{\text{CP}} = 5.5$ Hz), 135.3, 133.1 (d, $J_{\text{CP}} = 6.5$ Hz), 127.1, 118.1 (d, $J_{\text{CP}} = 3.3$ Hz), 114.12 (d, $J_{\text{CP}} = 188.3$ Hz), 113.8, 79.5, 66.3 (d, $J_{\text{CP}} = 5.3$ Hz), 55.4, 52.5 (d, $J_{\text{CP}} = 5.6$ Hz), 33.6, 30.9, 24.1; ³¹P NMR (CDCl₃) δ 21.4, 21.3; HRMS (FAB, NBA, MH⁺) calcd for C₁₈H₂₆O₅P: 353.1518, found 353.1524.

21b ¹H NMR (CDCl₃) δ 7.30 (2H, d, $J_{HH} = 8.6$ Hz), 6.89 (2H, d, $J_{HH} = 8.6$ Hz), 6.80 (1H, ddd, $J_{HH} = 17.1$, 9.4 Hz, $J_{HP} = 21.5$ Hz), 6.07 (1H, dd, $J_{HH} = 17.1$ Hz, $J_{HP} = 21.5$ Hz), 5.95 (2H, m), 5.35 (2H, m), 5.23 (2H, m), 4.52 (4H, m), 4.41 (1H, dd, $J_{HH} = 10.8$ Hz, $J_{HP} = 1.8$ Hz), 4.16 (1H, br doublet, $J_{HH} = 11.6$ Hz), 3.81 (3H, s), 1.99 (1H, m), 1.79 (2H, m), 1.69 (1H, m), 1.51 (1H, m), 1.34 (1H, m); ¹³C NMR (CDCl₃) δ 159.0, 153.2 (d, $J_{CP} = 5.5$ Hz), 135.3, 133.1 (d, $J_{CP} = 4.6$ Hz), 127.1, 118.1 (d, $J_{CP} = 3.6$ Hz), 114.68 (d, $J_{CP} = 188.1$ Hz), 113.8, 66.3 (d, $J_{CP} = 5.4$ Hz), 55.4, 33.6, 30.9, 24.1; ³¹P NMR (CDCl₃) δ 20.4; HRMS (FAB, NBA, MH⁺) calcd for C₂₀H₃₈O₅P: 379.1674, found 379.1672.

General procedure for relay cross metathesis

To a solution of allyl vinylphosphonate (1 mmol) and the alkene coupling partner (2–5 mmol) in CH_2Cl_2 (2 mL) was added Grubbs 2nd generation catalyst (10 mol %) followed by CuI (10 mol %). After stirring the solution for 2 minutes at room temperature, the reaction flask was placed

in an oil bath preheated at 55 °C. After the reaction was complete (TLC and ³¹P NMR analysis), the solvent was evaporated under reduced pressure and the crude product was purified by column chromatography (SiO₂). A gradient of 1–5% EtOAc in hexane was used to elute the cross metathesis product and then a gradient of 50–70% EtOAc in hexanes was used to elute the 5-membered phosphorus heterocycles.

Experimental procedure and spectral data for 16b & 22

(*E*)-Methyl oct-2-enoate (16b) from reaction of mono-allyl phosphonate (14b). Allyl vinylphosphonate 14a (54.3 mg, 0.23 mmol), methyl acrylate (42 uL, 0.46 mmol, 2 eq), Grubbs 2^{nd} generation catalyst (20 mg, 0.023 mmol, 0.1 eq), and copper(I) iodide (4.5 mg, 0.023 mmol, 0.1 eq) were dissolved in CH₂Cl₂ (2.3 mL). The reaction flask was fitted with a reflux condenser and placed in an oil bath pre-heated to 50 °C. After 16 h, the reaction was cooled and filtered through silica gel (2 mL). The silica was rinsed with CH₂Cl₂ until just before the first dark band began eluting. The solvent was gently evaporated under reduced pressure without heating to give of crude product (44.7 mg). The yield of (*E*)-Methyl oct-2-enoate (28.5 mg, 78%) was estimated by ¹H NMR spectroscopy. Silica gel chromatography (15% CH₂Cl₂ in pentane) gave the pure product 16b (16.3 mg, 45%). ¹H NMR (CDCl₃) δ 6.98 (1H, dt, *J*_{HH} = 15.7, 7.0 Hz), 6.01 (1H, d, *J*_{HH} = 15.7 Hz), 3.74 (3H, s), 2.20 (2H, m), 1.42 (2H, m), 1.28 (M, 4H), 0.91 (3H, t, *J*_{HH} = 7.2 Hz). The ¹HNMR spectral data was in agreement with the literature [1].

