Supporting Information

for

Regio- and stereoselective synthesis of new diaminocyclopentanols

Evgeni A. Larin*1, Valeri S. Kochubei ${ }^{1}$ and Yuri M. Atroshchenko ${ }^{2}$

Address: ${ }^{1}$ Organic Synthesis Department, Asinex Corporation, 101 North Chestnut, Winston-Salem 27101, NC, USA and ${ }^{2}$ Organic Chemistry and Biochemistry Department, Tolstoi State Pedagogical University, 126 Lenin, Tula 300026, Russian Federation

Email: Evgeni A. Larin - elarin@asinex.com

* Corresponding author

Experimental and characterization data

Table of contents

General information S2
Experimental details and characterization data S3-S8
References S9

General information

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and the detailed 2D NMR spectra were determined on Varian Mercury Plus 400 spectrometer. Chemical shifts are reported in parts per million using solvent as the internal standard $\left(\mathrm{CDCl}_{3}, \mathrm{DMSO}-\mathrm{d}_{6}\right.$ or $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right)$. LRMS was run on Finnigan Surveyor MSQ mass spectrometer. HRMS spectra were obtained on Bruker MicrOTOF II mass spectrometer. Thin layer chromatography was performed on DCAlufoilen Kieselgel 60F 2540.2 mm plates (Merck) and visualized under UV light and stained with ninhydrin or Seebach solution followed by heating. Column chromatography was done by using Kieselgel 60 (Merck) 60-200 mesh as the stationary phase. All reagents and solvents were purchased from commercial sources and used without further purification. Starting epoxides $\mathbf{3 a , b}$ and 6 previously described in the literature ${ }^{1,2}$ were characterized by comparing their ${ }^{1}$ H NMR spectra to the published data. All yields reported in this publication refer to isolated ones of compounds and their purity was determined by ${ }^{1} \mathrm{H}$ NMR. The stereochemistry displayed in the products is relative and not absolute.

General procedure for Lewis acid-catalyzed ring opening reactions of epoxides 3 and 6 as examplified by 8a

