Supporting Information

Visible light photoredox-catalyzed deoxygenation
of alcohols
of alcohols

Daniel Rackl, Viktor Kais, Peter Kreitmeier and Oliver Reiser*

Address: Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
Email: Oliver Reiser* - Oliver.Reiser@uni-regensburg.de

* Corresponding author
Experimental details, characterization data and spectra
Table of Contents

1. General information S2
2. Synthesis of alcohols S3
3. General procedure for the synthesis of benzoate esters via the acid chloride (GPI) S5
4. Synthesis of the acid anhydride S12
5. General procedure for the synthesis of benzoate esters via the acid chloride (GPII) S13
6. Selective synthesis of monoacylated tartrate 6 e S15
7. General procedure for photoreactions (GPIII) S18
8. In-situ acylation and deoxygenations in a microreactor S23
9. References S24
10. Spectra of new compounds S26

1. General information

All chemicals were used as received or purified according to Purification of Common Laboratory Chemicals. Glassware was dried in an oven at $110^{\circ} \mathrm{C}$ or flame dried and cooled under a dry atmosphere prior to use. All reactions were performed using Schlenk techniques. The blue light irradiation in batch processes was performed using a CREE XLamp XP-E D515 LED ($\lambda=450-465 \mathrm{~nm}$). In micro reactor processes 8 OSRAM OSLON Black Series LD H9GP LEDs $(\lambda=455 \pm 10 \mathrm{~nm})$ were employed. Analytical thin layer chromatography was performed on Merck TLC aluminium sheets silica gel 60 F 254. Reactions were monitored by TLC and visualized by a short wave UV lamp and stained with a solution of potassium permanganate, p-anisaldehyde, or Seebach's stain. Column flash chromatography was performed using Merck flash silica gel 60 ($0.040-0.063 \mathrm{~mm}$). The melting points were measured on a Büchi SMP-20 apparatus in a silicon oil bath. Values thus obtained were not corrected. ATR-IR spectroscopy was carried out on a Biorad Excalibur FTS 3000 spectrometer, equipped with a Specac Golden Gate Diamond Single Reflection ATRSystem. NMR spectra were recorded on Bruker Avance 300 and Bruker Avance 400 spectrometers. Chemical shifts for ${ }^{1} \mathrm{H}$ NMR were reported as δ, parts per million, relative to the signal of CHCl_{3} at 7.26 ppm . Chemical shifts for ${ }^{13} \mathrm{C}$ NMR were reported as δ, parts per million, relative to the center line signal of the CDCl_{3} triplet at 77 ppm . Coupling constants J are given in Hertz (Hz). The following notations indicate the multiplicity of the signals: $\mathrm{s}=$ singlet, brs = broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint = quintet, sept = septet, and $m=$ multiplet. Mass spectra were recorded at the Central Analytical Laboratory at the Department of Chemistry of the University of Regensburg on a Varian MAT 311A, Finnigan MAT 95, Thermoquest Finnigan TSQ 7000 or Agilent Technologies 6540 UHD AccurateMass Q-TOF LC/MS. Gas chromatographic analyses were performed on a Fisons Instuments gas chromatograph equipped with a capillary column ($30 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$) and a flame ionisation detector. The yields reported are referred to the isolated compounds unless otherwise stated.

2. Synthesis of alcohols

Mesityl(phenyl)methanol: ${ }^{1}$ A 50 mL Schlenk flask equipped with a magnetic stir bar was charged with mesitaldehyde ($2.22 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.00$ equiv.), flushed with nitrogen, and capped with a rubber septum. THF (15 mL) was added and the mixture was cooled to $0^{\circ} \mathrm{C}$, then a solution of phenylmagnesium bromide (1.0 M in THF, $16.5 \mathrm{~mL}, 16.5 \mathrm{mmol}, 1.10$ equiv.) was added dropwise. The reaction mixture was allowed to warm to room temperature, quenched with 1 M HCl , and evaporated under reduced pressure. 50 mL DCM was added to the obtained residue, phases were separated, the aqueous layer was extracted twice with 50 mL DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The obtained oil was purified by flash column chromatography (petrol ether / EtOAc, 100:1 to 25:1) to give $2.93 \mathrm{~g}(13.0 \mathrm{mmol}, 86 \%)$ of mesityl(phenyl)methanol as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.39-7.19 (m, 5 H), 6.88 (s, 2 H), 6.34 (s, 1 H), 2.30 (s, 3 H), 2.25 (s, 6 H), 2.08 (brs, 1 H).

(4-Methoxyphenyl)(phenyl)methanol: ${ }^{1}$ A 50 mL Schlenk flask equipped with a magnetic stir bar was charged with 4methoxybenzaldehyde ($2.04 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.00$ equiv.), flushed with nitrogen, and capped with a rubber septum. THF (15 mL) was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. A solution of phenylmagnesium bromide (1.0 M in THF, $16.5 \mathrm{~mL}, 16.5 \mathrm{mmol}$, 1.10 equiv.) was added dropwise. The reaction mixture was allowed to warm to room temperature, quenched with 1 M HCl , and evaporated under reduced pressure. 50 mL DCM was added to the obtained residue, phases were separated, the aqueous layer was extracted twice with 50 mL DCM, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The obtained oil was purified by flash column chromatography (petrol ether / EtOAc, 100:1 to 25:1) to give 2.70 g ($12.6 \mathrm{mmol}, 84 \%$) of (4methoxyphenyl)(phenyl)methanol as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.47-7.19 (m, 7 H), 6.09-6.84 (m, 2 H), 5.82 (s, 1 H), 3.79 (s, 3 H), 1.88 (brs, 1 H).

4-Hydroxy-4-phenyl-1-(pyrrolidin-1-yl)butan-1-one: ${ }^{2,3}$ In a 100 mL round bottom flask 3-benzoylpropionic acid ($4.46 \mathrm{~g}, 25.0 \mathrm{mmol}$, 1.00 equiv.) was dissolved in a mixture of $\mathrm{NaOH}(1.50 \mathrm{~g}, 37.5$ mmol, 1.50 equiv.) in 15 mL H 2 O and 15 mL EtOH . The mixture was cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathrm{NaBH}_{4}(0.946 \mathrm{~g}, 25.0 \mathrm{mmol}, 1.00$ equiv.) in 10 mL 0.4 M NaOH was added
dropwise. The resulting reaction mixture was stirred for 1 h at room temperature and further 2 h at $60^{\circ} \mathrm{C}$ upon which the reaction mixture was brought to a pH of 1 with HCl (conc.) and extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic phases were washed with 20 mL $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}, 20 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 20 \mathrm{~mL}$ brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure to give $3.03 \mathrm{~g}(18.7 \mathrm{mmol}, 75 \%)$ of 5 -phenyldihydrofuran- $2(3 \mathrm{H})$-one ${ }^{2}$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.46-7.30 (m, 5 H), 5.55-5.48 (m, 1 H$)$, 2.73-2.61 (m, 3 H), 2.27-2.12 (m, 1 H). A 50 mL Schlenk flask equipped with a magnetic stir bar was charged with 5 -phenyldihydrofuran- $2(3 \mathrm{H})$-one ($1.05 \mathrm{~g}, 6.50 \mathrm{mmol}, 1.00$ equiv.), pyrrolidine (1.13 g , $13.0 \mathrm{mmol}, 2.00$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(4.54 \mathrm{~mL}, 3.34 \mathrm{~g}, 32.5 \mathrm{mmol}, 5.00$ equiv.), and equipped with a reflux condenser. The reaction mixture was refluxed for 3 d after which excess pyrrolidine and $\mathrm{Et}_{3} \mathrm{~N}$ was removed by distillation under reduced pressure to obtain $1.48 \mathrm{~g}(6.32 \mathrm{mmol}$, 97%) of 4-hydroxy-4-phenyl-1-(pyrrolidin-1-yl)butan-1-one ${ }^{3}$ as a slightly orange solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.43-7.19 (m, 5 H), 4.86-4.77 (m, 1 H), 4.73 (brs, 1 H), $3.48(\mathrm{t}, \mathrm{J}=$ $7.0,2 H$), $3.35(\mathrm{t}, J=6.8,2 H), 2.43(\mathrm{t}, J=6.3,2 H), 2.20-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.78(\mathrm{~m}, 4 \mathrm{H})$.

3. General procedure for the synthesis of benzoate esters via the acid chloride (GPI)

A 50 mL Schlenk flask equipped with a magnetic stir bar was charged with an alcohol (5.00 mmol, 1.00 equiv.), 4-DMAP ($31 \mathrm{mg}, 0.25 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($5.0 \mathrm{ml}, 3.5 \mathrm{~g}, 35 \mathrm{mmol}$, 7.0 equiv.), and DCM (50 mL). The mixture was cooled to $0^{\circ} \mathrm{C}$, then (trifluoromethyl)benzoyl chloride ${ }^{45}$ ($5.50 \mathrm{mmol}, 1.10$ equiv.) was added dropwise. The reaction mixture was allowed to warm to room temperature, solvent was evaporated under reduced pressure and the residue was purified by flash chromatography.

