Supporting Information

for

A small azide-modified thiazole-based reporter molecule

for fluorescence and mass spectrometric detection

Stefanie Wolfram¹, Hendryk Würfel², Stefanie H. Habenicht², Christine Lembke¹, Phillipp Richter¹, Eckhard Birckner³, Rainer Beckert² and Georg Pohnert^{*1}

Address: ¹Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Lessingstr. 8, 07743 Jena, Germany and ²Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University, Humboldtstr. 10, 07743 Jena, Germany and ³Institute for Physical Chemistry, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany

Email: Georg Pohnert* - Georg.Pohnert@uni-jena.de

* Corresponding author

Synthetic procedures and characterization data of synthetic compounds

Synthetic procedures

General methods

All chemicals were purchased as reagent grade or better and used without further purification. If necessary reactions were performed under argon. Commercially available dry solvents were employed. Diethyl ether and tetrahydrofuran (THF) contained butylhydroxytoluene as peroxidation inhibitor. Column chromatography was carried out on Merck silica gel (0.04-0.063 mesh). TLC was performed with TLC silica gel 60 F₂₅₄ plates from Merck. TLC spots were visualized by irradiation of the TLC plate with UV radiation (254 nm) or by dipping in Seebach reagent (2.5 g phosphomolybdic acid and 1 g cer(IV) sulfate dissolved in 65 mL water and slowly acidified by dropwise addition of 6 ml concentrated sulfuric acid).

5-(4-Bromophenyl)-2-(pyridin-2-yl)thiazol-4-ol (4)

Starting from pyridine-2-carbothioamide (2) and ethyl 2-bromo-2-(4-bromophenyl) acetate (3) the compound was synthesized according to literature [1].

¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) 11.64 (s, 1H, OH), 8.62 (d, 1H, ArH), 8.03-7.90 (m, 2H, ArH), 7.72 (d, 2H, ³*J* = 8.6 Hz, ArH), 7.58 (d, 2H, ³*J* = 8.6 Hz, ArH), 7.50-7.45 (m, 1H, ArH).

¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) 160.7, 158.9, 149.8, 149.5, 137.4, 131.4, 131.0, 127.7, 124.7, 118.8, 118.2, 109.0.

MS (EI): *m*/*z* 333.9 [42%] M+2, 331.9 [42%] M, 263.9 [29%], 218.9 [100%], 200.7 [58%].

HRMS: *m*/*z* calculated: 331.9619, found: 331.9617.

5-(4-Bromophenyl)-4-(3-chloropropoxy)-2-(pyridine-2-yl)thiazole (5)

In a 100 mL Erlenmeyer flask 0.81 g (2.4 mmol) **4**, 0.5 g (3.6 mmol) K_2CO_3 and 0.3 mL (3.0 mmol) 1-bromo-3-chloropropane were stirred in 20 mL DMF at r.t. for 6 h. The mixture was poured in 200 mL of water and extracted with CHCl₃ (3 x 50 mL). The extracts were combined, washed with saturated K_2CO_3 solution and water, dried over MgSO₄ and evaporated in vacuum to obtain a bright yellow solid. The compound was recrystallized from heptane/CHCl₃ to obtain light yellow crystalls in 85% yield.

¹H NMR (250 MHz, CDCl₃): δ (ppm) 8.59 (d, 1H, ⁴*J* = 4.6 Hz, ArH), 8.11 (d, 1H, ³*J* = 7.9 Hz, ArH), 7.73-7.85 (m, 1H, ArH), 7.62 (d, 2H, ³*J* = 8.6 Hz, ArH), 7.50 (d, 2H, ³*J* = 8.6 Hz, ArH), 7.25-7.35 (m, 1H, ArH), 4.68 (t, 2H, ³*J* = 6.0 Hz, CH₂), 3.75 (t, 2H, ³*J* = 6.4 Hz, CH₂), 2.32 (quin, 2H, ³*J* = 6.1 Hz, CH₂).

¹³C NMR (63 MHz, CDCl₃): δ (ppm) 160.9, 159.0, 150.9, 149.4, 137.0, 131.8, 130.6,
128.3, 124.4, 120.5, 119.1, 113.6, 67.1, 41.6, 32.5.

MS (EI): *m*/*z* 409.9 [40%] M+2, 407.9 [28%] M, 333.9 [16%], 331.9 [16%], 263.9 [30%], 218.9 [100%].

HRMS: *m*/*z* calculated: 407.9699, found: 407.9698.

4-(3-Azidopropoxy)-5-(4-bromophenyl)-2-(pyridine-2-yl)thiazole (BPT, 1)

In a 100 mL round bottom flask 0.84 g (2.1 mmol) **5**, 0.27 g (4.1 mmol) NaN₃ and 20 mL dimethyl formamide were stirred for 4 h at 80 °C. The cooled mixture was poured into 100 mL of water and extracted with CH_2Cl_2 (3 x 50 mL). The combined extracts were washed with water (100 mL) and dried over MgSO₄. The solvent was removed in vacuum and the product, bright yellow crystals, was dried with a vacuum pump for several hours (83% yield).