(1RS,2RS,5RS)-2-[Benzyl(methyl)amino]-5-(morpholin-4-yl)cyclopentanol (8a)
To the mixture of $3 \mathbf{a}(1.02 \mathrm{~g}, 5 \mathrm{mmol})$ and morpholine ($0.57 \mathrm{~g}, 6.5 \mathrm{mmol}$) zinc(II) perchlorate hexahydrate ($0.19 \mathrm{~g}, 10 \mathrm{~mol} \%$) was added, and the mixture was magnetically stirred at $100^{\circ} \mathrm{C}$ for 2 h under nitrogen atmosphere. After completion of the reaction (disappearance of starting material monitored by TLC), the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and filtered through celite. The filtrate was washed with water ($3 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give the crude product, which was purified by flash chromatography (35\% EtOAc/hexane) to give the title compound $8 \mathbf{8 a}(1.10 \mathrm{~g}, 76 \%)$ as a colourless oil; d_{H} (400 MHz, DMSO-d ${ }_{6}$) 7.34-7.18 (5H, m, Ph), 4.05 ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), 3.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.9 \mathrm{~Hz}$, H-1), 3.64 ($1 \mathrm{H}, \mathrm{d}, ~ J 13.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $3.55\left(4 \mathrm{H}, \mathrm{t}, J 4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$), 3.47 ($1 \mathrm{H}, \mathrm{d}, ~ J$ $13.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $2.55(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 12.2,6.1 \mathrm{~Hz}, \mathrm{H}-2)$, 2.50-2.47 (2H, m, CH2N), 2.46$2.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 2.39-2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.88-1.75(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and H-4), 1.64-1.51 (1H, m, H-3), 1.38-1.25 (1H, m, H-4); dc (100 MHz, DMSO-d ${ }_{6}$, HSQC-DEPT) 128.2, 127.8, 126.3 (Ph), 73.8 (C-5), 71.2 (C-1), 67.4 (C-2), 65.9 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 59.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 51.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 39.2\left(\mathrm{CH}_{3}\right), 26.4(\mathrm{C}-3), 25.5(\mathrm{C}-4)$; LC-MS (APCI): $m / z=291.13[M]^{+}$. HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 291.2067$; found: 291.2071.
(1RS,2RS,5RS)-2-(4-Acetylpiperazin-1-yl)-5-[benzyl(methyl)amino]cyclopentanol (8c) This compound was isolated in 44% yield $(0.73 \mathrm{~g})$ as a pale yellow oil; $d_{H}(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) 7.33-7.18 (5H, m, Ph), $4.08(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0 \mathrm{~Hz}, \mathrm{H}-1), 3.64$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $3.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 3.42-3.34 (4H, m, CH2N), 2.59-2.51 (1H, m, H-2), 2.49-2.46 (1H, m, H-5), 2.44-2.25 (4H, m, CH $\left.{ }_{2} \mathrm{~N}\right), 2.10(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 1.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right), 1.90-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.63-1.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.39-$ $1.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \mathrm{d}_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 167.8,138.9,128.5,127.9,126.6,73.6$, 71.6, 67.6, 59.2, 51.1, 50.5, 45.6, 40.8, 26.5, 26.0; LC-MS (APCI): m/z = 332.17 [M] ${ }^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}: 332.2333$; found: 332.2334.
(1RS,2RS,5RS)-2-(Dibenzylamino)-5-(morpholin-4-yl)cyclopentanol (9a)
This compound was isolated in 48% yield $(0.88 \mathrm{~g})$ as a white solid, and regioisomer 10a was obtained in 24% yield $(0.44 \mathrm{~g})$ as a white solid; Compound 9a: $\mathrm{d}_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) 7.35-7.15 (10H, m, Ph), $4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.1 \mathrm{~Hz}, \mathrm{OH}), 3.87(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.72$ ($4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), $3.51\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, 2.87-2.80 (1H, m, H-2), 2.46-2.42 (2H, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$), 2.46-2.43 (1H, buried m, H-5), 2.34-2.26 (2H, m, CH ${ }_{2} \mathrm{~N}$), 1.79-1.71 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-4), 1.69-1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.61-1.51(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 1.22-1.10(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$; d $\mathrm{d}_{\mathrm{c}}(100$ MHz, DMSO-d ${ }_{6}$, HSQC-DEPT) 128.3, 127.9, 127.0 (Ph), 74.1 (C-5), 72.6 (C-1), 66.9 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.1(\mathrm{C}-2), 55.