In other experiments, further elution gave oxaphosphole **22** in moderate purity. Any further attempt to purify the product using SiO₂ chromatography led to decomposition. **2-methoxy-2,5-dihydro-1,2-oxaphosphole 2-oxide (22).** ¹HNMR (CDCl₃) δ 7.16 (1H, ddt, J_{HH} = 8.6, ~1 Hz J_{Hp} = 46.9 Hz), 6.2 (1H, ddt, J_{HH} = 8.6, 2.3 Hz, J_{HP} = 33.9 Hz), 4.79 (2H, m), 3.75 (3H, d, J_{HP} = 11.9 Hz); ³¹P NMR (CDCl₃) δ 43.7.

Experimental procedure and spectral data for 23

(*E*)-Methyl 3-(tetrahydrofuran-2-yl)acrylate (23). To a solution of allyl vinylphosphonate 20a (9.0 mg, 0.039 mmol) and methyl acrylate (0.007 mL, 0.8 mmol) in dry CH₂Cl₂ (0.6 mL) was added Grubbs 2nd generation catalyst (3 mg, 0.004 mmol) followed by CuI (1 mg, 0.005 mmol) to give, after chromatography, the ester 23 (4 mg, 73%). ¹H NMR (CDCl₃) δ 6.91 (1H, dd, J_{HH} = 15.7, 4.8 Hz), 6.01 (1H, dd, J_{HH} = 15.7, 1.6 Hz), 4.5 (1H, dd, J_{HH} = 10.8, 2.0 Hz), 3.91 (1H, m), 3.80 (1H, m), 3.74 (3H, s), 2.11 (1H, m), 1.93 (1H, m), 1.69 (1H, m). The ¹HNMR spectral data was in agreement with the literature [2].

Experimental procedure and spectral data for 24

(*E*)-Methyl 3-((2*S*,6*R*)-6-(4-methoxyphenyl)tetrahydro-2*H*-pyran-2-yl)acrylate (24) from reaction of mono allyl phosphonate (21a). To a solution of allyl vinyl phosphonate 21a (18 mg, 0.050 mmol) and methyl acrylate (0.009 mL, 0.10 mmol) in dry CH_2Cl_2 (1 mL) was added Grubbs 2nd generation catalyst (4 mg, 0.005 mmol) followed by CuI (1 mg, 0.005 mmol) to give, after chromatography, ester 24 (10 mg, 73%). ¹H NMR (CDCl₃) δ 7.30 (2H, d, *J*_{*HH*} = 8 Hz), 6.99 (1H, dd, *J*_{*HH*} = 15.7, 4.0 Hz), 6.88 (2H, d, *J*_{*HH*} = 8 Hz), 6.31 (1H, dd, *J*_{*HH*} = 15.7, 1.9 Hz), 4.41 (1H, dd, *J*_{*HH*} = 10.8, 2.0 Hz), 4.21 (1H, m), 3.81 (3H, s), 3.74 (3H, s), 2.02 (1H, m), 1.87–1.70 (3H, m), 1.59–1.50 (1H, m), 1.42–1.34 (1H, m); ¹³C NMR (CDCl₃) δ 167.4, 159.0, 148.6, 135.4 127.2, 119.6, 113.8, 79.6, 55.6, 51.7, 33.6, 31.0, 24.1; HRMS (FAB, NBA/NaI, MNa⁺) calcd for C₁₆H₂₀O₄Na: 299.1259, found 299.1251.

Experimental procedure and spectral data for 25

(2*R*,6*S*)-2-(4-Methoxyphenyl)-6-((*E*)-styryl)tetrahydro-2*H*-pyran (25). To the solution of allyl vinylphosphonate 21a (20 mg, 0.06 mmol) and styrene (0.013 mL, 0.11 mmol) in dry CH₂Cl₂ (1 mL) was added Grubbs 2nd generation catalyst (5 mg, 0.006 mmol) followed by CuI (1 mg, 0.006 mmol) to give, after chromatography, pure 25 (14 mg, 82%). IR (neat, NaCl) 2927, 2850, 1605 cm⁻¹; ¹H NMR (CDCl₃) δ 7.44 7.21 (7H, m), 6.92 (2H, d, J_{HH} = 8.8 Hz), 6.89 (2H, d, J_{HH} = 15.9 Hz), 6.33 (1H, dd, J_{HH} = 16.0, 5.8 Hz), 4.45 (1H, dd, J_{HH} = 11.1, 1.7 Hz), 4.21 (1H, m), 3.82 (3H, s), 2.02 (1H, m), 1.87-1.70 (3H, m), 1.66-1.50 (1H, m); ¹³C NMR (CDCl₃) δ 159.1, 137.1, 135.8, 131.2, 129.9, 128.7, 127.8, 127.5, 126.7, 113.9, 79.8, 78.9, 55.5, 33.6, 31.9, 24.3; HRMS (FAB, MH⁺) calcd for C₂₀H₂₂O₂: 294.1619, found 294.1618.