¹H NMR (250 MHz, CDCl₃): δ (ppm) 8.59 (d, 1H, ⁴J = 4.6 Hz, ArH), 8.10 (d, 1H,

 ${}^{3}J$ = 7.9 Hz, ArH), 7.73-7.85 (m, 1H, ArH), 7.63 (d, 2H, ${}^{3}J$ = 8.6 Hz, ArH), 7.50 (d, 2H, ${}^{3}J$ = 8.6 Hz, ArH), 7.27-7.36 (m, 1H, ArH), 4.62 (t, 2H, ${}^{3}J$ = 6.1 Hz, CH₂), 3.53 (t, 2H, ${}^{3}J$ = 6.7 Hz, CH₂), 2.14 (quin, 2H, ${}^{3}J$ = 6.3 Hz, CH₂).

¹³C NMR (63 MHz, CDCl₃): δ (ppm) 160.9, 158.9, 150.9, 149.4, 137.0, 131.8, 130.6,
128.3, 124.4, 120.5, 119.1, 113.6, 67.3, 48.4, 29.0.

MS (EI): *m/z* 417.0 [28%] M+2, 415.0 [28%] M, 333.9 [50%], 331.9 [50%], 200.7

[100%].

HRMS *m*/*z* calculated: 415.0103, found: 415.0096.

LC/MS (ESI, positive mode) *m*/*z* 416.0 [M+H]⁺.

N-(3-Bromopropyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine

The substance was synthesized according to Key and Cairo [2].

¹H NMR (400 MHz, D₃COD): δ (ppm) 8.43 (d, 1H, ³*J* = 8.8 Hz, ArH), 6.30 (d, 1H, ³*J* = 8.8 Hz, ArH), 3.63 (m, 2H, CH₂-NH), 3.51 (t, 2H, ³*J* = 6.0 Hz, CH₂-Br), 2.23 (quin, 2H, ³*J* = 7.0 Hz, CH₂).

¹³C NMR (100 MHz, D₃COD): δ (ppm) 146.6, 145.9, 145.5, 138.3, 123.5, 99.9, 43.2, 32.4, 31.0.

N-(3-Azidopropyl)-7-nitrobenzo[c][1,2,5]oxadiazol-4-amine (NBD, 9)

9 was synthesized according to Key and Cairo [2].

¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.48 (d, 1H, ³*J* = 8.4 Hz, ArH), 6.50 (m, 1H, NH), 6.21 (d, 1H, ³*J* = 8.8 Hz, ArH), 3.63 (q, 2H, ³*J* = 6.2 Hz, CH₂-NH), 3.58 (t, 2H, ³*J* = 6.2 Hz, CH₂-N₃), 2.07 (quin, 2H, ³*J* = 6.6 Hz, CH₂).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) 144.3, 143.8, 143.6, 136.4, 124.4, 98.7, 49.1,
41.56, 27.7.

LC/MS (ESI, positive mode) m/z 264.1 [M+H]⁺.

N-(3-Azidopropyl)-5-(dimethylamino)naphthalene-1-sulfonamide (DNS, 8)

The synthesis of DNS was conducted with 5-(dimethylamino)naphthalene-1-sulfonyl chloride and 3-azidopropan-1-amine adapted from [3] who synthesized *N*-(2-azidoethyl)-5-(dimethylamino)naphthalene-1-sulfonamide. The crude product was purified by column chromatography using petroleum ether/ethyl acetate (2/1, v/v) and dried under reduced pressure resulting in 79% yield.

¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.55 (d, 1H, ³J = 8.5 Hz, ArH), 8.28 (d, 1H, ³J = 8.6 Hz, ArH), 8.26 (dd, 1H, ³J = 7.3 Hz, ⁴J = 1.5 Hz, ArH), 7.51-7.59 (m, 2H, 2F)

ArH), 7.19 (d, 1H, ${}^{3}J$ = 7.3 Hz, ArH), 5.06 (m, 1H, NH), 3.25 (t, 2H, ${}^{3}J$ = 6.6 Hz, CH₂-N₃), 2.98 (q, 2H, ${}^{3}J$ = 6.2 Hz, N-CH₂), 2.89 (s, 6H, CH₃), 1.64 (quin, 2H, ${}^{3}J$ = 6.6 Hz, CH₂).

¹³C NMR (101 MHz, CDCl₃): δ (ppm) 152.1, 134.3, 130.6, 129.9, 129.7, 129.5, 128.5, 123.2, 118.5, 115.2, 48.7, 45.4, 40.7, 28.7.

LC/MS (ESI, positive mode) m/z 334.2 [M+H]⁺.