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 52.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 26.7(\mathrm{C}-3), 26.6(\mathrm{C}-4)$; LC-MS (APCI): $m / z=367.22[M]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 367.2380$; found: 367.2374. Compound 10a: $\mathrm{d}_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 7.39-7.15$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $4.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8 \mathrm{~Hz}, \mathrm{OH}), 3.88(1 \mathrm{H}, \mathrm{dd}, J 10.0,5.0 \mathrm{~Hz}, \mathrm{H}-1), 3.78(2 \mathrm{H}, \mathrm{d}, J 13.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 3.44\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 3.42\left(2 \mathrm{H}\right.$, buried d, J $\left.13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.19(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.02(1 \mathrm{H}, \mathrm{q}, J 7.8 \mathrm{~Hz}, \mathrm{H}-3), 2.60(1 \mathrm{H}, \mathrm{dd}, J 7.1,4.7 \mathrm{~Hz}, \mathrm{H}-2), 2.46-2.39(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 2.38-2.30 (2H, m, CH2N), 1.81-1.69 (1H, m, H-4), 1.61-1.45 (3H, m, H-4 and H-5); $\mathrm{d}_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$, HSQC-DEPT) 128.1, 127.4, 126.2 (Ph), 74.5 (C2), $70.4(\mathrm{C}-1), 60.1(\mathrm{C}-3), 53.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 53.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.0(\mathrm{C}-4), 20.2$ (C-5); LC-MS (APCI): $m / z=367.31[M]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$: 367.2380; found: 367.2374 .
(1RS,2RS,5RS)-2-(4-Acetylpiperazin-1-yl)-5-(dibenzylamino)cyclopentanol (9c) This compound was isolated in 43% yield $(0.87 \mathrm{~g})$ as a white solid, and regioisomer 10c was obtained in 21% yield (0.43 g) as a white solid; Compound 9 c : $\mathrm{d}_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) 7.35-7.14 (10H, m, Ph), 4.25 ($1 \mathrm{H}, \mathrm{d}, J 26.5 \mathrm{~Hz}, \mathrm{OH}$), 3.88 (1 H , dd, J 6.0, $2.5 \mathrm{~Hz}, \mathrm{H}-1), 3.72\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.0,7.1 \mathrm{~Hz}, \mathrm{H}-2), 3.36(4 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{~N}$), 2.89-2.79 (1H, m, H-5), 2.50-2.21 (4H, m, CH $\left.{ }_{2} \mathrm{~N}\right), 1.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right)$, 1.78$1.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.71-1.63\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.62-1.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.23-1.11(1 \mathrm{H}, \mathrm{m}$, CH_{2}); $\mathrm{d}_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}\right.$ (d_{6} 167.8, 139.9, 128.2, 127.9, 126.4, 73.4, 72.5, 64.2, 55.5, 51.1, 45.5, 40.8, 25.6, 25.4, 20.8; LC-MS (APCI): $m / z=408.22[M]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}$: 408.2646; found: 408.2641. Compound 10c: d_{H} (400 MHz, DMSO-d ${ }_{6}$) 7.39-7.14 (10H, m, Ph), $4.45(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1)$, $3.78\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.41\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.34-3.12(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~N}$), $3.01(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3), 2.65(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-2), 2.34\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right)$, 1.82-1.68 (1H, m, H-4), 1.62-1.44 (3H, m, H-4 and H-5); dc (100 MHz , DMSO-d ${ }_{6}$,

