Supporting Information

for

Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells

Diego Cortizo-Lacalle¹, Calvyn T. Howells², Upendra K. Pandey^{2,3}, Joseph Cameron¹, Neil J. Findlay¹, Anto Regis Inigo¹, Tell Tuttle¹, Peter J. Skabara^{*1} and Ifor D. W. Samuel^{*2} Address: ¹WestCHEM, Department of Pure and Applied Chemistry, University of

Strathclyde, Glasgow, G1 1XL, UK; ²Organic Semiconductor Centre, SUPA, School of

Physics & Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK and

³Present address: Interdisciplinary Centre for Energy Research, Indian Institute of

Science, Bangalore 560012, India

Email: Peter J. Skabara^{*} - <u>peter.skabara@strath.ac.uk</u>; Ifor D. W. Samuel - <u>idws@st-</u> <u>andrews.ac.uk</u>

*Corresponding author

Absorption and emission spectra of compounds 9 and 10 and their fullerene blends; film thickness measurements; surface analysis; representation of device structure; device characteristics; computational data.

Photophysics

Figure S1: Solid state absorption spectra of 9 (black) and 10 (red), spin-coated from chlorobenzene.

Figure S2: Solid state absorption spectra for $9:PC_{71}BM$ (1:1) (black) and $10:PC_{71}BM$ (1:1) (red).

Figure S3: Solid state absorption spectra for $9:PC_{71}BM$ (1:3) (black) and $10:PC_{71}BM$ (1:3) (red).

Figure S4: Emission spectra of 9 (black) and 10 (red) acquired from 400 nm excitation (dichlorobenzene solution).

Figure S5: Emission spectrum of 9 acquired from 550 nm excitation (solid state).

Figure S6: Emission spectrum of 10 acquired from 550 nm excitation (solid state).

Figure S7: Film thickness of **9**:PC₇₁BM (1:3) from a Dektak profiler. To get an indication of the film thickness the film has been removed from five separate regions.

Figure S8: Film thickness of 10:PC71BM (1:3) from a Dektak profiler.

Figure S9: Wide-field of **9**:PC₇₁BM (1:3). The black scale bar in the bottom left hand corner of the image is 80 μ m long. In this image there are five regions where aggregates are observed. These regions are defined with red circles.

Figure S10: Wide-field of **10**:PC₇₁BM (1:3). The black scale bar in the bottom left hand corner of the image is 80 μ m long. In this image there are seventeen regions where aggregates are observed. These regions are defined with red circles.

Figure S11: Tapping mode AFM height image of 10:PC₇₁BM (1:3) on fused silica substrate.

Figure S12: Tapping mode AFM phase image of 10:PC₇₁BM (1:3) on fused silica substrate.

Figure S13: Energy levels (top) and device structure (bottom) for 9:PC₇₁BM (1:3).

Figure S14: Energy levels (top) and device structure (bottom) for 10:PC₇₁BM (1:3).

Figure S15: J-V characteristics of **9**:PC₇₁BM varying donor/acceptor ratios under 100 mW cm⁻² illumination with a standard AM1.5 G source.

Donor-Acceptor Ratio	Jsc [mA/cm ²]	Voc [V]	FF [%]	PCE [%]
2:1	0.24	0.44	28	0.03
1:1	0.51	0.39	30	0.06
1:2	2.46	0.56	23	0.32
1:3	3.02	0.62	30	0.56
1:4	2.76	0.57	24	0.37

Figure S16: Device characteristics for various donor/acceptor ratios of 9:PC71BM.

Figure S17: Dominant transitions in TDDFT calculation of 9 at 612 nm.

Figure S18: Dominant transitions in TDDFT calculation of 9 at 510 nm.

Figure S19: Dominant transitions in TDDFT calculation of 9 at 370 nm.

Figure S20: Dominant transitions in TDDFT calculation of 10 at 641 nm.

Figure S21: Dominant transitions in TDDFT calculation of 10 at 510 nm.

Figure S22: Dominant transitions in TDDFT calculation of 10 at 403 nm.

Compound	Calculated	Transitions			
	Absorption	n			
	peaks / nm				
9	612	HOMO→LUMO (75%) ; HOMO-3→LUMO+2 (12%) ;			
		HOMO-3→LUMO+3 (13%)			
	510	HOMO-2→LUMO+1 (32%) ; HOMO-2→LUMO+2			
		(12%) ; HOMO-1→LUMO (9%) ; HOMO-1→LUMO+1			
		(15%) ; HOMO-1→LUMO+2 (32%)			
	370	HOMO-4→LUMO (20%) ; HOMO-4→LUMO+2 (13%)			
		HOMO-3→LUMO+1 (24%) ; HOMO-3→LUMO+3			
		(7%) ; HOMO→LUMO+2 (27%) ; HOMO→LUMO+4			
		(9%)			
10	641	HOMO→LUMO (83%) ; HOMO-3→LUMO+3 (17%)			
	510	HOMO-3→LUMO+1 (35%) ; HOMO-2→LUMO+1			
		(23%) ; HOMO-1→LUMO+2 (42%)			
	403	HOMO-4→LUMO (32%) ; HOMO-3→LUMO+1 (14%)			
		HOMO-3→LUMO+3 (23%) ; HOMO→LUMO+2			
		(10%); HOMO→ LUMO+4 (21%)			