Benzhydryl 4-(trifluoromethyl)benzoate (1): Following general procedure GPI gave 1.12 g ($3.13 \mathrm{mmol}, 63 \%$) of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 50:1 to 25:1). R_{f} (petrol ether): 0.08 ; mp: $92^{\circ} \mathrm{C}$; IR (neat): 3062, 1722, 1585, 1497, 1455, 1411, 1320, 1268, 1166, 1115, 1065, 1016, 966, 898, 862, 774, 742, 703, 649, 591, $457 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 8.26(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.5,2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 10 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 164.4, 139.9, 134.7 ($\mathrm{q}, \mathrm{J}=32.7$), 130.2, 128.7, 128.2, 127.2, 125.5 ($q, J=3.7$), 123.6 (q, $J=273$), 78.1 ; ${ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -63.6; HRMS (EI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right) 356.1024$, found 356.1024.

Benzhydryl 3-(trifluoromethyl)benzoate (2): Following general procedure GPI gave $1.63 \mathrm{~g}(4.58 \mathrm{mmol}, 92 \%)$ of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 50:1 to 25:1). R_{f} (petrol ether): 0.13 ; mp: $73^{\circ} \mathrm{C}$; IR (neat): 3077, 3029, 1725, 1617, 1494, 1455, 1335, 1246, 1169, 1131, 1073, 985, 932, 826, 751, 695, 652, 618, 598, 570, 507, 468, $410 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.39(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.9,1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8,1 \mathrm{H})$, 7.48-7.41 (m, 4 H), 7.41-7.28 (m, 6 H), $7.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 164.4$, 139.8, 133.0, 131.2 ($q, J=32.8$), 131.1, 129.7 ($q, J=3.7$), 129.2, 128.7, 128.2, 127.2, 126.7 ($\mathrm{q}, J=3.9$), 123.7 ($\mathrm{q}, J=273$), 78.1 ; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-63.3 ;$ HRMS (APCI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$374.1362, found 374.1362 .

Benzhydryl 3,5-bis(trifluoromethyl)benzoate (3): Following general procedure GPI gave $1.60 \mathrm{~g}(3.76 \mathrm{mmol}, 75 \%)$ of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 100:1 to 50:1). R_{f} (petrol ether): $0.18 ; \mathrm{mp}: 71^{\circ} \mathrm{C}$; IR (neat): $3110,3063,3033$, 1732, 1621, 1496, 1456, 1388, 1248, 1173, 1120, 989, 912, 846, 768, 750, 696, 623, 603, $562,475,430 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 8.56 (s, 2 H), 8.09 (s, 1 H), 7.45-7.32 (m, 10 H), 7.19 (s, 1 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 163.1, 139.3, 132.4, 132.3 ($\mathrm{q}, \mathrm{J}=34.3$), 129.9 (m), 128.8, 128.4, 127.2, 126.6 (sept, $J=3.7$), 122.9 (q, $J=273$), 78.9; ${ }^{19} \mathrm{~F}-\mathrm{NMR}(282 \mathrm{MHz}$, CDCl_{3}): -63.4; HRMS (EI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right)$424.0898, found 424.0899.

Mesityl(phenyl)methyl 3,5-bis(trifluoromethyl)benzoate (3b): Following general procedure GPI using mesityl(phenyl)methanol (438 $\mathrm{mg}, 1.94 \mathrm{mmol}, 1.00$ equiv.), 3,5-bis(trifluoromethyl)benzoyl chloride ($370 \mu \mathrm{~L}, 563 \mathrm{mg}, 2.04 \mathrm{mmol}, 1.05$ equiv.), 4-DMAP ($12 \mathrm{mg}, 0.10$ mmol, 0.05 equiv.), $E t_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 1.4 \mathrm{~g}, 14 \mathrm{mmol}, 7.0$ equiv.), and DCM (20 mL) gave 900 mg ($1.93 \mathrm{mmol}, 99 \%$) of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 100:1 to 30:1). R_{f} (petrol ether): 0.41 ; mp: $75^{\circ} \mathrm{C}$, IR (neat): 2969, 2919, 2869, 1721, 1614, 1495, 1448, 1390, 1354, 108, 1254, 1190 1129, 1036, 957, 951, 911, 854, 807, 760, 725, 695, 622, 599, 531, 497, $439 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $8.57(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.91$ (m, 2 H); 2.38 (s, 6 H), $2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 163.4,138.8,138.4,137.7$, 132.6, 132.4, 132.1, 132.0, 130.0, 129.9 (m), 128.6, 127.6, 126.5 (m), 125.7, 124.6, 74.8, 21.0, 20.6; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): -63.5; HRMS (EI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{O}_{2}$ $\left([M]^{+}\right) 466.1367$, found 466.1363.

(4-Methoxyphenyl)(phenyl)methyl 3,5-bis(trifluoromethyl)benzoate (3c): Following general procedure GPI using (4methoxyphenyl)(phenyl)methanol ($429 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv.), 3,5-bis(trifluoromethyl)benzoyl chloride ($381 \mu \mathrm{~L}, 581 \mathrm{mg}$, $2.10 \mathrm{mmol}, 1.05$ equiv.), 4-DMAP ($12 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($2.0 \mathrm{~mL}, 1.4 \mathrm{~g}, 14 \mathrm{mmol}, 7.0$ equiv.), and DCM (20 mL) gave 732 mg ($1.61 \mathrm{mmol}, 81 \%$) of a colorless oil after purification on SiO_{2} (petrol ether / EtOAc, 100:1 to 20:1). R_{f} (petrol ether): 0.13; IR (neat): 2840, 2362, 1730, 1613, 1514, 1457, 1388, 1278, 1242, 1175, 1136, 1035, 912, 821, 767, 700, 632, 544, $501 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.55(\mathrm{~s}, 2 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 6.96-6.88(\mathrm{~m}, 2$

H), 3.81 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 163.1, 159.7, 139.5, 132.5, 132.3 (q, $J=34.0$), 131.4, 129.8 (m), 129.0, 128.7, 128.7, 128.2, 127.0, 126.6 (m), 122.9 ($\mathrm{q}, ~ J=273$), 114.1, 78.6, 55.3 ; ${ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -63.4; HRMS (EI) m / z calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{O}_{3}$ $\left([M]^{+}\right) 454.1004$, found 454.1003.

(4-Nitrophenyl)(phenyl)methyl 3,5-bis(trifluoromethyl)benzoate (3d): Following general procedure GPI using (4nitrophenyl)(phenyl)methanol ${ }^{6}$ ($252 \mathrm{mg}, 1.10 \mathrm{mmol}, 1.00$ equiv.), 3,5 -bis(trifluoromethyl)benzoyl chloride ($218 \mu \mathrm{~L}, 333 \mathrm{mg}, 1.21$ mmol, 1.10 equiv.), 4 -DMAP ($6 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($1.1 \mathrm{~mL}, 0.80 \mathrm{~g}, 7.9 \mathrm{mmol}, 7.0$ equiv.), and DCM (11 mL) gave $528 \mathrm{mg}(1.10 \mathrm{mmol}, 100 \%)$ of a colorless oil after purification on SiO_{2} (petrol ether / EtOAc, 30:1). R_{f} (petrol ether / EtOAc, 50:1): 0.19; IR (neat): 3085, 1732, 1609, 1523, 1348, 1227, 1236, 1175, 1127, 974, 912, 845, 765, 742, 697, 613, 574, 516, 461, $440 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.54 (s, 2 H), 8.30-8.21 (m, 2 H), 8.11 ($\left.\mathrm{s}, 1 \mathrm{H}\right), 7.65-7.55$ (m, 2 H), 7.48-7.35 $(\mathrm{m}, 5 \mathrm{H}) 7.22(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 162.9,147.8,146.3,137.9,132.6(\mathrm{q}, \mathrm{J}=$ 34.0), 131.8, 129.9 (m), 129.2, 127.9, 127.4, $127.0(\mathrm{~m}), 124.1,122.8$ (q, $J=273$), 77.8; ${ }^{19} \mathrm{~F}$ NMR (282 MHz, CDCl $)_{3}$: -63.4; HRMS (EI) m / z calculated for $\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 470.0822, found 470.0816 .

(4-(Ethoxycarbonyl)phenyl)(phenyl)methyl 3,5-bis(trifluoromethyl)benzoate (3e): Following general procedure GPI using ethyl 4-(hydroxy(phenyl)methyl)benzoate ${ }^{7}$ ($513 \mathrm{mg}, 2.00 \mathrm{mmol}$, 1.00 equiv.), 3,5 -bis(trifluoromethyl)benzoyl chloride ($381 \mu \mathrm{~L}$, $581 \mathrm{mg}, 2.10 \mathrm{mmol}, 1.05$ equiv.), 4-DMAP ($12 \mathrm{mg}, 0.10 \mathrm{mmol}$, 0.05 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($2.0 \mathrm{~mL}, 1.4 \mathrm{~g}, 14 \mathrm{mmol}, 7.0$ equiv.), and DCM (20 mL) gave $954 \mathrm{mg}\left(1.92 \mathrm{mmol}, 96 \%\right.$) of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 20:1). R_{f} (petrol ether / EtOAc, 6:1): 0.56; mp: $98^{\circ} \mathrm{C}$; IR (neat): 2984, 1720, 1708, 1615, 1459, 1367, 1273, 1254, 1181, 1130, 1107, 1022, 979, 912, 874, 846, 754, 704, 677, 617, 570, 516, 484, $436 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.55$ (s, 2 H), 8.10 $(\mathrm{s}, 1 \mathrm{H}), 8.09-8.03(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{q}, \mathrm{J}=$ $7.2,2 \mathrm{H}), 1.39(\mathrm{t}, \mathrm{J}=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 166.1, 163.0, 144.0, 138.6, 132.4 ($\mathrm{q}, J=34.0$), 132.2, 130.5, 130.0, 129.8 (m), 128.9, 128.8, 127.4, 126.9, 126.7 (m), 122.8 (q , $J=273$), $78.4,61.1,14.3$; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): -63.5; HRMS (EI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{O}_{4}\left([\mathrm{M}]^{+}\right) 496.1109$, found 496.1109.