Experimental procedure and spectral data for 26

(2*S*,6*R*)-2-(4-Fluorostyryl)-6-(4-methoxyphenyl)tetrahydro-2*H*-pyran (26). To a solution of allyl vinylphosphonate **21a** (0.035 g, 0.1 mmol) and 4-fluorostyrene (0.025 mL, 0.21 mmol) in dry CH₂Cl₂ (1.6 mL) was added Grubbs 2nd generation catalyst (0.009 g, 0.01 mmol) followed by CuI (0.002 g, 0.01 mmol) to give, after chromatography, pure **26** (0.017g, 53%). ¹H NMR (CDCl₃) δ 7.36 (4H, m), 7.03 (2H, m), 6.89 (2H, m), 6.61 (1H, d, *J*_{HH} = 16.1 Hz), 6.22 (1H,dd, *J*_{HH} = 16.1, 5.8 Hz), 4.40 (1H, d, *J*_{HH} = 14.1, 1.9 Hz), 4.20 (1H, dd, *J*_{HH} = 11.0, 5.7 Hz), 3.82 (3H, s), 2.00 (1H, m), 1.82 (3H, m), 1.56 (2H, m); ¹³C NMR (CDCl₃) δ 162.4 (d, *J*_{CF} = 244.9 Hz), 159.1, 135.7, 133.5 (d, *J*_{CF} = 3.2 Hz),130.9 (d, *J*_{CF} = 2.1 Hz), 128.7, 128.1 (d, *J*_{CF} = 8.0 Hz), 127.5, 115.7, 115.4, 113.9, 79.8, 78.8, 55.5, 33.6, 31.9, 24.2. HRMS (FAB, NBA, M⁺) calcd for C₂₀H₂₁O₂F: 312.31526, found 312.1524.

Experimental procedure and spectral data for 7

(2*S*,6*R*)-2-((*E*)-4-(benzyloxy)styryl)-6-(4-methoxyphenyl)tetrahydro-2*H*-pyran (7). To a solution of allyl vinylphosphonate **21a** (32 mg, 0.091 mmol) and 4-benzyloxystyrene (38 mg, 0.182 mmol) in dry CH_2Cl_2 (1.5 mL) was added Grubbs 2nd generation catalyst (7 mg, 0.009 mmol) followed by CuI (2 mg, 0.009 mmol) to give, after chromatography, pure **7** (18 mg, 50%).

¹H NMR (CDCl₃) δ 7.27 (11H, m), 6.93 (5H, m), 6.58 (1H, d, J_{HH} = 16.0 Hz), 6.18 (1H, dd, J_{HH} = 16.0, 5.9 Hz), 5.07 (2H, s), 4.44 (1H, br d, J_{HH} = 9.9 Hz), 4.18 (1H, m), 3.81 (3H, s), 2.01 (1H, m), 1.78 (3H, m), 1.55 (3H, m); ¹³C NMR (CDCl₃) δ 159.0, 158.5, 137.2, 135.8, 130.3, 129.4, 129.2, 128.8, 128.2, 127.8, 127.7, 127.5, 115.0, 113.9, 79.8, 79.1, 70.2, 55.5, 33.6, 31.9, 24.3.

