Supporting Information
for
Oxidative phenylamination of 5-substituted 1-hydroxynaphthalenes to N-phenyl-1,4-naphthoquinone monoimines by air and light “on water”

Julio Benites*1,2, Juan Meléndez1, Cynthia Estela1, David Ríos1, Luis Espinoza3, Iván Brito4 and Jaime A. Valderrama1,2

Address: 1Facultad de Ciencias de la Salud, Universidad Arturo Prat, Casilla 121, Iquique, Chile, 2Instituto de Ciencias Exactas y Naturales (ICEN), Universidad Arturo Prat, Casilla 121, Iquique, Chile, 3Facultad de Química, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile and 4Departamento de Química, Facultad de Ciencias Básicas Universidad de Antofagasta, Casilla 170, Antofagasta, Chile

Email: Julio Benites* - julio.benites@unap.cl
* Corresponding author

Experimental procedures, characterization data, copies of the NMR spectra of compounds 4a, 9, 10 and X-ray view of compound 6.

Page Contents
2 Experimental
2 Compounds 4a and 4b
5 X-ray crystallography of compound 6
7 1H NMR and 13C NMR spectra of compounds 4a (HMBC), 9 and 10
Experimental:

General

All reagents were commercially available reagent grade and were used without further purification. Melting points were determined on a Stuart Scientific SMP3 apparatus and are uncorrected. 1H-NMR spectra were recorded on Bruker AM-400 instrument. 13C-NMR spectra were obtained at 100 MHz. Bidimensional NMR techniques and DEPT were used for signal assignment. Chemical shifts are expressed in ppm downfield relative to tetramethylsilane and the coupling constants (J) are reported in Hertz. HRMS data for all final compounds were obtained using a LTQ-Orbitrap mass spectrometer (Thermo-Fisher Scientific, MA 02454, USA) with the analysis performed using an APCI source operated in positive mode. Silica gel Merck 60 (70–230 mesh) was used for preparative column chromatography and TLC aluminum foil 60F$_{254}$ for analytical TLC.

Procedure for synthesis of compound 4a and 4b

A suspension of 1,5-dihydroxynaphthalene (1; 1.25 mmol), rose bengal (20 mg; 0.02 mmol) as sensitizer and water (150 mL), in a round bottom flask, was exposed to direct sunlight for 5 h while a gentle stream of air is bubbled through the solution. Then is added 4-hydroxyphenylamine (1.5 mmol), and the solution was stirred at rt for 4 h. Work up followed by column chromatography over silica gel (2.5:1.5 petroleum ether/ethyl acetate) yield pure compounds 4a and 4b.

Spectroscopic data

5-Hydroxy-3-((4-hydroxyphenyl)amino)naphthalene-1,4-dione (4a): Isolated yield 45%; brown solid, mp 247-249 °C; IR (KBr) ν_{max} cm$^{-1}$: 3384 (O-H), 3340 (O-H), 3286 (N-H), 1630 (C=O), 1619 (C=O). 1H-NMR (400 MHz, DMSO-d_6): δ 5.82 (s, 1H, 2-H), 6.85 (d, 2H, $J = 8.5 \text{ Hz}$, 3'-H + 5'-H), 7.16 (d, 2H, $J = 8.5 \text{ Hz}$, 2'-H + 6'-H), 7.23 (d, 1H, $J = 8.4 \text{ Hz}$, 6-H), 7.45 (d, 1H, $J = 7.3 \text{ Hz}$, 8-H), 7.72 (dd, 2H, $J = 7.8$, 7.9 Hz, 7-H), 8.27 (s, 1H, 4'-OH), 9.0 (s, 1H, NH), 9.54 (s, 1H, 5-OH); 13C-NMR (100 MHz, DMSO-d_6): δ 101.54, 114.67, 116.25 (2C), 117.94, 122.36, 126.25 (2C), 129.25, 133.60, 137.91, 147.45, 155.84, 160.90,
181.80, 186.18. HRMS (APCI) calcd. for C_{16}H_{11}NO_{4}: 281.06881 [M+H]^+; found 281.07541.