Bis(4-chlorophenyl)methyl 3,5-bis(trifluoromethyl)benzoate (3f): Following general procedure GPI using bis(4chlorophenyl)methanol ${ }^{8}$ ($253 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv.), $3,5-$ bis(trifluoromethyl)benzoyl chloride ($200 \mu \mathrm{~L}, 303 \mathrm{mg}, 1.10 \mathrm{mmol}$, 1.10 equiv.), 4-DMAP ($6 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (1.0 $\mathrm{mL}, 0.7 \mathrm{~g}, 7.0 \mathrm{mmol}, 7.0$ equiv.), and DCM (10 mL) gave 490 mg ($0.99 \mathrm{mmol}, 99 \%$) of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 20:1). R_{f} (petrol ether / EtOAc, 6:1): 0.78; mp: $99^{\circ} \mathrm{C}$; IR (neat): 3101, 1729, 1625, 1493, 1346, 1271, 1239, 1185, 1136, 1125, 1091, 994, 912, 830, 799, 771, 705, 581, 530, 498, $443 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.51(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 162.9, 137.3, 134.7, 132.4 ($\mathrm{q}, ~ J=34.0$), 132.0, 129.8 (m), 129.1, 128.6, 126.9 (m), 122.8 ($\mathrm{q}, \mathrm{J}=274$), 77.2. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): -63.4; HRMS (EI) m/z calculated for $\mathrm{C}_{22} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{O}_{2}\left([\mathrm{M}]^{+}\right)$492.0119, found 492.0119 .

Phenyl(pyridin-4-yl)methyl 3,5-bis(trifluoromethyl)benzoate (3g): Following general procedure GPI using phenyl(pyridin-4-yl)methanol ${ }^{9}$ ($370 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv.), 3,5 -bis(trifluoromethyl)benzoyl chloride ($381 \mu \mathrm{~L}, 581 \mathrm{mg}, 2.10 \mathrm{mmol}, 1.05$ equiv.), 4-DMAP (12 mg , $0.10 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 1.4 \mathrm{~g}, 14 \mathrm{mmol}, 7.0$ equiv.), and DCM (20 mL) gave 561 mg ($1.32 \mathrm{mmol}, 66 \%$) of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 4:1). R_{f} (petrol ether / EtOAc, 4:1): 0.26; mp: $73{ }^{\circ} \mathrm{C}$; IR (neat): 3034, 1730, 1603, 1496, 1458, 1413, 1359, 1273, 1244, 1181, 1124, 999, 914, $847,792,771,756,699,654,620,597,478,438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.64(\mathrm{~d}, \mathrm{~J}$ $=5.6,2 \mathrm{H}), 8.55(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 162.9, 150.1, 148.2, 137.7, 132.5 ($\mathrm{q}, \mathrm{J}=33.8$), 131.8, 129.8 (m), 129.2, 129.1, 128.2, 127.6, 126.9 (sept, $J=3.7$), 122.8 ($q, J=274$), 121.5, $77.4,{ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -63.5; HRMS (EI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{NO}_{2}\left([\mathrm{M}]^{+}\right) 425.0850$, found 425.0847.

1-Phenylpropyl 3,5-bis(trifluoromethyl)benzoate (3h): Following general procedure GPI using 1-phenylpropan-1-ol ($545 \mathrm{mg}, 4.00 \mathrm{mmol}$, 1.00 equiv.), 3,5-bis(trifluoromethyl)benzoyl chloride ($760 \mu \mathrm{~L}, 1.16 \mathrm{~g}$, $4.20 \mathrm{mmol}, 1.05$ equiv.), 4 -DMAP ($24 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$
($4.0 \mathrm{~mL}, 3.1 \mathrm{~g}, 28 \mathrm{mmol}, 7.0$ equiv.), and DCM (40 mL) gave 1.23 g ($3.27 \mathrm{mmol}, 81.7 \%$) of a colorless oil after purification on SiO_{2} (petrol ether / EtOAc, 50:1). R_{f} (petrol ether / EtOAc, 50:1): 0.62; IR (neat): 2974, 2882, 1729, 1624, 1457, 1277, 1244, 1175, 1129, 912, 845, 761, 698, 626, 546, 485, $437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.50(\mathrm{~s}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.46-$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 5.95(\mathrm{t}, J=7.0,1 \mathrm{H}), 2.24-1.91(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(101$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 163.3, 139.6, 132.7, 132.2 ($\mathrm{q}, \mathrm{J}=34.0$), 129.7 (m), 128.7, 128.4, 126.7, 126.3 (m), 122.9 ($\mathrm{q}, \mathrm{J}=274$), 79.7, 29.2, 10.1; ${ }^{19} \mathrm{~F}$-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -62.9; HRMS (EI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 376.0898$, found 376.0896 .

4-Oxo-1-phenyl-4-(pyrrolidin-1-yl)butyl 3,5-bis(trifluoromethyl)benzoate (3i): Following general procedure GPI using 4-hydroxy-4-phenyl-1-(pyrrolidin-1-yl)butan-1-one ($467 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv.), 3,5 -bis(trifluoromethyl)benzoyl chloride ($397 \mu \mathrm{~L}, 606 \mathrm{mg}$, $2.20 \mathrm{mmol}, 1.10$ equiv.), 4-DMAP ($12 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 1.6 \mathrm{~g}, 14 \mathrm{mmol}, 7.0$ equiv.), and DCM (20 mL) gave 899 mg ($1.90 \mathrm{mmol}, 95 \%$) of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 2:1). R_{f} (petrol ether / EtOAc, 2:1): 0.27 ; mp: $9{ }^{\circ}{ }^{\circ} \mathrm{C}$; IR (neat): 2974, 2878, 1729, 1642, 1444, $1255,1168,1035,1005,911,844,767,698,583,533,439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $8.49(\mathrm{~s}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.49-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.17-6.04(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{t}, J=7.0,2 \mathrm{H}), 3.29$ (t, $J=6.6,2 H$), 2.57-2.20 (m, 4 H), 1.97-1.73 (m, 4 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.9$, 163.2, 139.3, 132.6, 132.2 (q, $J=34.0$), 129.8 (m), 128.7, 128.5, 126.6, 126.4 (sept, $J=3.7$), 122.9 ($\mathrm{q}, J=274$), $77.9,46.5,45.7,31.1,30.5,26.0,24.3 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-63.4$; HRMS (EI) m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$474.1498, found 474.1494.

2-Methoxy-2-oxo-1-phenylethyl 3,5-bis(trifluoromethyl)benzoate (3j): Following general procedure GPI using methyl 2-hydroxy-2phenylacetate $(332 \mathrm{mg}, \quad 2.00 \mathrm{mmol}, 1.00$ equiv.), 3,5bis(trifluoromethyl)benzoyl chloride ($397 \mu \mathrm{~L}, 606 \mathrm{mg}, 2.20 \mathrm{mmol}, 1.10$ equiv.), 4-DMAP ($12 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 1.6 \mathrm{~g}$, $14 \mathrm{mmol}, 7.0$ equiv.), and DCM (20 mL) gave 800 mg ($1.97 \mathrm{mmol}, 98 \%$) of a colorless oil after purification on SiO_{2} (petrol ether / EtOAc, 10:1). R_{f} (petrol ether / EtOAc, 6:1): 0.60; IR (neat): 2959, 2361, 1735, 1760, 1624, 1350, 1277, 1240, 1216, 1173, 1130, 1031, 968, 913, 845, 767, 697, 617, 542, 498, $463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $8.54(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 168.7,163.4,133.1,132.3$ (q, $J=34.0$), 131.4, 130.1 (m),
129.8, 129.1, 127.9, 126.9 (m), 122.8 ($\mathrm{q}, J=274$), $75.8,53.0 ;{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 63.4; HRMS (EI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{O}_{4}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$424.0978, found 424.0970.

2-Oxo-1,2-diphenylethyl 3,5-bis(trifluoromethyl)benzoate (3k): Following general procedure GPI using 2-hydroxy-1,2-diphenylethanone ($414 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.00$ equiv.), 3,5-bis(trifluoromethyl)benzoyl chloride ($397 \mu \mathrm{~L}, 606 \mathrm{mg}, 2.20 \mathrm{mmol}, 1.10$ equiv.), 4-DMAP (12 mg , $0.10 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 1.6 \mathrm{~g}, 14 \mathrm{mmol}, 7.0$ equiv.), and DCM (20 mL) gave 850 mg ($1.88 \mathrm{mmol}, 98 \%$) of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 25:1). R_{f} (petrol ether / EtOAc, 6:1): 0.57; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.58(\mathrm{~s}, 2 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.4,2 \mathrm{H}), 7.72-7.50(\mathrm{~m}, 3 \mathrm{H})$, 7.50-7.32 (m, 5 H), 7.19 (s, 1 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 192.7,163.5,134.3,133.8$, 132.9, 132.3 ($q, J=34.0$), 131.7, 130.1 (m), 129.9, 129.5, 129.0, 128.9, 128.8, 126.8 (m), 122.8 ($\mathrm{q}, \mathrm{J}=274$), 79.2; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): -63.4; HRMS (EI) m/z calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{O}_{4}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right) 470.1185$, found 470.1189 .