6-Bromo-5-(dimethylamino)naphthalene-1-sulfonyl chloride (7)

Starting form 5-dimethylamino-1-naphthalenesulfonyl chloride (dansyl chloride) the product was synthesized according to literature [4].

¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.80 (d, 1H, ³*J* = 8.3 Hz, ArH), 8.46 (d, 1H, ³*J* = 8.8 Hz, ArH), 8.37 (dd, 1H, ³*J* = 7.2 Hz, ⁴*J* = 1.1 Hz, ArH), 7.87 (d, 1H, ³*J* = 8.8 Hz, ArH), 7.65 (t, 1H, ³*J* = 7.7 Hz, ArH), 3.04 (s, 6H, CH₃).

¹³C NMR (151 MHz, CDCl₃): δ (ppm) 148.2, 139.9, 136.1, 134.9, 133.6, 129.5, 127.7, 124.6, 122.5, 122.1, 42.6.

LC/MS (ESI, positive mode) *m*/*z* 348.0 [M+H]⁺.

N-(3-Azidopropyl)-6-bromo-5-(dimethylamino)naphthalene-1-sulfonamide (BNS, 6)

166 mg (0.48 mmol) 6-Bromo-5-(dimethylamino)naphthalene-1-sulfonyl chloride (**7**) were treated with 70 μ l (0.71 mmol) 3-azidopropan-1-amine and 123 μ L (0.89 mmol) triethylamine in 40 mL CH₂Cl₂. After stirring over night the solvent was removed under reduced pressure. The product was isolated by column chromatography with petrol ether/ethyl acetate 2/1, (v/v) and a yellew oil was obtained with 93% yield.

¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.64 (d, 1H, ³*J* = 8.5 Hz, ArH), 8.33 (d, 1H, ³*J* = 8.8 Hz, ArH), 8.27 (dd, 1H, ³*J* = 7.3 Hz, ⁴*J* = 1.2 Hz, ArH), 7.74 (d, 1H, ³*J* = 9.5 Hz, ArH), 7.60 (dd, 1H, ³*J* = 8.8 Hz, ³*J* = 7.2 Hz, ArH), 4.89 (t, 1H, ³*J* = 6.3 Hz, NH), 3.30 (t, 2H, ³*J* = 6.5 Hz, CH₂-N₃), 3.03 (s, 6H, CH₃), 3.01 (q, 2H, ³*J* = 6.4 Hz, N-CH₂), 1.68 (quin, 2H, ³*J* = 6.4 Hz, CH₂).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) 148.1, 135.9, 134.7, 133.8, 131.0, 130.0, 128.4,
124.9, 122.7, 121.3, 48.8, 42.6, 40.8, 28.8.

LC/MS (ESI, positive mode) *m*/*z* 412.1 [M+H]⁺.

(2*E*,4*E*)-deca-2,4-dien-9-ynal (DDY, 10)

10 was synthesized as described elsewhere [5].

References

- 1. Täuscher, E.; Weiß, D.; Beckert, R.; Görls, H. Synthesis **2010**, 1603-1608.
- 2. Key, J. A.; Cairo, C. W. *Dyes Pigm.* **2011**, *88*, 95-102.
- 3. Rogers, S. A.; Bero, J. D.; Melander, C. *ChemBioChem* **2010**, *11*, 396–410.
- 4. Kinsey, B. M.; Kassis, A. I. *Nucl. Med. Biol.* **1993**, *20*, 13-22.
- 5. Wolfram, S.; Nejstgaard, J.; Pohnert, G *PLOSone*, in press.

Mass spectra of synthetic compounds

Figure 1: ¹H NMR spectrum of compound 4.

Figure 2: ¹³C NMR spectrum of compound 4.

Figure 3: ¹H NMR spectrum of compound 5.

Figure 4: ¹³C NMR spectrum of compound 5.

Figure 5: ¹H NMR spectrum of compound 1.

Figure 6: ¹³C NMR spectrum of compound 1.

Figure 7: ¹H NMR spectrum of *N*-(3-bromopropyl)-7-nitrobenzo[*c*][1,2,5]oxadiazol-4-

amine.

Figure 8: ¹³C NMR spectrum of *N*-(3-bromopropyl)-7-nitrobenzo[*c*][1,2,5]oxadiazol-4-amine.

Figure 9: ¹H NMR spectrum of compound 9.

Figure 10: ¹³C NMR spectrum of compound 9.

Figure 11: ¹H NMR spectrum of compound 8.

Figure 12: ¹³C NMR spectrum of compound 8.

Figure 13: ¹H NMR spectrum of compound 7.

Figure 14: ¹³C NMR spectrum of compound 7.

Figure 15: ¹H NMR spectrum of compound 6.

Figure 16: ¹³C NMR spectrum of compound 6.

Figure 17: ¹H NMR spectrum of compound **10**.

Figure 18: ¹³C NMR spectrum of compound 10.