5-Hydroxy-2-((4-hydroxyphenyl)amino)naphthalene-1,4-dione (4b): Isolated yield 16%; brown solid, mp 241-243 °C; IR (KBr) $\nu_{\text{máx}}$ cm$^{-1}$: 3383 (O-H), 3339 (O-H), 3286 (N-H), 1631 (C=O), 1619 (C=O). 1H-NMR (400 MHz, DMSO-d$_6$): δ 5.82 (s, 1H, 3-H), 6.85 (d, 2H, $J = 8.6$ Hz, 3'-H + 5'-H), 7.16 (d, 2H, $J = 8.6$ Hz, 2'-H + 6'-H), 7.22 (d, 1H, $J = 8.3$ Hz, 6-H), 7.45 (d, 1H, $J = 7.3$ Hz, 8-H), 7.72 (dd, 2H, $J = 7.7$, 8.1 Hz, 7-H), 9.0 (s, 1H, NH), 9.56 (s, 1H, 4'-OH), 11.45 (s, 1H, 5-OH); 13C-NMR (100 MHz, DMSO-d$_6$): δ 101.56, 114.67, 116.24 (2C), 117.93, 122.36, 126.24 (2C), 129.26, 133.61, 137.89, 147.44, 155.85, 160.92, 181.80, 186.16; HRMS (APCI) calcd. for C$_{16}$H$_{11}$NO$_4$: 281.06881 [M+H]$^+$; found 281.07527.

General procedure for the synthesis of compounds 6-10

A suspension of 1,5-dihydroxynaphthalene (1) or 5-acetylamino-1-hydroxynaphthalene (5; 1.25 mmol), rose bengal (20 mg), the phenylamine required (1.25 mmol) and water (150 mL), into a round bottom flask, was vigorously stirred at room temperature. Then, the solution was irradiated by solar light or Light Emitting Diode lamps (LED: InGaN, 0.768 W, 42.24 lm, 530 nm) for 5 h at the same time a gently stream of air is bubbled through the solution. The reaction mixture was extracted with ethyl acetate (2 x 20 mL), the dry extract was evaporated under vacuum and the residue was chromatographed on silica gel (3:1 petroleum ether/ethyl acetate) to give pure the respective N-phenyl quinone imines.

Spectroscopic data

5-Hydroxy-4-((4-hydroxyphenyl)imino)naphthalen-1(4H)-one (6): Prepared from 1 and 4-hydroxyphenylamine, in 98 and 80% yield by using solar light and green LEDs respectively; brown solid, mp 149-151 °C; IR (KBr) $\nu_{\text{máx}}$ cm$^{-1}$: 3568 (O-H), 1647 (C=O), 1638 (C=N). 1H-NMR (400 MHz, CDCl$_3$): δ 5.16 (s, 1H, O-H), 6.72 (d, 1H, $J = 10.4$ Hz, 3-H), 6.95 (dd, 4H, $J = 8.8$, 8.8 Hz, 2'-H + 3'-H + 5'
H + 6'-H), 7.31 (d, 1H, J = 8.3 Hz, 6-H), 7.37 (d, 1H, J = 10.4 Hz, 2-H), 7.53 (dd, 1H, J = 7.8, 8.0 Hz, 7-H), 7.71 (d, 1H, J = 7.3 Hz, 8-H), 14.20 (s, 1H, OH). 13C-NMR (100 MHz, CDCl$_3$): δ 114.59, 116.11 (2C), 118.28, 123.65, 124.28 (2C), 130.22, 131.53, 132.86, 135.09, 138.77, 154.70, 159.30, 160.72, 185.18; HRMS (APCI) calcd. for C$_{16}$H$_{11}$NO$_3$: 266.08172 [M+H]$^+$; found 266.0820.