(2R,3R)-Diethyl 2,3-bis(3,5-bis(trifluoromethyl)benzoyloxy)succinate (6d): Following general procedure GPI gave 1.54 g ($2.24 \mathrm{mmol}, 45 \%$ (81% based on 3,5-bis(trifluoromethyl)benzoyl chloride)) of a white solid after purification on SiO_{2} (petrol ether / EtOAc, 6:1). R_{f} (petrol ether / EtOAc, 4:1): 0.61; mp: $88-90^{\circ} \mathrm{C}$; IR (neat): 2991, 2970, 1760, 1742, 1626, 1459, 1375, 1280, 1219, 1173, 1126, 1057, 938, 905, 847, 802, 767, 695, 680, 525, 492, $436 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.25(\mathrm{~d}, J=1.4,4 \mathrm{H}), 8.14$ (s, 2 H), $6.10(\mathrm{~s}, 2 \mathrm{H}), 4.28(\mathrm{qd}, J=7.2,1.2,4 \mathrm{H}), 1.25(\mathrm{t}, J=7.1,6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): 165.1, 162.6, 132.7 ($\mathrm{q}, \mathrm{J}=34.6$), 130.7, 130.0, 127.3, 122.7 ($\mathrm{q}, \mathrm{J}=274$), 72.1, 63.0, 14.0; ${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -63.8; HRMS (EI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{12} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 687.0883, found 687.0882.

5-(Benzyloxy)pentyl 3,5-bis(trifluoromethyl)benzoate (10): Following general procedure GPI using 5 -(benzyloxy)pentan-1-ol ${ }^{10}$ ($583 \mathrm{mg}, 3.00$ mmol, 1.00 equiv.), 3,5-
bis(trifluoromethyl)benzoyl chloride ($598 \mu \mathrm{~L}, 912 \mathrm{mg}, 3.30 \mathrm{mmol}, 1.10$ equiv.), 4-DMAP (18 $\mathrm{mg}, 0.15 \mathrm{mmol}, 0.05$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}(3.0 \mathrm{~mL}, 2.4 \mathrm{~g}, 21 \mathrm{mmol}, 7.0$ equiv.), and DCM (30 mL) gave 1.26 g ($2.91 \mathrm{mmol}, 97 \%$) of a colorless oil after purification on SiO_{2} (petrol ether / EtOAc, 10:1). R_{f} (petrol ether / EtOAc, 10:1): 0.51; IR (neat): 2941, 2866, 1729, 1621, 1455, 1377, 1277, 1247, 1175, 1134, 965, 912, 844, 770, 734, 698, $614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): $8.48(\mathrm{~s}, 2 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{t}, \mathrm{J}=6.7,2 \mathrm{H})$, 3.51 (t, J = 6.3, 2 H), 1.89-1.78 (m, 2 H), 1.77-1.65 (m, 2 H), 1.60-1.49 (m, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 164.0, 132.6, 132.1 ($\mathrm{q}, \mathrm{J}=34.0$), 129.7 (m), 128.4, 127.6, 127.6, 126.3 (m), 122.9 ($\mathrm{q}, \mathrm{J}=274$), 73.0, 70.0, 29.4, 28.5, 22.8. ${ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -63.4; HRMS (El) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$435.1389, found 435.1386.

4. Synthesis of 3,5-bis(trifluoromethyl)benzoic anhydride

3,5-Bis(trifluoromethyl)benzoic anhydride (9): A 50 mL three-neck round-bottom flask was equipped with a gas inlet, a dropping funnel, and a 20 cm Vigreux column with a Claisen bridge and a 10 mL round-bottom flask. The flask was charged with 3,5-bis(trifluoromethyl)benzoic acid ($12.0 \mathrm{~g}, 46.5 \mathrm{mmol}, 1.00$ equiv.) and phosphoric acid ($20 \mathrm{mg}, 0.20 \mathrm{mmol}, 0.43 \mathrm{~mol} \%$) and the dropping funnel was charged with acetic anhydride ($8.8 \mathrm{~mL}, 9.5 \mathrm{~g}, 93 \mathrm{mmol}, 2.0$ equiv.). The flask was heated to $150^{\circ} \mathrm{C}$ in an oil bath and about 6.5 mL of acetic anhydride was added via the dropping funnel. The mixture was slowly heated to $190^{\circ} \mathrm{C}$ till no more acetic anhydride distilled. About half of the remaining acetic anhydride was added to the reaction mixture via the dropping funnel and the mixture was stirred till no more acetic anhydride distilled. The remainder of acetic anhydride was added and again till no more acetic anhydride distilled. Vaccum (20 mbar) was applied and distillation was continued at $190^{\circ} \mathrm{C}$ till no more distillate could be collected. The reaction mixture was allowed to cool to $100^{\circ} \mathrm{C}$ after which the Vigreux column and the Claisen bridge were replaced with a distillation arch. The crude product was subsequently distilled at $170{ }^{\circ} \mathrm{C} / 1 \mathrm{mbar}$ into a 50 mL Schlenk flask. Pure product was obtained after recrystallization from toluene / petrol ether as white crystals ($9.07 \mathrm{~g}, 18.2 \mathrm{mmol}, 78 \%$). mp: 104-105 ${ }^{\circ} \mathrm{C}$; IR (neat): 3103, 1801, 1749, 1622, 1384, 1286, 1172, 1126, 1052, 100, 915, 888, 843, 753, 726, 698, 681, 642, $613 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, CDCl $\left._{3}\right): 8.58$ (s, 4 H), 8.22 (s, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 159.2, 133.1 ($\mathrm{q}, \mathrm{J}=34$), 130.5 (m), 130.4, 128.3 (m), 122.5 ($q, J=273$); ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: -63.6.

5. General procedure for the synthesis of benzoate esters via the acid anhydride (GPI)

A 50 mL Schlenk flask equipped with a magnetic stir bar was charged with an alcohol (2.00 mmol, 1.00 equiv.), 3,5-bis(trifluoromethyl)benzoic anhydride ($9,1.20 \mathrm{~g}, 2.40 \mathrm{mmol}, 1.20$ equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ ($0.56 \mathrm{ml}, 0.41 \mathrm{~g}, 4.0 \mathrm{mmol}, 2.0$ equiv.), and DCM (20 mL). The mixture was stirred at room temperature for 2 h . The solvent was evaporated under reduced pressure and the residue was redissolved in 20 mL EtOAc and extracted with $20 \mathrm{~mL} \mathrm{Na} \mathrm{CO}_{3}$ (aq, 10\%) and $20 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$. The united aqueous phases were acidified with 6 M HCl to give 3,5bis(trifluoromethyl)benzoic acid (5) as a white solid which was filtered and dried in vacuo. The organic phase was evaporated and purified by flash chromatography.

1-Cyano-3-phenylpropyl 3,5-bis(trifluoromethyl)benzoate (6a): Following general procedure GPII using 2-hydroxy-4phenylbutanenitrile ${ }^{11}$ gave $0.683 \mathrm{~g}(1.70 \mathrm{mmol}, 85 \%)$ of a colorless oil after purification on SiO_{2} (petrol ether / $\mathrm{EtOAc}, 10: 1$). R_{f} (petrol ether / EtOAc, 4:1): 0.82; IR (neat): 2928, 2855, 1743, 1621, 1496, 1456, 1387, 1278, 1235, 1177, 1133, 1030, 993, 911, 845, 761, 732, 697, 681, 650, $486 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.40(\mathrm{~s}, 2 \mathrm{H}), 8.13(\mathrm{~s}, 1$ H), 7.35-7.15 (m, 5 H$), 5.59(\mathrm{t}, \mathrm{J}=6.8,1 \mathrm{H}), 3.05-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{q}, \mathrm{J}=7.1,2 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 162.3, 138.6, 132.6 (q, $J=34.0$), 130.3, 130.0 (m), 128.9, 128.3, 127.4 (m), 126.9, 122.6 ($\mathrm{q}, \mathrm{J}=274$), 116.1, 66.3, 33.7, 31.0; ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 63.5; HRMS (ESI) m/z calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 402.0923$, found 402.0929.