HSQC-DEPT) 128.1, 127.5, 126.2 (Ph), 73.9 (C-2), 70.5 (C-1), 59.8 (C-3), 53.7 $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 49.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 40.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 20.4\left(\mathrm{CH}_{3}\right), 19.9(\mathrm{C}-5), 19.7(\mathrm{C}-4) ;$ LC-MS (APCI): m/z = $408.32[M]^{+}$. HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}\right]^{+}: 408.2646$; found: 408.2651.
(1RS,2RS,3SR)-2-[Benzyl(methyl)amino]-3-(morpholin-4-yl)cyclopentanol (14a)
This compound was isolated in 84% yield $(1.22 \mathrm{~g})$ as a yellow oil; $d_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) 7.33-7.15 (5H, m, Ph), $4.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.1 \mathrm{~Hz}, \mathrm{OH}), 4.11(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 3.63$ (2H, dd, J 34.8, 13.6 Hz, CH2Ph), 3.54 ($4 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 2.84 (1H, dd, J 7.0, $4.4 \mathrm{~Hz}, \mathrm{H}-2), 2.68(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 14.7,7.4 \mathrm{~Hz}, \mathrm{H}-3), 2.54-2.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 2.15(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.67-1.55(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5), 1.54-1.43(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5)$; $\mathrm{d}_{\mathrm{c}}(100 \mathrm{MHz}$, DMSO-d $_{6}$, HSQC-DEPT) 128.5, 127.7, 126.1 (Ph), 74.1 (C-2), 69.1 (C-1), 66.1 $\left(\mathrm{CH}_{2} \mathrm{O}\right), 66.0(\mathrm{C}-3), 58.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 37.7\left(\mathrm{CH}_{3}\right), 32.2(\mathrm{C}-4), 23.4(\mathrm{C}-5)$; LC-MS (APCI): $m / z=291.28[M]^{+}$. HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$: 291.2067; found: 291.2074.
(1RS,2RS,3SR)-2-(Dibenzylamino)-3-(morpholin-4-yl)cyclopentanol (14b)
This compound was isolated in 80% yield $(1.46 \mathrm{~g})$ as a white solid, and regioisomer 15 was obtained in 6% yield $(0.11 \mathrm{~g})$ as a white solid; Compound 14b: $\mathrm{d}_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d ${ }_{6}$) 7.40-7.14 (10H, m, Ph), $4.48(1 \mathrm{H}, \mathrm{d}, J 4.5 \mathrm{~Hz}, \mathrm{OH}), 4.27-4.18$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ 1), 3.73 ($2 \mathrm{H}, \mathrm{d}, ~ J 13.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.57 ($2 \mathrm{H}, \mathrm{d}, ~ J 13.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.47-3.36 (4H, m, $\mathrm{CH}_{2} \mathrm{O}$), 2.92 ($1 \mathrm{H}, \mathrm{dd}, ~ J 7.3,4.3 \mathrm{~Hz}, \mathrm{H}-2$), $2.71(1 \mathrm{H}, \mathrm{q}, ~ J 7.6 \mathrm{~Hz}, \mathrm{H}-3), 2.27(4 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $\left.4.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 1.70-1.60 (1H, m, H-5), 1.59-1.52 (2H, m, H-4), 1.51-1.41 (1H, m, H5); $\mathrm{d}_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{DMSO}_{6}, \mathrm{~d}_{6}, \mathrm{HSQC}^{2}-\mathrm{DEPT}\right)$ 128.3, 127.4, 126.0 (Ph), 79.5 (C-1), 69.1 (C-2), $66.2(\mathrm{C}-3), 66.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 54.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 50.4\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $32.4(\mathrm{C}-5), 22.8(\mathrm{C}-4)$; LC-MS (APCI): $m / z=367.35[M]^{+}$. HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$: 367.2380; found: 367.2373. Compound 15: $\mathrm{d}_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) 7.38-7.13(10 \mathrm{H}$, m, Ph), $4.46(1 \mathrm{H}, \mathrm{d}, ~ J 6.2 \mathrm{~Hz}, \mathrm{OH}), 3.95(1 \mathrm{H}, \mathrm{dd}, J 13.6,6.8 \mathrm{~Hz}, \mathrm{H}-1), 3.72(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.14.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.58\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.53\left(4 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 2.96$ ($1 \mathrm{H}, \mathrm{q}, ~ J 7.9 \mathrm{~Hz}, \mathrm{H}-2$), 2.58-2.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$), 2.44-2.36 (2H, m, CH2N), 2.33 (1H, dd, J 14.3, $7.3 \mathrm{~Hz}, \mathrm{H}-5)$, 1.66-1.40 (4H, m, CH_{2}); $\mathrm{d}_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$, DMSO- d_{6}, HSQCDEPT) 128.0, 127.4, 125.9 (Ph), $74.9(\mathrm{C}-1), 69.6(\mathrm{C}-5), 66.0(\mathrm{C}-2), 65.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 53.7$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $23.5\left(\mathrm{CH}_{2}\right)$, $21.5\left(\mathrm{CH}_{2}\right)$; LC-MS $(\mathrm{APCI}): m / z=367.26[\mathrm{M}]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 367.2380$; found: 367.2378.

