Supporting Information

for

Solution processable diketopyrrolopyrrole (DPP) cored small molecules with BODIPY end groups as novel donors for organic solar cells

Diego Cortizo-Lacalle ${ }^{1}$, Calvyn T. Howells ${ }^{2}$, Upendra K. Pandey ${ }^{2,3}$, Joseph Cameron ${ }^{1}$, Neil J. Findlay ${ }^{1}$, Anto Regis Inigo ${ }^{1}$, Tell Tuttle ${ }^{1}$, Peter J. Skabara* ${ }^{*}$ and Ifor D. W. Samuel ${ }^{* 2}$
Address: ${ }^{1}$ WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK; ${ }^{2}$ Organic Semiconductor Centre, SUPA, School of Physics \& Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK and
${ }^{3}$ Present address: Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore 560012, India

Email: Peter J. Skabara* - peter.skabara@strath.ac.uk; Ifor D. W. Samuel - idws@standrews.ac.uk
*Corresponding author

Absorption and emission spectra of compounds 9 and 10 and their fullerene blends; film thickness measurements; surface analysis; representation of device structure; device characteristics; computational data.

Figure S1: Solid state absorption spectra of 9 (black) and 10 (red), spin-coated from chlorobenzene.

Figure S2: Solid state absorption spectra for $9: \mathrm{PC}_{71} \mathrm{BM}(1: 1)$ (black) and 10: $\mathrm{PC}_{71} \mathrm{BM}(1: 1)$ (red).

Figure S3: Solid state absorption spectra for $9: \mathrm{PC}_{71} \mathrm{BM}(1: 3)$ (black) and 10: $\mathrm{PC}_{71} \mathrm{BM}(1: 3)$ (red).

Figure S4: Emission spectra of 9 (black) and 10 (red) acquired from 400 nm excitation (dichlorobenzene solution).

Figure S5: Emission spectrum of 9 acquired from 550 nm excitation (solid state).

Figure S6: Emission spectrum of $\mathbf{1 0}$ acquired from 550 nm excitation (solid state).

Figure S7: Film thickness of $\mathbf{9}: \mathrm{PC}_{71} \mathrm{BM}(1: 3)$ from a Dektak profiler. To get an indication of the film thickness the film has been removed from five separate regions.

Figure S8: Film thickness of $10: \mathrm{PC}_{71} \mathrm{BM}(1: 3)$ from a Dektak profiler.

Figure S9: Wide-field of $9: \mathrm{PC}_{71} \mathrm{BM}$ (1:3). The black scale bar in the bottom left hand corner of the image is $80 \mu \mathrm{~m}$ long. In this image there are five regions where aggregates are observed. These regions are defined with red circles.

Figure S10: Wide-field of $10: \mathrm{PC}_{71} \mathrm{BM}(1: 3)$. The black scale bar in the bottom left hand corner of the image is $80 \mu \mathrm{~m}$ long. In this image there are seventeen regions where aggregates are observed. These regions are defined with red circles.

Figure S11: Tapping mode AFM height image of $10: \mathrm{PC}_{71} \mathrm{BM}$ (1:3) on fused silica substrate.

Figure S12: Tapping mode AFM phase image of $10: \mathrm{PC}_{71} \mathrm{BM}$ (1:3) on fused silica substrate.

Figure S13: Energy levels (top) and device structure (bottom) for $9: \mathrm{PC}_{71} \mathrm{BM}(1: 3)$.

Figure S14: Energy levels (top) and device structure (bottom) for $\mathbf{1 0}: \mathrm{PC}_{71} \mathrm{BM}(1: 3)$.

Figure S15: $J-V$ characteristics of 9: $\mathrm{PC}_{71} \mathrm{BM}$ varying donor/acceptor ratios under $100 \mathrm{~mW} \mathrm{~cm}{ }^{-2}$ illumination with a standard AM1.5 G source.

Donor-Acceptor Ratio	Jsc [mA/cm ${ }^{2}$]	Voc [V]	FF [\%]	PCE [\%]
$\mathbf{2 : 1}$	0.24	0.44	28	0.03
$\mathbf{1 : 1}$	0.51	0.39	30	0.06
$\mathbf{1 : 2}$	2.46	0.56	23	0.32
$\mathbf{1 : 3}$	3.02	0.62	30	0.56
$\mathbf{1 : 4}$	2.76	0.57	24	0.37

Figure S16: Device characteristics for various donor/acceptor ratios of 9: $\mathrm{PC}_{71} \mathrm{BM}$.

Figure S17: Dominant transitions in TDDFT calculation of 9 at 612 nm .

Figure S18: Dominant transitions in TDDFT calculation of 9 at 510 nm .

Figure S19: Dominant transitions in TDDFT calculation of 9 at 370 nm .

Figure S20: Dominant transitions in TDDFT calculation of 10 at 641 nm .

Figure S21: Dominant transitions in TDDFT calculation of 10 at 510 nm .

Figure S22: Dominant transitions in TDDFT calculation of 10 at 403 nm .

Table S1. TDDFT Results

Compound	Calculated Absorption peaks/nm	Transitions
9	612	$\begin{gathered} \text { HOMO } \rightarrow \text { LUMO (75\%); HOMO-3 } \rightarrow \text { LUMO+2 (12\%); } \\ \text { HOMO-3 } \rightarrow \text { LUMO }+3 \text { (13\%) } \end{gathered}$
	510	HOMO-2 \rightarrow LUMO+1 (32\%); HOMO-2 \rightarrow LUMO+2 (12\%); HOMO-1 \rightarrow LUMO (9\%); HOMO-1 \rightarrow LUMO +1 (15\%); HOMO-1 \rightarrow LUMO +2 (32\%)
	370	HOMO-4 \rightarrow LUMO (20\%); HOMO-4 \rightarrow LUMO+2 (13\%); HOMO-3 \rightarrow LUMO+1 (24\%); HOMO-3 \rightarrow LUMO +3 (7\%); HOMO \rightarrow LUMO +2 (27\%); HOMO \rightarrow LUMO +4 (9\%)
10	641	HOMO \rightarrow LUMO (83\%); HOMO-3 \rightarrow LUMO+3 (17\%)
	510	$\begin{gathered} \text { HOMO-3 } \rightarrow \text { LUMO }+1 \text { (} 35 \% \text {); HOMO-2 } \rightarrow \text { LUMO }+1 \\ (23 \%) ; \text { HOMO- } 1 \rightarrow \text { LUMO+2 (42\%) } \end{gathered}$
	403	HOMO-4 \rightarrow LUMO (32\%); HOMO-3 \rightarrow LUMO+1 (14\%); HOMO-3 \rightarrow LUMO +3 (23\%); HOMO \rightarrow LUMO +2 (10\%); HOMO \rightarrow LUMO +4 (21\%)