(2R,3R,5S,6S)-6-Methoxy-4-oxo-5-(pivaloyloxy)-2-(pivaloyloxymethyl)tetrahydro-2H-pyran-3-yl 3,5bis(trifluoromethyl)benzoate (6b): Following general procedure GPII using (2S,3S,5R,6R)-5-hydroxy-2-methoxy-4-oxo-6-(pivaloyloxymethyl)tetrahydro-2H-pyran-3-yl pivalate ${ }^{12}$ ($258 \mathrm{mg}, \quad 0.716 \mathrm{mmol}, \quad 1.00$ equiv.), $3,5-$ bis(trifluoromethyl)benzoic anhydride ($9,392 \mathrm{mg}, 0.787 \mathrm{mmol}, 1.10$ equiv.), ${ }^{\prime} \operatorname{Pr}_{2} \mathrm{NEt}(249 \mu \mathrm{~L}$, $185 \mathrm{mg}, 1.43 \mathrm{mmol}, 2.0$ equiv.), and DCM (7 mL) gave $207 \mathrm{mg}(0.803 \mathrm{mmol}, 76 \%$ based on benzoate that was employed and not incorporated in the product) 3,5bis(trifluoromethyl)benzoic acid (5) as a white powder and 309 mg ($0.514 \mathrm{mmol}, 71.8 \%$)
(2R,3R,5S,6S)-6-methoxy-4-oxo-5-(pivaloyloxy)-2-(pivaloyloxy-methyl)tetrahydro-2H-pyran3 -yl 3,5-bis(trifluoromethyl)benzoate (6b) as a white solid after purification on SiO_{2} (petrol ether / EtOAc, $6: 1$ to $3: 1$). R_{f} (petrol ether / EtOAc, $4: 1$): 0.48 ; mp: $46^{\circ} \mathrm{C}$; IR (neat): 2997, 1734, 1624, 1370, 1278, 1246, 1127, 1055, 1036, 911, 846, 762, 701, $682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$-NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.49(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 5.62(\mathrm{dd}, J=10.0,1.0,1 \mathrm{H}), 5.45(\mathrm{dd}, J=4.2$, $1.0,1 \mathrm{H}), 4.24(\mathrm{~d}, J=4.2,1 \mathrm{H}), 4.47-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}$, 9 H), 1.24 (s, 9 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 192.8,177.9,177.0,162.2,132.4$ (q, $J=$ 34.0), 130.9, 130.1 ($\mathrm{d}, J=3.0$), 127.0 (m), 122.6 ($\mathrm{q}, J=274$), 100.0, 74.4, 73.3, 69.6, 62.2, 56.0, 39.0, 38.9, 27.1, 27.0; ${ }^{19} \mathrm{~F}$-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -63.5; HRMS (ESI) m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{NaO}_{9}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 623.1686$, found 623.1686 .

1,2-O-Isopropylidene-5-O-(3,5-bis(trifluoromethyl)benzoyl)-α-D-xylo-hexofuranurono-6,3-lactone (6c): Following

 general procedure GPII using 1,2-O-isopropylidene-5-O-(3,5-bis(trifluoromethyl)benzoyl)-a-D-xylo-hexofuranurono-6,3lactone $^{13} \quad(649 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.00$ equiv.), $3,5-$ bis(trifluoromethyl)benzoic anhydride ($9,1.50 \mathrm{~g}, 3.00 \mathrm{mmol}$, 1.00 equiv.), ' $\operatorname{Pr}_{2} \mathrm{NEt}$ ($1.05 \mathrm{~mL}, 775 \mathrm{mg}, 6.00 \mathrm{mmol}, 2.0$ equiv.), and DCM $(30 \mathrm{~mL})$ gave $432 \mathrm{mg}(0.947 \mathrm{mmol}, 31.6 \%)$ 1,2-O-isopropylidene-5-O-(3,5-bis(trifluoromethyl)benzoyl)- α-D-xylo-hexofuranurono-6,3-lactone (6c) as a white solid after purification on SiO_{2} (petrol ether / EtOAc 3:1). R_{f} (petrol ether / EtOAc, 2:1): 0.66; mp: 120$122^{\circ} \mathrm{C}$; IR (neat): 2998, 1823, 1748, 1619, 1380, 1281, 1243, 1177, 1132, 1084, 1028, 912, $844,818,769,700,682,507,438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.54(\mathrm{~s}, 2 \mathrm{H}), 8.12(\mathrm{~s}, 1$ H), $6.07(\mathrm{~d}, J=3.6,1 \mathrm{H}), 5.78(\mathrm{~d}, J=4.4,1 \mathrm{H}), 5.20(\mathrm{dd}, J=4.3,3.0,1 \mathrm{H}), 4.99(\mathrm{~d}, J=3.0,1$ H), $4.90(\mathrm{~d}, J=3.6,1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 169.0$, 162.9, 132.5 ($q, J=34.0$), 130.5, 130.3 ($\mathrm{d}, J=3.0$), $127.3(\mathrm{~m}), 122.6(\mathrm{q}, J=273), 113.8$, 107.0, 82.5, 82.4, 76.9, 71.0, 26.9, 26.5; ${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -63.4; HRMS (EI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{7}\left([\mathrm{M}]^{+}\right) 456.0644$, found 456.0647 .

6. Selective synthesis of monoacylated tartrate 6e

The preparation of mono-benzoate $\mathbf{6 e}$ was not straight-forward (Table 1). Reaction of (+)DET (8) with 1.05 equiv. of 3,5-bis(trifluoromethyl)benzoic acid chloride gave only 5% of mono-benzoate 6 alongside with 45% of bis-benzoate 9 (entry 1). Modification of the reaction temperature gave almost identical results (entry 2-4). Omission of DMAP on the other hand and performance of the reaction at $-78{ }^{\circ} \mathrm{C}$ was found to give a high ratio of monobenzoylation over bis-benzoylation (entry 5 to 8).

Table 1: Benzoylation of (+)-DET (8).

8

$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DCM}$

Entry	Scale	Conditions ${ }^{\text {a }}$	Monoester (\%)	Diester (\%)
1	5 mmol	$0.1 \mathrm{M}+$ neat, $0^{\circ} \mathrm{C}$	5	45
2	0.5 mmol	0.1 M + 0.1 M, -20 ${ }^{\circ} \mathrm{C}$	17:83 ${ }^{\text {b }}$	
3	0.5 mmol	$0.1 \mathrm{M}+0.1 \mathrm{M},-40^{\circ} \mathrm{C}$	14:86 ${ }^{\text {b }}$	
4	0.5 mmol	$0.1 \mathrm{M}+0.1 \mathrm{M},-78{ }^{\circ} \mathrm{C}$	$14: 86^{\text {b }}$	
5	0.5 mmol	$\begin{gathered} 0.1 \mathrm{M}+0.1 \mathrm{M} \text {, r.t., } \\ \text { no DMAP } \end{gathered}$	$38: 62^{\text {b }}$	
6	0.5 mmol	$\begin{gathered} 0.1 \mathrm{M}+0.1 \mathrm{M}, 0^{\circ} \mathrm{C} \\ \text { no DMAP } \end{gathered}$	$44: 56^{\text {b }}$	
6	0.5 mmol	$\begin{gathered} 0.1 \mathrm{M}+0.1 \mathrm{M},-40^{\circ} \mathrm{C}, \\ \text { no DMAP } \end{gathered}$	42:58 ${ }^{\text {b }}$	
8	0.5 mmol	$\begin{gathered} 0.1 \mathrm{M}+0.1 \mathrm{M},-78^{\circ} \mathrm{C} \\ \text { no DMAP } \end{gathered}$	47:53 ${ }^{\text {b }}$	

${ }^{\mathrm{a}}$ To a solution of 8 a solution of acid chloride was added dropwise at the indicated temperature. ${ }^{\mathrm{b1}} \mathrm{H}$ NMR integration.

Despite the efforts to increase the amount of mono-benzoylation product $6 \mathbf{e}$ the selectivity remained low with the acid chloride as acylation agent. Using 3,5-bis(trifluoromethyl)benzoic acid anhydride (9) in the presence of a Lewis acid catalyst largely increased the selectivity of
the benzoylation in favor of $\mathbf{6 e}$ (Table 2). Without Lewis acid additive the reaction already favors mono-benzoylation product $\mathbf{6 e}$ (entry 1). YbCl_{3} increases the reaction speed as well as the selectivity (entry 2). While several other Lewis acids even slow down the reaction (entry 3 to 7), CuCl_{2} again leads to high selectivity and even higher conversions (entry 8) compared to YbCl_{3}. Lowering the amount of YbCl_{3} leads to longer reaction times, slightly higher conversion rates, and diminished selectivity (entry 9 and 10) while in contrast lowering the amount of CuCl_{2} leads to decreased conversions but increased selectivities (entry 11). The assumption that at lower conversions the selectivity is higher is self-evident nevertheless the conversion reaches its final point at the time indicated and no further rise was observed after prolonged times. Due to the considerably lower cost of CuCl_{2} in comparison to $\mathrm{YbCl}_{3}, \mathrm{CuCl}_{2}$ was ultimately used for a reaction in a larger scale (entry 12). Surprisingly the large scale reaction took much longer than the reaction on small scale to

Table 2: Benzoylation of (+)-DET (8) with benzoic acid anhydride 4 and Lewis acid catalysis.