General procedure for ring opening reactions of epoxides 3 and 6 under basic conditions as exemplified by 8b

(1RS,2RS,5RS)-2-[Benzyl(methyl)amino]-5-(2-methyl-1H-imidazol-1-yl)cyclopentanol (8b)
To a solution of $3 \mathbf{a}(1.02 \mathrm{~g}, 5 \mathrm{mmol})$ and 2-methyl- 1 H -imidazole ($0.53 \mathrm{~g}, 6.5 \mathrm{mmol}$) in DMSO (10 mL) cesium carbonate ($0.16 \mathrm{~g}, 10 \mathrm{~mol} \%$) was added. The mixture was heated at $120^{\circ} \mathrm{C}$ for 2 h under vigorous stirring. After completion of the reaction as monitored by TLC, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and water (30 mL). The organic layer was washed with water ($3 \times 30 \mathrm{~mL}$), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated in vacuo to give the crude product, which was purified by flash chromatography (50% EtOAc/hexane) to give the title compound $\mathbf{8 b}$ $(1.07 \mathrm{~g}, 75 \%)$ as a colourless oil; $\mathrm{d}_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 7.34-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.9 \mathrm{~Hz}, \mathrm{CH}), 6.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 0.7 \mathrm{~Hz}, \mathrm{CH}), 4.63(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.35(1 \mathrm{H}, \mathrm{td}$, $J 7.8,2.9 \mathrm{~Hz}, \mathrm{H}-5), 3.91(1 \mathrm{H}, \mathrm{dd}, J 4.8,2.9 \mathrm{~Hz}, \mathrm{H}-1), 3.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $2.86(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 10.4,6.4 \mathrm{~Hz}, \mathrm{H}-2), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 2.29-2.25 (1H, m, CH $)_{2}$, $2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.09-1.97\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.86-1.67(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$); $\mathrm{d}_{\mathrm{C}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 143.9,139.0,128.5,127.9,126.6,116.0,76.3$, 66.1, 62.7, 59.3, 28.2, 26.2, 12.9; LC-MS (APCI): $m / z=286.16[M]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$: 286.1914; found: 286.1920.
(1RS,2RS,5RS)-2-(6-Amino-9H-purin-9-yl)-5-[benzyl(methyl)amino]cyclopentanol (8d)