Spectral data for 27

1-((2*R*,6*S*)-6-(4-methoxyphenyl)tetrahydro-2*H*-pyran-2-yl)-2-((2*S*,6*R*)-6-(4methoxyphenyl)tetrahydro-2*H*-pyran-2-yl)ethene (27). IR (neat, NaCl) 2931, 1723, 1611 cm⁻¹; ¹HNMR (CDCl₃) δ 7.31 (2H, d, *J*_{HH} = 8.8 Hz), 6.88 (2H, d *J*_{HH} = 8.8 Hz), 5.82 (1H, m), 4.34 (1H, br d, *J*_{HH} = 11.9, 2.0 Hz), 4.04 (1H, m), 3.81 (3H, s), 2.00 (1H,m), 1.77 (3H, m), 1.54 (1H, m), 1.40 (1H, m); ¹³CNMR (CDCl₃) δ 159.1, 135.7, 127.4, 113.9, 79.7, 78.3, 55.5, 33.6, 31.6, 24.2; HRMS (FAB, NBA/NaI, MNa⁺) calcd for C₂₆H₃₂O₄Na: 431.2198, found 431.2191.

Experimental procedure for 16b from 14b

(*E*)-Methyl oct-2-enoate (16b) from reaction of diallyl phosphonate (14b). Diallyl vinylphosphonate 14b (29.4 mg, 0.11 mmol), methyl acrylate (19 uL, 0.23 mmol, 2 eq), Grubbs 2^{nd} generation catalyst (9 mg, 0.011 mmol, 0.1 eq), and copper(I) iodide (2 mg, 0.011 mmol, 0.1

eq) were dissolved in CH_2Cl_2 (1.1 mL). The reaction flask was fitted with a reflux condenser and placed in an oil bath pre heated to 50 °C. After 16 h, the reaction was cooled and filtered through silica gel (2 mL). The silica was rinsed with CH_2Cl_2 until just before the first dark band began eluting. The solvent was gently evaporated under reduced pressure without heating to give the crude product (128 mg). The crude product was purified by column chromatography (SiO₂, 15% CH₂Cl₂ in pentane) to give a solution of the ester **16b** in CH₂Cl₂ (39.4 mg). The yield of ester (7.7 mg, 45% yield) was estimated from the ¹H NMR spectrum.

Experimental procedure and spectral data for 24 and 32

(*E*)-methyl 3-((2*S*,6*R*)-6-(4-methoxyphenyl)tetrahydro-2*H*-pyran-2-yl)acrylate (20) from reaction of diallyl phosphonate (21b). To a solution of di-allyl vinylphosphonate 21b (0.021 g, 0.056 mmol) and methyl acrylate (0.01 mL, 0.11 mmol) in dry CH₂Cl₂ (0.9 mL) was added Grubbs 2nd generation catalyst (0.005 g, 0.0056 mmol) followed by CuI (0.001 g, 0.0056 mmol) to give, after chromatography, pure ester 20 (0.009 g, 58%). Further elution gave (*E*)-methyl 4- ((2-oxido-1,2-oxaphosphol-2(5*H*)-yl)oxy)but-2-enoate (32). ¹HNMR (CDCl₃) δ 7.20 (1H, ddt, $J_{HH} = 8.6, 1.6$ Hz, $J_{HP} = 46.9$ Hz), 6.96 (1H, ddt, $J_{HH} = 15.6, 4.1$ Hz, $J_{HP} = 0.9$ Hz), 6.22 (1H, ddt, $J_{HH} = 8.5, 2.4$ Hz $J_{HP} = 34.5$ Hz), 6.11 (1H, ddt, $J_{HH} = 15.7, 2.0$ Hz, $J_{HP} = 4.0$ Hz), 4.80 (4H, m), 3.76 (3H, s); ¹³C NMR (CDCl₃) δ 166.4, 149.2 (d, $J_{CP} = 17.6$ Hz), 142.2 ($J_{CP} = 6.2$ Hz), 121.8, 116.7 (d, $J_{CP} = 163.6$ Hz), 71.0 (d, $J_{CP} = 13.4$ Hz), 65.1 (d , $J_{CP} = 5.8$ Hz), 52.0; ³¹P NMR (CDCl₃) δ 42.8.

(*E*)-Methyl oct-2-enoate (16b) from reaction of mono and diallyl phosphonate (14 and 14b). A mixture of mono allyl phoshonate 14a (60 mg, 0.25 mmol) and diallyl phosphonate 14b (26 mg, 0.10 mmol), methyl acrylate (63 uL, 0.7 mmol, 2 equiv), Grubbs 2^{nd} generation catalyst (30 mg, 0.035 mmol, 0.1 equiv.) and copper(I) iodide (7 mg 0.035 mmol, 0.1 equiv) were dissolved in CH₂Cl₂ (3.5 mL). The reaction flask was fitted with a reflux condenser and placed in an oil bath pre heated to 50 °C. After 16 h, the reaction was cooled and filtered through silica gel (2 mL). The silica was rinsed with CH₂Cl₂ until just before the first dark band began eluting. The solvent was gently evaporated under reduced pressure without heating to give the crude product (177 mg). The crude product was purified by column chromatography (SiO₂, 15% CH₂Cl₂ in pentane) to give a solution of the ester 16b in CH₂Cl₂ (76.7 mg). The yield of ester (46.9 mg, 86% yield) was estimated from the ¹H NMR spectrum.