Entry	Lewis acid	Time	Conversion ${ }^{\text {a }}$	Monoester (\%)	Diester (\%)
1	-	68 h	66\%	71:39 ${ }^{\text {b }}$	
2	$\mathrm{YbCl}_{3}(10 \mathrm{~mol} \%)$	20 h	62\%	>95:5 ${ }^{\text {b }}$	
3	FeCl ${ }_{3}$ (10 mol\%)	2 h	<5\%	-	
4	ZnCl_{2} (10 mol\%)	2 h	<5\%	-	
5	$\mathrm{AlCl}_{3}(10 \mathrm{~mol} \%)$	2 h	<5\%	-	
6	TiCl_{4} (10 mol\%)	2 h	<5\%	-	
7	NiCl_{2} (10 mol\%)	2 h	<5\%	-	
8	$\mathrm{CuCl}_{2}(10 \mathrm{~mol} \%)$	68 h	82\%	94:6 ${ }^{\text {b }}$	
9	$\mathrm{YbCl}_{3}(1 \mathrm{~mol} \%)$	68 h	80\%	93:7 ${ }^{\text {b }}$	
10	YbCl_{3} ($0.1 \mathrm{~mol} \%$)	140 h	75\%	$83: 17^{\text {b }}$	
11	$\mathrm{CuCl}_{2}(1 \mathrm{~mol} \%)$	68 h	56\%	>95:5 ${ }^{\text {b }}$	
12	$\mathrm{CuCl}_{2}(10 \mathrm{~mol} \%)^{\text {c }}$	$\begin{aligned} & 7 d+7 d \\ & \text { (reflux) } \end{aligned}$	81\%	77\%	2\%

${ }^{\mathrm{a}}$ Conversion of 8 on a 0.5 mmol scale. ${ }^{61} \mathrm{H}-\mathrm{NMR}$ integration. ${ }^{\mathrm{c}} 6 \mathrm{mmol}$ scale.
reach comparable conversions. The exact nature of this effect is unknown but might be to the inhomogeneous nature of the reaction $\left(\mathrm{CuCl}_{2}\right.$ is not fully soluble in DCM at a loading of 10 mol\%). Nevertheless practical reaction conditions for the synthesis of $6 \mathbf{e}$ were found:

(2R,3R)-Diethyl 2-(3,5-bis(trifluoromethyl)benzoyloxy)-3hydroxysuccinate (6e): A 100 mL Schlenk flask equipped with a magnetic stir bar was charged with $\mathrm{CuCl}_{2}(81.3 \mathrm{mg}, 0.605 \mathrm{mmol}$, 0.100 equiv.), (2R,3R)-diethyl 2,3-dihydroxysuccinate ($8,1.25 \mathrm{~g}, 6.05$ mmol, 1.00 equiv.) and $\operatorname{DCM}(50 \mathrm{~mL})$. A solution of $3,5-$ bis(trifluoromethyl)benzoic anhydride in DCM ($34 \mathrm{~mL}, 0.18 \mathrm{M}, 6.1$ mmol, 1.0 equiv.) was added and the mixture was stirred at ambient temperature for one week and refluxed for another week. The reaction mixture was transferred to a separation funnel with 150 mL EtOAc, washed twice with $50 \mathrm{~mL} 10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq.), 50 mL water, and 50 mL brine. The combined aqueous phased were boiled up, cooled back to room temperature and acidified with conc. HCl (aq.) upon which the white precipitate was filtered and washed with 50 mL water to give $1.31 \mathrm{~g}(5.08 \mathrm{mmol}, 67 \%$ based on benzoate that was employed and not incorporated in the product) 3,5-bis(trifluoromethyl)benzoic acid. The organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporated and the resulting solid was purified on SiO_{2} (petrol ether / EtOAc, 6:1 to 2:1) to give 2.07 g ($4.63 \mathrm{mmol}, 76.5 \%$) ($2 \mathrm{R}, 3 \mathrm{R}$)-diethyl 2-(3,5-bis(trifluoromethyl)benzoyloxy)-3-hydroxysuccinate a white solid. R_{f} (petrol ether / EtOAc, 4:1): 0.34; mp: $98^{\circ} \mathrm{C}$; IR (neat): 3378, 2986, 2944, 1737, 1707, 1627, 1391, 1373, 1280, 1230, 1177, 1124, 1050, 917, 847, 768, 700, 681, 586, 538, 495, $439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.48(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=2.3,1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=2.0,1 \mathrm{H})$, $4.32(\mathrm{q}, ~ J=7.1,2 H), 4.27(\mathrm{q}, J=7.1,2 H$), $3.45(\mathrm{brs}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1,3 \mathrm{H}), 1.23(\mathrm{t}, J=$ 7.1, 3 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 170.6,165.9,162.8,132.4(\mathrm{q}, \mathrm{J}=34.0), 131.0,130(\mathrm{~d}$, $J=3.0$), 127.1 (m), 122.7 ($\mathrm{q}, J=274$), 74.3, 70.5, 62.9, 62.6, 14.1; ${ }^{19} \mathrm{~F}-\mathrm{NMR}(282 \mathrm{MHz}$, CDCl_{3}): -63.5; $\mathrm{HRMS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 447.0873$, found 447.0868 .

7. General procedure for photoreactions (GPII)

General procedure for deoxygenations of (trifluoromethyl)benzoate esters (GPIII): A Schlenk tube was charged with $\left[\operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtb}-\mathrm{bpy})\right]\left(\mathrm{PF}_{6}\right) \quad(3.7 \mathrm{mg}, 4.0 \mu \mathrm{~mol}, 2.0 \mathrm{~mol} \%)$, (trifluoromethyl)benzoate ester ($0.200 \mathrm{mmol}, 1.00$ equiv.), sealed with a screw-cap and subsequently evacuated and backfilled with $\mathrm{N}_{2}(3 \mathrm{x}) . \mathrm{MeCN}(5 \mathrm{ml})$, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(70 \mu \mathrm{~L}, 52 \mathrm{mg}$, $0.40 \mathrm{mmol}, 2.0$ equiv.), and degassed water ($0.36 \mathrm{~mL}, 0.36 \mathrm{~g}, 20 \mathrm{mmol}, 100$ equiv.) was added and the reaction mixture was magnetically stirred until a homogeneous solution was obtained. The reaction mixture was degassed by freeze-pump-thaw ($5 x$) and the screw-cap was replaced with a Teflon sealed inlet for a glass rod, through which irradiation with a 455 nm high power LED took place from above (1 h for every 0.2 mmol of benzoate) while the reaction was magnetically stirred and heated in an aluminum block from below. Afterwards the reaction mixture was diluted with 20 mL Et 2 O , washed with $10 \mathrm{~mL} 10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}, 10 \mathrm{~mL}$ $\mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~mL}$ brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined aqueous phases were acidified with HCl (conc.) upon which (trifluoromethyl)benzoic acid precipitated, which was collected by filtration and washed with water. After evaporation of the organic phase, the product was purified by filtration through a short plug of flash silica gel with a mixture of petrol ether and ethyl acetate.

Diphenylmethane (4a): ${ }^{14,15}$ Following general procedure GPIII using benzhydryl 3,5 -bis(trifluoromethyl)benzoate (3a) ($424 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv.), $\left[\operatorname{lr}(\text { ppy })_{2}(\right.$ dtb-bpy $\left.)\right]\left(\mathrm{PF}_{6}\right)(18.3 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 2.00 \mathrm{~mol} \%),{ }^{\prime} \mathrm{Pr}_{2} \mathrm{NEt}$ ($348 \mu \mathrm{~L}, 258 \mathrm{mg}, 2.00 \mathrm{mmol}, 2.00$ equiv.), degassed water ($1.8 \mathrm{~mL}, 1.8 \mathrm{~g}, 0.10 \mathrm{~mol}, 100$ equiv.), and $\mathrm{MeCN}(25 \mathrm{~mL})$ gave $160 \mathrm{mg}(0.949 \mathrm{mmol}, 95 \%)$ of a colorless oil after filtration through SiO_{2} with petrol ether. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $7.33-7.16(\mathrm{~m}, 10 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H})$.

2-Benzyl-1,3,5-trimethylbenzene (4b): ${ }^{16}$ Following general procedure GPIII gave 38.4 mg (0.182 mmol , 91%) of a colorless oil after filtration through SiO_{2} with petrol ether. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): 7.29-7.11 (m, 3 H), 7.07-6.97 (m, 2 H), 6.91 (s, 2 H), 4.03 (s, 2 H), 2.31 (s, $3 H$), $2.22(\mathrm{~s}, 6 \mathrm{H})$.

1-Benzyl-4-methoxybenzene (4c): ${ }^{16}$ Following general procedure GPIII gave 34.4 mg ($0.174 \mathrm{mmol}, 87 \%$) of a colorless oil after filtration through
SiO_{2} with petrol ether. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.32-7.25 (m, 2 H$)$, 7.23-7.16 (m, 3 H), 7.14-7.08 (m, 2 H), 6.85-6.81 (m, 2 H), 3.94 (s, 2 H), 3.79 (s, 3 H).

Ethyl 4-benzylbenzoate (4e): ${ }^{14}$ Following general procedure GPIII gave 44.7 mg ($0.186 \mathrm{mmol}, 93 \%$) of a colorless oil after filtration through SiO_{2} with petrol ether / EtOAc $=50: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}): 7.99-7.94 (m, 2 H), 7.33-7.15 (m, 7 H), 4.36 (q, J = 7.2, 2 H), 4.04 (s, 2 H), 1.28 (t, J $=7.2,3 \mathrm{H}$).