This compound was isolated in 65% yield $(1.10 \mathrm{~g})$ as a brown solid; $d_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d $_{6}$) $8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.13(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.35-7.18(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.04(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 4.75(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 8.3,3.2 \mathrm{~Hz}, \mathrm{H}-2), 4.70(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.30-4.22(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 3.68$ ($1 \mathrm{H}, \mathrm{d}, ~ J 13.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.56 ($1 \mathrm{H}, \mathrm{d}, ~ J 13.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.11 (1 H , dt, J 12.0, 6.1 $\mathrm{Hz}, \mathrm{H}-5), 2.37-2.26(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12-2.00(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$ and $\mathrm{H}-4)$, 1.90-1.80 (1H, m, H-4); dc (100 MHz, DMSO-d ${ }_{6}$, HSQC-DEPT) 128.0, 127.5, 126.3 (Ph), 74.8 (C-1), $65.6(\mathrm{C}-5), 61.7(\mathrm{C}-2), 58.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 39.2\left(\mathrm{CH}_{3}\right), 27.2(\mathrm{C}-3), 26.0$ (C-4); LC-MS (APCI): $m / z=339.27[M]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}\right]^{+}$: 339.1928; found: 339.1923.
(1 RS,2RS,5RS)-2-(Dibenzylamino)-5-(2-methyl-1 H-imidazol-1-yl)cyclopentanol (9b)
This compound was isolated in 64% yield (1.15 g) as a yellow oil, and regioisomer 10b was obtained in 26% yield $(0.47 \mathrm{~g})$ as a white solid; Compound 9 b : $\mathrm{d}_{\mathrm{H}}(400 \mathrm{MHz}$, DMSO-d d_{6}) 7.39-7.14 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $6.90(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.1 \mathrm{~Hz}, \mathrm{CH}), 6.69(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.99$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{OH}$), $4.29(1 \mathrm{H}, \mathrm{td}, J 8.4,4.8 \mathrm{~Hz}, \mathrm{H}-5), 3.98(1 \mathrm{H}, \mathrm{d}, J 5.1 \mathrm{~Hz}, \mathrm{H}-1), 3.81(2 \mathrm{H}, \mathrm{d}$, $\left.J 14.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.75\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.20-3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2), 2.30(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{3}$), 2.16-2.05 (1H, m, CH $)$, 1.94-1.75 (2H, m, CH $)$, 1.66-1.53 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$); dc (100 MHz, DMSO-d d_{6} 154.5, 144.2, 140.3, 128.4, 128.0, 126.6, 115.8, 77.0, 63.1, 61.6, 55.5, 28.0, 25.2, 13.1; LC-MS (APCI): m/z = 362.29 [M] ${ }^{+}$. HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}\right]^{+}$: 362.2227; found: 362.2227. Compound 10b: dH (400 MHz , DMSO-d d_{6}) $7.25-7.07$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $6.76(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 4.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $4.0 \mathrm{~Hz}, \mathrm{OH}), 4.20(1 \mathrm{H}, \mathrm{dd}, J 9.3,7.8 \mathrm{~Hz}, \mathrm{H}-2), 3.95-3.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-1), 3.61(2 \mathrm{H}, \mathrm{d}, J$ $\left.14.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.52\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.38(1 \mathrm{H}, \mathrm{dd}, J 17.7,8.6 \mathrm{~Hz}, \mathrm{H}-3)$, $2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.97-1.73(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$ and $\mathrm{H}-5)$, 1.64-1.52 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$); dc (100 MHz, DMSO-d ${ }_{6}$, HMBC) 127.5, 127.4, 126.0 (Ph), 125.8 (CH), 115.6 (CH), 74.4 (C1), 64.1 (C-2), 62.4 (C-3), 53.2 ($\mathrm{CH}_{2} \mathrm{Ph}$), 30.0 (C-4), 20.0 (C-5), $12.8\left(\mathrm{CH}_{3}\right)$; LC-MS (APCI): $m / z=362.29[M]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}\right]^{+}: 362.2227$; found: 362.2222.
(1RS,2RS,5RS)-2-(6-Amino-9H-purin-9-yl)-5-(dibenzylamino)cyclopentanol (9d)
This compound was isolated in 46% yield (0.95 g) as a brown solid, and regioisomer 10d was obtained in 23% yield (0.47 g) as a brown solid; Compound 9 d : $\mathrm{d}_{\mathrm{H}}(400$ MHz, DMSO-d $\mathrm{d}_{6} 8.06$ (2H, s, CH), 7.41-7.14 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.02 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$), 5.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.9 \mathrm{~Hz}, \mathrm{OH}$), 4.66 ($1 \mathrm{H}, \mathrm{dd}, J 13.0,8.1 \mathrm{~Hz}, \mathrm{H}-2$), 4.38 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5 \mathrm{~Hz}, \mathrm{H}-1$), $3.79\left(4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 29.2,14.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.43(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 23.4,8.3 \mathrm{~Hz}, \mathrm{H}-5), 2.21-2.10$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 2.02-1.91 (2H, m, H-3 and H-4), 1.89-1.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4$); dc (100 MHz , DMSO-d ${ }_{6}$, HMBC) 151.8 (CH), 139.5 (CH), 128.2, 127.9, 126.3 (Ph), 75.1 (C-2), 62.6 (C-1), 61.1 ($\mathrm{CH}_{2} \mathrm{Ph}$), 55.2 (C-5), 26.9 (C-4), 25.1 (C-3); LC-MS (APCI): $m / z=415.28$ $[\mathrm{M}]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}\right]^{+}$: 415.2241; found: 415.2248. Compound 10d: $\mathrm{d}_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) 8.02$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$), 7.92 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$), 7.10$6.92(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.00(2 \mathrm{H}$, buried s, NH), $5.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.6 \mathrm{~Hz}, \mathrm{OH}), 4.61(1 \mathrm{H}, \mathrm{dd}$, $J 9.8,7.9 \mathrm{~Hz}, \mathrm{H}-2), 4.53(1 \mathrm{H}, \mathrm{dd}, J 11.5,7.1 \mathrm{~Hz}, \mathrm{H}-1), 3.71(1 \mathrm{H}, \mathrm{dd}, J 18.3,8.7 \mathrm{~Hz}, \mathrm{H}-$ 3), $3.62\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.44\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 2.05-1.96(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-5)$, 1.94-1.74 (2H, m, H-4), 1.69-1.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5$); $\mathrm{d}_{\mathrm{c}}\left(100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right.$,