5-Hydroxy-4-((4-methoxyphenyl)limino)naphthalen-1(4H)-one (7): Prepared from 1 and 4-methoxyphenylamine, in 47 and 34% yield with solar light green LEDs respectively; brown solid, mp 147-149 °C; IR (KBr) ν_{max} cm$^{-1}$: 3630 (O-H), 1640 (C=O), 1624 (C=N). 1H-NMR (400 MHz, CDCl$_3$): δ 3.86 (s, 1H, OMe), 6.71 (d, 1H, J = 10.5 Hz, 3-H), 7.01 (dd, 4H, J = 9.1, 9.0 Hz, 2'-H + 3'-H + 5'-H + 6'-H), 7.30 (d, 1H, J = 8.2 Hz, 6-H), 7.37 (d, 1H, J = 10.5 Hz, 2-H), 7.53 (dd, 1H, J = 7.9, 7.9 Hz, 7-H), 7.70 (d, 1H, J = 7.6 Hz, 8-H), 14.21 (s, 1H, OH). 13C-NMR (100 MHz, CDCl$_3$): δ 55.59, 114.56, 114.59, 116.02, 118.20, 123.56, 124.12 (2C), 130.20, 131.55, 132.78, 135.04, 138.69, 158.61, 159.20, 160.71, 185.10; HRMS (APCI) calcd. for C$_{17}$H$_{13}$NO$_3$: 280.09737 [M+H]$^+$; found 280.09625.

4-((2,5-Dimethoxyphenyl)limino)-5-hydroxynaphthalen-1(4H)-one (8): Prepared from 1 and 2,5-dimethoxyphenylamine, in 60 and 43% yield with solar light and green LEDs respectively; brown solid, mp 260-262 °C; IR (KBr) ν_{max} cm$^{-1}$: 3285 (O-H), 1645 (C=O), 1635 (C=N). 1H-NMR (400 MHz, CDCl$_3$): δ 3.79 (s, 3H, OMe), 3.86 (s, 3H, OMe), 6.65 (m, 1H, 4'-H or 3'-H), 6.71 (s, 1H, Hz, 6'-H), 6.79 (m, 1H, 3'-H or 4'-H), 6.83 (d, 1H, J = 8.9 Hz, 3-H), 6.93 (d, 1H, J = 8.9 Hz, 2-H), 7.34 (d, 1H, J = 8.3 Hz, 6-H), 7.51 (dd, 1H, J = 7.9, 8.0 Hz, 7-H), 7.78 (d, 1H, J = 7.6 Hz, 8-H), 15.34 (s, 1H, OH). 13C-NMR (100 MHz, CDCl$_3$): δ 55.71, 56.24, 97.21, 105.07, 109.39, 111.05, 113.31, 118.56, 125.13, 128.60, 131.92, 136.17, 140.04, 144.67, 153.89, 161.58, 161.82, 185.10; HRMS (APCI) calcd. for C$_{18}$H$_{15}$NO$_4$: 310.10794 [M+H]$^+$; found 310.10712.

5-Hydroxy-4-((3,4,5(trimethoxyphenyl)limino)naphthalen-1(4H)-one (9): This compound was prepared from 1 and 3,4,5-trimethoxyphenylamine, in 59 and 38% yield with solar light and green LEDs respectively; red solid, mp 148- 150 °C; IR (KBr) ν_{max} cm$^{-1}$: 3568 (O-H), 1689 (C=O), 1627 (C=N). 1H-NMR (400
MHz, CDCl₃): δ 3.87 (s, 6H, OMe), 3.89 (s, 3H, OMe), 6.25 (s, 2H, 2'·H + 6'·H), 6.72 (d, 1H, J = 10.4 Hz, 3-H), 7.32 (d, 1H, J = 8.2 Hz, 6-H), 7.34 (d, 1H, J = 10.4 Hz, 2-H), 7.55 (dd, 1H, J = 7.9, 8.0 Hz, 7-H), 7.71 (d, 1H, J = 7.5 Hz, 8-H), 13.86 (s, 1H, OH).

13C-NMR (100 MHz, CDCl₃): δ 56.28 (2C), 61.09, 99.62 (2C), 114.56, 115.69, 118.43, 123.71, 130.39, 131.57, 133.14, 135.42, 136.36, 141.71, 153.69, 160.13, 160.64, 184.99; HRMS (APCI): calcd. for C₁₉H₁₇NO₅: 340.11850 [M+H]⁺; found 340.11746.