Bis(4-chlorophenyl)methane (4f): ${ }^{18}$ Following general procedure GPIII gave 43.6 mg ($0.183 \mathrm{mmol}, 92 \%$) of a colorless oil after filtration through SiO_{2} with petrol ether. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 7.30-7.22 (m, 4 H), 7.13-7.05 (m, 4 H), 3.92 (s, 2 H).

4-Benzylpyridine (4g): ${ }^{16}$ Following general procedure GPIII gave 29.1 mg ($0.171 \mathrm{mmol}, 86 \%$) of a colorless oil after purification on SiO_{2} (petrol ether / EtOAc, 2:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.51$ (s, 2 H), 7.38-7.08 (m, 7 H), 3.98 (s, 2 H).

4-Phenyl-1-(pyrrolidin-1-yl)butan-1-one (4i): Following general procedure GPIII gave 34.5 mg ($0.158 \mathrm{mmol}, 79 \%$) of a slightly yellow oil after purification on SiO_{2} (petrol ether / EtOAc, 1:1). ${ }^{1} \mathrm{H}-$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.30-7.24 (m, 2 H), 7.21-7.15 (m, 3 H), $3.45(\mathrm{t}, \mathrm{J}=7.0,2 \mathrm{H}$), $3.32(\mathrm{t}$, $J=6.7,2 H), 2.68(\mathrm{t}, J=7.5,2 \mathrm{H}), 2.26(\mathrm{t}, J=7.3,2 \mathrm{H}), 2.05-1.77(\mathrm{~m}, 6 \mathrm{H})$.

Methyl 2-phenylacetate (4j): ${ }^{19}$ Following general procedure GPIII using 2-methoxy-2-oxo-1-phenylethyl 3,5-bis(trifluoromethyl)benzoate (6j) (305 $\mathrm{mg}, 0.750 \mathrm{mmol}, 1.00$ equiv.), $\left[\mathrm{Ir}(\mathrm{ppy})_{2}(\mathrm{dtb}-\mathrm{bpy})\right]\left(\mathrm{PF}_{6}\right)(13.9 \mathrm{mg}, 15.2$ $\mu \mathrm{mol}, 2.02 \mathrm{~mol} \%$), ${ }^{\text {' }} \mathrm{Pr}_{2} \mathrm{NEt}(209 \mu \mathrm{~L}, 1.50 \mathrm{mmol}, 2.00$ equiv.), degassed water ($1.35 \mathrm{~mL}, 1.35$ $\mathrm{g}, 75.0 \mathrm{mmol}, 100$ equiv.), and $\mathrm{MeCN}(19 \mathrm{~mL})$ gave $93.7 \mathrm{mg}(0.624 \mathrm{mmol}, 83 \%)$ of a colorless oil after filtration through SiO_{2} with petrol ether / $\mathrm{EtOAc}=10: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): 7.41-7.21 (m, 5 H), 3.70 (s, 3 H), 3.64 (s, 2 H).

1,2-Diphenylethanone (4k): ${ }^{20}$ Following general procedure GPIII gave 26.3 $\mathrm{mg}(0.134 \mathrm{mmol}, 67 \%)$ of a colorless oil after filtration through SiO_{2} with petrol ether / $\mathrm{EtOAc}=25: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 8.07-8.00 (m, 2 H$)$, 7.60-7.53 (m, 1 H), 7.50-7.46 (m, 2 H), 7.37-7.31 (m, 2 H), 7.30-7.23 (m, 3 H), $4.30(\mathrm{~s}, 2 \mathrm{H}$).

4-Phenylbutanenitrile (7a): ${ }^{21}$ Following general procedure GPIII gave 24.9 mg ($0.171 \mathrm{mmol}, 86 \%$) of a colorless oil after filtration through SiO_{2} with petrol ether / EtOAc $=6: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.36-7.28$ ($\mathrm{m}, 2 \mathrm{H}$), 7.26-7.16 (m, 3 H), 2.78 (t, $J=7.4,2 H$), $2.32(\mathrm{t}, \mathrm{J}=7.1,2 \mathrm{H}$), 1.99 (quint, $J=7.2,2$ H).

((2S,5S,6S)-6-Methoxy-4-oxo-5-(pivaloyloxy)tetrahydro-2H-pyran-2-yl)methyl pivalate (7b): ${ }^{12}$ Following general procedure GPIII using (2R,3R,5S,6S)-6-methoxy-4-oxo-5-(pivaloyloxy)-2-(pivaloyloxymethyl)tetrahydro-2H-pyran-3-yl 3,5-bis(trifluoromethyl)benzoate (6b, 120 mg , $0.200 \mathrm{mmol}, 1.00$ equiv.) gave $54.5 \mathrm{mg}(0.158 \mathrm{mmol}, 79 \%)$ of a white solid after column chromatography on flash silica gel with petrol ether/EtOAc $=3: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 5.19 (d, J=4.0, 1 H), 5.07 (d, $J=4.0,1 H$), 4.28-4.07 (m, $3 H$), 3.37 (s, 3 H), 2.64-2.40 (m, 2 H), 1.21 (s, 9 H$), 1.16$ (s, 9 H$)$.

5-Deoxy-1,2-O-isopropylidene- $\alpha-D-x y l o-h e x o f u r a n u r o n o-6,3-$ lactone (7c): ${ }^{22}$ Following general procedure GPIII using 1,2-O-isopropylidene-5-O-(3,5-bis(trifluoromethyl)benzoyl)- α-D-xylo-hexofuranurono-6,3-lactone ($\mathbf{6 c}, 91.3 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv.)
gave 5.6 mg ($0.028 \mathrm{mmol}, 14 \%$) of a colorless oil after column chromatography on flash silica gel with petrol ether/EtOAc $=2: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 5.90(\mathrm{~d}, \mathrm{~J}=3.8,1 \mathrm{H})$, $4.94(\mathrm{q}, \mathrm{J}=2.8,1 \mathrm{H}), 4.77(\mathrm{t}, \mathrm{J}=4.1,2 \mathrm{H}), 2.66(\mathrm{~d}, \mathrm{~J}=2.8,2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H})$.

Diethyl succinate (7d): ${ }^{15}$ After following general procedure GPIII using (2R,3R)-diethyl 2,3-bis(3,5-bis(trifluoromethyl)benzoyloxy)succinate (6d) ($686 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv.), $\left[\operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtb}-\mathrm{bpy})\right]\left(\mathrm{PF}_{6}\right)(18.3 \mathrm{mg}$, $20.0 \mu \mathrm{~mol}, 2.00 \mathrm{~mol} \%$), ' ${ }^{2} \mathrm{Pr}_{2} \mathrm{NEt}(1.75 \mathrm{~mL}, 1.30 \mathrm{~g}, 10.0 \mathrm{mmol}, 10.0$ equiv.), degassed water ($1.8 \mathrm{~mL}, 1.8 \mathrm{~g}, 0.10 \mathrm{~mol}, 100$ equiv.), and $\mathrm{MeCN}(25 \mathrm{~mL}), 1,4$-dimethoxybenzene (138 mg , $1.00 \mathrm{mmol}, 1.00$ equiv.) was added to the crude mixture and an aliquot was subjected to ${ }^{1} \mathrm{H}$ NMR analysis. The yield of diethyl succinate (8I) was determined to be 69%.

(R)-Diethyl 2-hydroxysuccinate (7e): ${ }^{15}$ Following general procedure GPIII using (2R,3R)-diethyl 2-(3,5-bis(trifluoromethyl)benzoyloxy)-3hydroxysuccinate ($6 \mathbf{e}$) ($446 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.00$ equiv.), [lr(ppy) $)_{2}(\mathrm{dtb}-$ bpy)] $\left(\mathrm{PF}_{6}\right)(18.3 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 2.00 \mathrm{~mol} \%),{ }^{\prime} \operatorname{Pr}_{2} \mathrm{NEt}(348 \mu \mathrm{~L}, 258 \mathrm{mg}, 2.00 \mathrm{mmol}, 2.00$ equiv.), degassed water ($1.8 \mathrm{~mL}, 1.8 \mathrm{~g}, 0.10 \mathrm{~mol}, 100$ equiv.), and $\mathrm{MeCN}(25 \mathrm{~mL})$ gave 188 $\mathrm{mg}(0.989 \mathrm{mmol}, 99 \%)$ of a colorless oil after filtration through a short plug of flash silica gel with petrol ether/EtOAc $=1: 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.47(\mathrm{brs}, 1 \mathrm{H}), 4.34-4.06(\mathrm{~m}, 4 \mathrm{H})$, 3.23 (brs, 1 H), 2.91-2.73 (m, 2 H), $1.30(\mathrm{t}, J=7.2,3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2,3 \mathrm{H})$.