Selective mono allylation to form 14a. Vinylphosphonate 12b (102.2 mg 0.496 mmol, 1 eq.) and *N*-methylimidazole (49.4 uL, 50.9 mg, 0.602 mmol, 1.25 eq.) were added to an NMR tube which was heated to 100 °C for 18 h. The resulting oil was transferred to a vial using CD₃CN as solvent. The solvent was evaporated and the oil was washed with Et₂O (2 x 4 mL) to remove any remaining starting materials and then dried in vacuo to give the imidazolium salt (139 mg, 97%). The salt was transferred to a NMR tube with CD₃CN (0.5 mL) and allyl bromide (210 uL, 300 mg, 2.48 mmol, 5 eq) was added. The reaction was monitored by ³¹P NMR and was complete after two days at room temperature. The solvent and excess allyl bromide were removed in vacuo. The oily residue was dissolved in CH₂Cl₂ (4 mL), washed with water (2 x 2 mL) and brine (2 mL), dried Na₂SO₄ and evaporated (87.2 mg, brown oil). The crude product was purified by silica gel chromatography (1:1 EtOAc/hexane, isocratic) to give the mono allyl phopshonate (77.2 mg, 71%).

References

- 1. Trost, B. M.; Ball, Z. T.; Jöge, T. J. Am. Chem. Soc. 2002, 124, 7922-7923.
- 2. Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 10819-10820.

¹³C NMR

¹H, ¹³C NMR and ³¹P NMR spectra of 14a (cont)

¹³C NMR (expansion)

¹³C NMR (expansion)

³¹P NMR

40 35 30 25 20 15 10 5 0 ppm

¹H, ¹³C NMR and ³¹PNMR spectra of 14b

¹H, ¹³C NMR and ³¹PNMR spectra of 14b (cont)

¹³C NMR (expansion)

³¹P NMR

¹H, ¹³C NMR and ³¹PNMR spectra of 20a

¹H, ¹³C NMR and ³¹PNMR spectra of 20a (cont)

¹³C NMR (full)

¹³C NMR (expansion)

³¹P NMR

¹H, ¹³C NMR and ³¹PNMR spectra of 20b

¹H, ¹³C NMR and ³¹PNMR spectra of 20b (cont)

¹³C NMR (expansion)

¹³C NMR (expansion)

³¹P NMR

3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 ppm

¹H and ¹³C NMR spectra of 21a (cont)

¹³C NMR (full)

80 75 70 65 60 55 50 45 40 35 30 ppm

¹H-¹H COSY and ³¹P NMR spectrum of 21a

¹H, ¹³C NMR and ³¹P NMR spectra of 21b

¹H, ¹³C NMR and ³¹P NMR spectra of 21b (cont)

¹³C NMR (expansion)

¹³C NMR (expansion)

³¹P NMR

¹H-¹H COSY spectrum of 21b

¹H NMR spectrum of 16b

¹H NMR spectrum of 23

7.0 6.5 6.0 5.5 5.0 4.5 4.0 ppm

¹H and ¹³C NMR spectra of 24 (cont)

¹³C NMR (full)

85 80 75 70 65 60 55 50 45 40 35 30 25 ppm

4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm

¹H and ¹³C NMR spectra of 25 (cont)

¹³C NMR (full)

¹H and ¹³C NMR spectra of 26

 1

¹H and ¹³C NMR spectra of 26 (cont)

¹³C NMR (full)

¹H-¹H COSY spectrum of 26

¹H-¹H COSY

¹H NMR and ¹H-¹H COSY spectra of 7

¹H and ¹³C NMR spectra of 27

¹H-¹H COSY spectrum of 27

S41

¹H, ³¹P decoupled ¹H and ³¹P NMR spectra of 22

¹H-¹H COSY spectrum of 22

¹H-¹H COSY

S44

¹H-¹H COSY and ³¹P NMR spectrum of 32

³¹P NMR

Cross metathesis of mixture of mono- and di-allyl vinyl phosphonates

³¹P NMR of mono- and di-allyl vinyl phosphonate (Reaction time, T = 0 min)