5-Hydroxy-4-((4-hydroxyphenyl)imino)naphthalen-1(4H)-one (10): Prepared from 5 and 4-hydroxyphenylamine, in 88% and 82% yield with solar light and green LEDs respectively; red solid, mp 258-259 °C; IR (KBr) νmax cm⁻¹: 3244 (NH), 1691 (C=O), 1643 (C=N). ¹H-NMR (400 MHz, DMSO-d₆): δ 2.15 (s, 3H, COme), 6.75 (d, 1H, J = 10.5 Hz, 3-H), 6.92 (d, 2H, J = 8.6 Hz, 3'-H + 5'-H), 7.04 (d, 2H, J = 8.6 Hz, 2'-H + 6'-H), 7.42 (d, 1H, J = 10.5 Hz, 2-H), 7.66 (dd, 1H, J = 8.0, 8.0 Hz, 7-H), 7.77 (d, 1H, J = 7.4 Hz, 6-H), 8.94 (d, 1H, J = 8.2 Hz, 8-H), 9.88 (s, 1H, 4'-OH), 13.41 (s, 1H, 5-OH). ¹³C-NMR (400 MHz, DMSO-d₆): δ 26.13, 116.37 (2C), 118.17, 121.01, 124.59, 124.77 (2C), 131.96, 132.01, 132.30, 132.80, 138.76, 139.91, 157.26, 169.42, 184.99, 185.03; HRMS (APCI) calcd. for C₁₉H₁₄N₂O₃: 306.10044 [M+H]⁺; found 306.10189.

X-ray crystallography:

X-ray crystallographic data were collected at 293 K with Cu Kα (1.5418 Å) using an Oxford diffraction CCD area-detector diffractometer equipped with graphite monochromator. The Cris Alis PRO software [1] was used for data collection data reduction and cell refinement. The structure was solved by direct methods and refined by full-matrix least-squares calculations using SHELXL [2] software. All the non-H atoms were refined in the anisotropic approximation against F² of all reflections. The H-atoms were placed at their calculated positions and refined isotropic approximation. The crystallographic parameters are given in Table S1.

The crystallographic information of the compound is deposited to Cambridge Crystallographic Database and has the CCDC number 1015027.
References:

Table S1. Crystal data and structure refinement for compound 6.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>shelx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{16}H_{11}NO_{3}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>266.08</td>
</tr>
<tr>
<td>Temperature</td>
<td>293(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.5418 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P -1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 7.445(3) Å, α = 109.945(3)°, b = 13.785(4) Å, β = 101.686(4)°, c = 14.088(6) Å, γ = 101.735(3)°</td>
</tr>
<tr>
<td>Volume</td>
<td>1271.3(8) Å^3</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.433 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.844 mm^{-1}</td>
</tr>
<tr>
<td>F(000)</td>
<td>572</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>3.493 to 61.581°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-6<=h<=8, -15<=k<=15, -16<=l<=14</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>6849</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3883 [R(int) = 0.0122]</td>
</tr>
<tr>
<td>Completeness to theta</td>
<td>67.680°, 84.7 %</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3883 / 0 / 388</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.045</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0337, wR2 = 0.0872</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0392, wR2 = 0.0928</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.300 and -0.160 e.Å^{-3}</td>
</tr>
</tbody>
</table>
NAME Julio Benites
EXPNO 96
PROCNO 1
Date_ 20120828
Time 11.51
INSTRUM spect
PHOSHD 5 mm RBI 1H-BB
PULPROG zgpg30
TD 32768
SOLVENT CDCl3
NS 3079
DG 0
SNH 23980.814 Hz
FIDRES 0.6832628 sec
AQ 0.6832628 sec
RG 35.9
DW 20.850 usec
TE 292.2 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1

-------- CHANNEL f1 --------
NUC1 13C
P1 14.00 usec
PL1 -6.00 dB
SFO1 100.6242995 MHz

-------- CHANNEL f2 --------
CPDPRG2 waltz16
NUC2 1H
PCPD2 85.00 usec
PL2 6.00 dB
PL12 23.00 dB
PL13 23.00 dB
SFO2 400.1316005 MHz
SI 32768
SF 100.6127714 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 1.40
PC 1.40

J. Benites
JM4
CDC13

1H NMR spectrum of compound JM4 in CDCl3.