5-(Benzyloxy)pentyl 3-methyl-5-(trifluoromethyl)benzoate (12): Following general procedure GPIII using 5-(benzyloxy)pentyl 3,5-bis(trifluoromethyl)-benzoate (10) (434 mg, 1.00 mmol, 1.00 equiv.), $\left[\operatorname{lr}(p p y)_{2}(d t b-b p y)\right]\left(\mathrm{PF}_{6}\right)(18.3 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 2.00 \mathrm{~mol} \%),{ }^{\prime}{ }^{2} \mathrm{Pr}_{2} \mathrm{NEt}(1.74$ $\mathrm{mL}, 1.29 \mathrm{~g}, 10.0 \mathrm{mmol}, 10.0$ equiv.), degassed water ($1.8 \mathrm{~mL}, 1.8 \mathrm{~g}, 0.10 \mathrm{~mol}, 100$ equiv.), and $\mathrm{MeCN}(25 \mathrm{~mL})$ gave 293 mg ($0.770 \mathrm{mmol}, 77 \%$) of a colorless oil after filtration through SiO_{2} with petrol ether. R_{f} (petrol ether / $\mathrm{EtOAc}, 6: 1$): 0.40 ; IR (neat): 2943, 2860, 1722, 1612, 1455, 1390, 1352, 1247, 1199, 1166, 1123, 973, 855, 769, 734, 694, $614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.09(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.23(\mathrm{~m}, 5 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 4.35$ (t, J=6.7, 2 H), $3.51(\mathrm{t}, \mathrm{J}=6.4,2 \mathrm{H}$), $2.47(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.60-$ 1.48 (m, 2 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 165.6,139.3,138.5,133.4,131.2,130.7,130.0$
(m), 128.4, 127.7, 127.6, 123.8 ($q, J=274$), 123.7 (m), 73.0, 70.1, 65.5, 29.4, 28.5, 22.8, 21.3; ${ }^{19} \mathrm{~F}$-NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -62.7; HRMS (EI) m/z calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 381.1672, found 381.1668.

5-(Benzyloxy)pentyl 3-((2,2,6,6-tetramethyl-piperidin-1-yloxy)methyl)-5-(trifluoromethyl)benzoate (13) as a $3: 1$ mixture with 12 : Following general procedure GPIII using 5(benzyloxy)pentyl 3,5bis(trifluoromethyl)benzoate (10) ($86.9 \mathrm{mg}, 0.200$ $\mathrm{mmol}, 1.00$ equiv.), $\left[\operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtb}-\mathrm{bpy})\right]\left(\mathrm{PF}_{6}\right)(3.7$ $\mathrm{mg}, 4.0 \mu \mathrm{~mol}, 2.00 \mathrm{~mol} \%$), ${ }^{\text {' }} \mathrm{Pr}_{2} \mathrm{NEt}(348 \mu \mathrm{~L}, 258 \mathrm{mg}, 2.00 \mathrm{mmol}, 10.0$ equiv.), degassed water ($360 \mu \mathrm{~L}, 360 \mathrm{mg}, 20.0 \mathrm{mmol}, 100$ equiv.), TEMPO ($28.2 \mathrm{mg}, 0.180 \mathrm{mmol}, 0.900$ equiv.), and MeCN (5 mL) gave 30.1 mg of a colorless oil containing 13 and 12 ($3: 1,{ }^{1} \mathrm{H}-\mathrm{NMR}$ integration) after purification on SiO_{2} (petrol ether / EtOAc, 100:0 to 10:1). 13: ${ }^{1} \mathrm{H}$-NMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.22-8.15 (m, 2 H), $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2$ H), 4.42-4.30 (m, 2 H), 3.56-3.43 (m, 2 H), 1.90-1.44 (m, 12 H), $1.22(\mathrm{~s}, 6 \mathrm{H}), 1.16(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{19}$ F-NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -63.1; HRMS (El) m/z calculated for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~F}_{3} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 536.2982, found 536.2993.

8. In-situ acylation and deoxygenations in a microreactor

Diphenylmethane (4a): : ${ }^{14,15}$ A 100 mL Schlenk flask equipped with a magnetic stir bar was charged with diphenylmethanol (14, $184 \mathrm{mg}, 1.00$ mmol, 1.00 equiv.) and 3,5 -bis(trifluoromethyl)benzoic anhydride (9,548 $\mathrm{mg}, 1.10 \mathrm{mmol}, 1.10$ equiv.), sealed with a screw-cap and subsequently evacuated and backfilled with $\mathrm{N}_{2}(3 \mathrm{x})$. $\mathrm{MeCN}(5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.70 \mathrm{~mL}, 0.51 \mathrm{~g}, 5.0 \mathrm{mmol}, 5.0$ equiv.) were added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with 16 mL MeCN and 1.8 mL water and $\left[\operatorname{lr}(\mathrm{ppy})_{2}(\mathrm{dtb}-\mathrm{bpy})\right]\left(\mathrm{PF}_{6}\right)(0.9 \mathrm{mg}, 1 \mu \mathrm{~mol}, 0.1 \mathrm{~mol} \%)$ were added. The reaction mixture was degassed by sparging with N_{2} for 30 min and pumped through a micro reactor equipped with 8 LED's at a flowrate of $4.0 \mathrm{~mL} / \mathrm{h}(0.17 \mathrm{mmol} / \mathrm{h})$ via a syringe pump. The reaction mixture was evaporated, $20 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was subsequently washed with $2 \times 10 \mathrm{~mL} 10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}, 10 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The combined aqueous phases were acidified with 6 M HCl upon which a white solid precipitated, which was collected by filtration and washed with water to give 3,5bis(trifluoromethyl)benzoic acid ($513 \mathrm{mg}, 1.99 \mathrm{mmol}, 90 \%$). After evaporation of the organic phase, the obtained oil was purified by filtration through a short plug of SiO_{2} with petrol ether to give 153 mg ($0.911 \mathrm{mmol}, 91 \%$) of diphenylmethane (4a) as a colorless oil.

9. References

(1) Sedelmeier, J.; Bolm, C. J. Org. Chem. 2007, 72, 8859.
(2) Kim, J.; De Castro, K. a.; Lim, M.; Rhee, H. Tetrahedron 2010, 66, 3995.
(3) Ohta, S.; Hayakawa, S.; Moriwaki, H.; Harada, S.; Okamoto, M. Chem. Pharm. Bull. 1986, 34, 4916.
(4) Leazer, J. L.; Cvetovich, R.; Tsay, F.; Dolling, U.; Vickery, T.; Bachert, D. J. Org. Chem. 2003, 68, 3695.
(5) Giencke, A.; Lackner, H. Liebigs Ann. Chem. 1990, 6, 569.
(6) Kodama, S.; Hashidate, S.; Nomoto, A.; Yano, S.; Ueshima, M.; Ogawa, A. Chem. Lett. 2011, 40, 495.
(7) Boymond, L.; Rottländer, M.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 1701.
(8) Padmanaban, M.; Biju, A. T.; Glorius, F. Org. Lett. 2011, 13, 98.
(9) Cheng, M.; Bakac, A. Dalt. Trans. 2007, 56, 2077.
(10) Young, I. S.; Kerr, M. A. J. Am. Chem. Soc. 2007, 129, 1465.
(11) Deleuze-Masquéfa, C.; Gerebtzoff, G.; Subra, G.; Fabreguettes, J.-R.; Ovens, A.; Carraz, M.; Strub, M.-P.; Bompart, J.; George, P.; Bonnet, P.-A. Bioorg. Med. Chem. 2004, 12, 1129.
(12) Rauter, A. P.; Fernandes, A. C.; Czernecki, S.; Valery, J.-M. J. Org. Chem. 1996, 61, 3594.
(13) Bashyal, B. P.; Chow, H.-F.; Fellows, L. E.; Fleet, G. W. J. Tetrahedron 1987, 43, 415.
(14) Haberberger, M.; Someya, C. I.; Company, A.; Irran, E.; Enthaler, S. Catal. Lett. 2012, 142, 557.
(15) Material was identical with an authentic sample.
(16) Henry, N.; Enguehard-Gueiffier, C.; Thery, I.; Gueiffier, A. Eur. J. Org. Chem. 2008, 4824.
(17) Inés, B.; SanMartin, R.; Moure, M. J.; Domínguez, E. Adv. Synth. Catal. 2009, 351, 2124.
(18) Endo, K.; Ishioka, T.; Ohkubo, T.; Shibata, T. J. Org. Chem. 2012, 77, 7223.
(19) Harker, W. R. R.; Carswell, E. L.; Carbery, D. R. Org. Lett. 2010, 12, 3712.
(20) Li, L.; Cai, P.; Guo, Q.; Xue, S. J. Org. Chem. 2008, 73, 3516.
(21) Yin, W.; Wang, C.; Huang, Y. Org. Lett. 2013, 15, 1850.
(22) Rauter, A. P.; Fernandes, A. C.; Figueiredo, J. A. J. Carbohydr. Chem. 1998, 17, 1037.
10. Spectra of new compounds

$\begin{array}{lllllllllllllllllll}14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & -1 & -2 & \text { ppm }\end{array}$

1

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

> 엉

	,	,	,	1	1	1	1	1	1	1	1	1	1
240	220	200	180	160	140	120	100	80	60	40	20	0	ppm

 ©

3n

l
 No

```
|
```

240	220	200	180	160	140	120	100	80	60	40	20	0	ppm

3k

$\underbrace{\infty} \underbrace{\infty} \underbrace{\infty} \underbrace{\infty} \underbrace{\circ}$
$\iint \|_{1}$
 Niven

1	1	1			1	1			I	1	I	
240	220	200	180	160	140	120	100	80	60	40	20	0

6b

 $\left.\right|_{\text {- }} ^{\text {U }}$ $\stackrel{\sim}{\sim} \stackrel{\oplus}{\infty}$ $\iiint \int$
6c

 llen

$\stackrel{\circ}{\dot{j}}$