HMBC) $155.8(\mathrm{CH}), 139.3(\mathrm{CH})$, 128.1, 127.7, 126.4 (Ph), 71.1 (C-2), $61.0(\mathrm{C}-1)$, 52.9 (C-3), $52.1\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 30.1$ (C-4), 20.1 (C-5); LC-MS (APCI): $m / z=415.34[\mathrm{M}]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}\right]^{+}$: 415.2241; found: 415.2229.
(1SR,2SR,5RS)-2-(6-Amino-9H-purin-9-yl)-5-[benzyl(methyl)amino]cyclopentanol (13a)
This compound was isolated in 68% yield $(1.15 \mathrm{~g})$ as a yellow solid; $d_{H}(400 \mathrm{MHz}$, $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) 8.60(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.32(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.52-7.22(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $5.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.1 \mathrm{~Hz}, \mathrm{H}-1), 4.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 18.0,8.6 \mathrm{~Hz}, \mathrm{H}-2), 4.63(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.87$ ($2 \mathrm{H}, \mathrm{q}, ~ J 13.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), 3.29 ($1 \mathrm{H}, \mathrm{dd}, J 16.3,7.9 \mathrm{~Hz}, \mathrm{H}-5$), 2.50-2.40 (1H, m, H-3), $2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.27-2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.10-1.89(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-4)$; $\mathrm{d}_{\mathrm{c}}(100 \mathrm{MHz}$, $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \mathrm{HMBC}\right) 151.0(\mathrm{CH}), 140.7(\mathrm{CH}), 128.6,127.2,123.6(\mathrm{Ph}), 77.5(\mathrm{C}-2), 69.2$ $\left(\mathrm{CH}_{3}\right), 63.2(\mathrm{C}-1), 60.0(\mathrm{C}-5), 38.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 26.7(\mathrm{C}-4), 23.5(\mathrm{C}-3)$; LC-MS (APCI): $m / z=338.71[M]^{+}$. HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}\right]^{+}: 339.1928$; found: 339.1930 .
(1SR,2SR,5RS)-2-(6-Amino-9H-purin-9-yl)-5-(dibenzylamino)cyclopentanol (13b) This compound was isolated in 55% yield $(1.14 \mathrm{~g})$ as a brown solid; $d_{H}(400 \mathrm{MHz}$, DMSO-d d_{6}) $8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.10(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.44-7.14(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.00(2 \mathrm{H}, \mathrm{s}$, $N H_{2}$), $5.21(1 \mathrm{H}, \mathrm{d}, J 5.4 \mathrm{~Hz}, \mathrm{OH}), 4.68(1 \mathrm{H}, \mathrm{dd}, J 13.8,8.4 \mathrm{~Hz}, \mathrm{H}-1), 4.43(1 \mathrm{H}, \mathrm{dd}, J$ 18.2, $9.0 \mathrm{~Hz}, \mathrm{H}-2), 3.84\left(2 \mathrm{H}, \mathrm{d}, ~ J 14.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $3.67\left(2 \mathrm{H}, \mathrm{d}, ~ J 14.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, 3.17-3.10 (1H, m, H-5), 2.19-1.98 (2H, m, H-3), 1.95-1.74 (2H, m, H-4); dc (100 MHz , DMSO-d ${ }_{6}$, HSQC-DEPT) 151.3 (CH), 139.5 (CH), 128.0, 127.6, 126.1 (Ph), 74.9 (C1), 63.3 (C-5), 60.3 (C-2), $53.6\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 25.6(\mathrm{C}-3), 20.7(\mathrm{C}-4)$; LC-MS (APCI): m/z= $415.27[\mathrm{M}]^{+}$. HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}\right]^{+}: 415.2241$; found: 415.2229.

References

1. Bond, C. W.; Cresswell, A. J.; Davies, S. G.; Fletcher, A. M.; Kurosawa, W.; Lee, J. A.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E. J. Org. Chem. 2009, 74, 6735-6748.
2. Brennan, M.; Claridge, T.; Compton, R.; Davies, S. J. Org. Chem. 2012, 77, 72417261.
